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Abstract

Recently, techniques utilizing frequency-based
methods have gained significant attention, as they
exhibit exceptional restoration capabilities for de-
tail and structure in video super-resolution tasks.
However, most of these frequency-based methods
mainly have three major limitations: 1) insufficient
exploration of object motion information, 2) inade-
quate enhancement for high-fidelity regions, and 3)
loss of spatial information during convolution. In
this paper, we propose a novel network, Directional
Frequency Video Super-Resolution (DFVSR), to
address these limitations. Specifically, we re-
consider object motion from a new perspective
and propose Directional Frequency Representation
(DFR), which not only borrows the property of fre-
quency representation of detail and structure in-
formation but also contains the direction informa-
tion of the object motion that is extremely signif-
icant in videos. Based on this representation, we
propose a Directional Frequency-Enhanced Align-
ment (DFEA) to use double enhancements of
task-related information for ensuring the retention
of high-fidelity frequency regions to generate the
high-quality alignment feature. Furthermore, we
design a novel Asymmetrical U-shaped network
architecture to progressively fuse these alignment
features and output the final output. This architec-
ture enables the intercommunication of the same
level of resolution in the encoder and decoder
to achieve the supplement of spatial information.
Powered by the above designs, our method achieves
superior performance over state-of-the-art models
on both quantitative and qualitative evaluations.

1 Introduction
Video super-resolution (VSR) serves as an essential function
in video processing. It solves how to reconstruct a high-
resolution (HR) video from its corresponding low-resolution
(LR) video. VSR has attracted considerable attention in both
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research and industrial communities because of its great value
in video surveillance and autonomous vehicles.

Deep neural networks [Xue et al., 2019; Wang et al., 2019;
Cao et al., 2021; Chan et al., 2021a; Chan et al., 2021a;
Liu et al., 2022; Chan et al., 2022], have made a substan-
tial impact on enhancing the performance of VSR tasks. Ba-
sicVSR [Chan et al., 2021a] designed a succinct pipeline
to untangle the VSR task to four basic functionalities, i.e.,
Propagation, Alignment, Aggregation, and Upsampling. Ba-
sicVSR++ [Chan et al., 2022] redesigned BasicVSR by
proposing second-order grid propagation and flow-guided de-
formable alignment. VSR-T [Cao et al., 2021] proposed a
transformer-based method to exploit the locality and spatial-
temporal data information through different layers to im-
prove performance. These methods achieve remarkable per-
formance on the VSR task. Nevertheless, they still face chal-
lenges in preserving sufficient details and avoiding structural
artifacts. Recently, frequency-based methods [Xiao et al.,
2021; Qiu et al., 2022; Leng et al., 2022; Liu et al., 2021;
Fuoli et al., 2019] have attracted great interest owing to their
remarkable ability to recover details and structures in video
restoration tasks. Natural images can be decomposed into
high spatial frequency components that represent the image
rapidly changing details and low spatial frequency compo-
nents that describe the smoothly changing structure. There-
fore, effective utilization of this property offers the possibility
to recover details and structures efficiently.

Existing frequency-based methods [Xiao et al., 2021;
Qiu et al., 2022; Leng et al., 2022; Liu et al., 2021; Fuoli
et al., 2019] developed a number of network structures, em-
phasizing the processing of frequency features to optimize
the details and structure of video restoration. STD [Xiao et
al., 2021] derived spatial attention maps that indicated high-
frequency video content. These maps were then employed
to facilitate the transfer of spatial modeling between the net-
works, enhancing the overall performance of the process.
FTVSR [Qiu et al., 2022] and ICNet [Leng et al., 2022]
separated different frequencies to help improve the perfor-
mance of VSR tasks. They have brought considerable per-
formance gains. However, these methods have not fully ex-
plored the role of frequency on VSR tasks for the following
reasons. Firstly, previous frequency-based methods mainly
divide images into high- and low-frequency or different lev-
els of frequency representations. However, such frequency-
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based representations only describe the appearance informa-
tion (including structure and texture details) of the object.
But, objects in video restoration tasks are directional in mo-
tion. These representations ignore the motion direction in-
formation of the object. Secondly, not all frequency infor-
mation is equally useful for video restoration tasks. Without
selecting and enhancing effective information, the frequency-
based model may easily attend to many low-fidelity and less
informative frequency regions. This may degrade model effi-
ciency. Thirdly, existing frequency-based works commonly
adopted down-sampling to enlarge the receptive field and
extract global information, resulting in the inevitable loss
of spatial information. However, VSR tasks are pixel-wise
dense problems. Sharp predictions would not be made with-
out the assistance of sufficient spatial information.

In this paper, we propose a novel VSR network, DFVSR, to
cope with the above problems. Firstly, we observe the object
motion as the combination of movements in different direc-
tions information (horizontal, vertical, and diagonal). This
coincides with the fact that natural images (frames) can be
decomposed into multiple high and low frequencies in dif-
ferent directions. Inspired by this observation, we reconsider
motion from a new perspective and propose to view the mo-
tion as representations of frequencies in different directions.
This way effectively borrows the property of frequency repre-
sentation of texture details and structure information, and im-
portantly, it also contains motion information in multiple di-
rections that is extremely significant in videos. Secondly, as
shown in Figure 2, based on the above representation, we pro-
pose a Directional Frequency-Enhanced Alignment (DFEA)
for directing the alignment to pay attention to the regions
with high-fidelity frequency representations to generate high-
quality alignment features. We design DFEA to use dou-
ble enhancements of task-related information to ensure the
retention of valid information and the weakening of invalid
information. Meanwhile, DFEA also alleviates the limita-
tion of DCN instability during training. Finally, we design
a novel Asymmetrical U-shaped network architecture to pro-
gressively fuse the alignment features. This architecture en-
ables the intercommunication of the same level of resolution
in the encoder and decoder to achieve the supplement of spa-
tial information. Powered by the above designs, we surpass
the state-of-the-art (SOTA) methods in the VSR task.

Our contributions can be summarized as follows:
• We propose a novel network, DFVSR, for improving the

performance of VSR tasks. To the best of our knowl-
edge, it is the first attempt to explore the potential of
directional frequency in VSR tasks.

• We present a novel implicit alignment, DFEA, to pay
attention to the regions with high-fidelity frequency rep-
resentations to generate high-quality alignment features.
DFEA also alleviates the limitation of DCN instability
during training.

• We customize a novel Asymmetrical U-shaped architec-
ture to enable the intercommunication of the same level
of resolution in the encoder and decoder to achieve the
supplement of spatial information.

• Experimental results demonstrate the superiority of our

model over SOTA models on both quantitative and qual-
itative evaluations.

2 Related Work
Frequency-Based Methods. Recently, frequency-based
methods [Xiao et al., 2021; Qiu et al., 2022; Leng et al., 2022;
Liu et al., 2021; Fuoli et al., 2019] have developed a variety
of network architectures that concentrate on processing fre-
quency features to enhance the details and structure of image
and video restoration. STD [Xiao et al., 2021] extracted spa-
tial attention maps, which represented high-frequency video
content from both networks. These maps were subsequently
utilized to streamline the transfer of spatial modeling between
the networks, ultimately improving the overall performance
of the process. Additionally, methods like FTVSR [Qiu et
al., 2022] and ICNet [Leng et al., 2022] separated various fre-
quencies to effectively boost the performance of VSR tasks.
These frequency-based methods have resulted in significant
performance improvements. However, such frequency-based
representations ignore the motion information of the object.
In this paper, we propose a more effective representation,
DFR, to simultaneously model detail and structure informa-
tion, as well as motion information.
Alignment Methods. The existing alignment works are
mainly divided into two categories: (i) flow-based alignment
that exploits optical flow to predict motion fields, and (ii) de-
formable convolution (DCN) based alignment that employs
DCN [Dai et al., 2017] to perform implicit feature learning.
The flow-based alignment methods rely heavily on flow es-
timation, and any errors in the flow computation may intro-
duce artifacts around frame structures [Chan et al., 2021a;
Tian et al., 2020]. DCN-based alignment methods [Chan et
al., 2021a; Chan et al., 2021b; Zhu et al., 2019] have demon-
strated significant improvements over flow-based alignment
thanks to the diversity of its offset. Nonetheless, DCN-based
alignment can be difficult to train [Chan et al., 2021b]. Ba-
sicVSR++ [Chan et al., 2022] proposed a flow-guided de-
formable alignment to help offset learning by using optical
flow field guidance. Unlike the aforementioned methods, we
propose to pay attention to the regions with high-fidelity fre-
quency representations to generate more valid features. Then,
these features are fed to implicit alignment. This way allevi-
ates the limitation of DCN instability during training.

3 Method
3.1 Overall Architecture
The overall architecture of DFVSR is shown in Figure 1 (a).
We propose a novel directional frequency representation in
DFVSR, which not only borrows the property of frequency
representation of detail and structure information but also
contains the direction information of the object motion that
is extremely significant in videos. DFVSR consists of mul-
tiple units, and each unit is abbreviated as DFunit (as shown
in Figure1 (b)). We design the DFunit with a directional fre-
quency guidance encoder, a bottleneck, and an asymmetri-
cal decoder. In the encoder of DFUnit, the initial input is
low-frequency features, which are progressively fused with
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Figure 1: (a) The overall architecture of DFVSR. (b) Illustration of DFVSR Unit (DFUnit). DFUnit adopts an Asymmetric U-shaped structure
that consists of a directional frequency guidance encoder, a bottleneck, and an asymmetrical decoder. (c) The architecture of R-FFN.

higher-frequency alignment features. We propose a novel im-
plicit alignment, DFEA, to generate these alignment features
(as shown in Figure 2). DFEA uses double enhancements
of task-related information to ensure the retention of high-
fidelity frequency regions to generate high-quality alignment
features. Then, the output of the DFUnit encoder is fed into
an asymmetric decoder through a bottleneck. This decoder
further processes, refines, and reconstructs features to output
the final HR frame. The above design ensures the final video
is a high-quality product.

3.2 Directional Frequency Representation
For high-quality output, the restoration of rich texture details
and clear structure is essential. Natural images can be decom-
posed into high spatial frequency components that represent
rapidly changing texture details of images and low spatial
frequency components that describe the smoothly changing
structure. Thus, efficient exploration of this property opens
up possibilities for high-quality restoration of texture details
and structure. It brings considerable performance gains for
frequency-based methods on video restoration tasks. Pre-

vious frequency-based methods mainly divide images into
high- and low-frequency maps or different levels of fre-
quency. However, such frequency representations do not con-
tain object motion information, ignoring the directionality of
object motion.

To handle this limitation, it is necessary to develop a di-
rectional representation for precisely detecting the motion di-
rections of objects while providing detail and structure infor-
mation. We propose Directional Frequency Representation
(DFR), which not only borrows the property of frequency rep-
resentation of detail and structure information but also con-
tains the direction information of the object motion that is
extremely significant in videos. Specifically, the ith frame
feature Gi can be represented as:

Gi =
∑
j

F j
i , j ∈ {l, h, v, d}, (1)

F j
i = γ(Hi, j), j ∈ {l, h, v, d}, (2)

where F denotes the frequency feature, and j reflects the fre-
quency direction. l represents low frequency. h, v, and d
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Figure 2: Overview of our proposed DFEA module. DFEA uses double enhancements of task-related information to ensure the retention of
high-fidelity frequency regions.

represent the high frequencies in the horizontal, vertical, and
diagonal directions, respectively. γ is the discrete wavelet
transform operation for generating the directional frequency
features.

Different from previous frequency-based methods, this
representation incorporates directional information, thus ob-
ject motion can be viewed as an amalgamation of frequency
representations from multiple directions. This will pro-
vide more sufficient motion information for subsequent inter-
frame alignment.
Directional Frequency Loss. We argue that the directional
information of motion in videos is significant for subsequent
inter-frame motion alignment operations. Unlike images, an
important property of objects in video is their motion. As
analyzed above, in previous frequency-based methods, the
motion information of objects may be not well modeled. It
will cause great challenges for feature alignment and texture
refinement. Therefore, we hope our model could not only
focus on the appearance (texture details and structure) infor-
mation of objects but also could pay more attention to the
object motions. As shown in Figure 1(a), we propose a novel
Directional Frequency Loss (DFLoss) to ensure the accuracy
of motion information in the propagation process. We define
the DFLoss:

Lj
i =

∑
j

∥∥∥φ(
F j
i

)
− φ(E

(
F j−1
i , F j

i

)
)
∥∥∥2
2
, j ∈ {l, h, v, d},

(3)
where E is the proposed DFEA (alignment module) that will
be described in detail in section 3.4. φ represents the re-
construction layer. In this way, directional frequency maps
act as the appearance and motion guidance for the objects
in videos. The proposed DFLoss enforces the ingredients of
appearance and motion in deep feature layers for blending.
Through propagating the directional frequency features, the

motion information will be effectively retained.

3.3 Asymmetric Encoder and Decoder
Directional Frequency Guidance Encoder. Different
from the previous methods mainly based on using different
branches to separately process multiple frequency features,
we propose a novel encoder that progressively incorporates
alignment frequency features.

In our design, the computationally intensive alignment op-
eration is assigned to high-frequency features. This strate-
gic allocation of network parameters shifts more attention to-
wards detail-representing high-frequency features, while sig-
nificantly reducing the computational load associated with
low-frequency features. As shown in Figure 1(b), we first
input the low-frequency feature of ith frame and progres-
sively feed the alignment directional high-frequency features.
Specifically, the low frequency F l

i is further extracted and
generates the feature E0. E0 is the input of the encoder,
which consists of several R-FFNs (as shown in Figure 1(c)).
We propose an R-FFN module to improve the feed-forward
network (FFN) by adding residual connections. Each encoder
block contains two inputs: the output features derived from
the downsampling operation applied to the previous encoder
block, and the corresponding directional alignment frequency
feature generated by our proposed DFEA module. The output
Em of mth encoder block is defined as:

Em = C(Em−1, E(F j
i−1, F

j
i )) (4)

where E is the proposed DFEA (alignment module) that will
be described in detail in section 3.4. C denotes the R-FFNs.
The output of each encoder block will be sent to two places
for two different purposes. One is to conduct a downsampling
operation before feeding into the next encoder block. The
other is performed as an added skip connection to provide
supplementary spatial information to the decoder.
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After this encoding process, the final output feature E3 of
the encoder, incorporates alignment frequency information in
multiple directions. E3 then passes through the bottleneck,
which consists of an R-FFN module to output the feature D0.
Asymmetrical Decoder. We design a novel asymmetrical de-
coder that is able to complement the lost spatial information.
The nth decoder block includes two inputs: 1) the output
Dn−1 of the previous decoder block, and 2) the output Em

of the corresponding mth encoder block. These two inputs
are not simultaneously but sequentially input to the decoder
block. Dn−1 is input to the upsampling part and R-FFN, re-
spectively. We design the features generated by R-FFN to be
fed back into R-FFN iteratively to refine the encoder feature.
We design the iteration parameter as the hyperparameter (set
to 3 in this paper). Then, we concatenate the feature Dup

n
generated by upsampling part, the feature Drefine

n generated
by the R-FFN iterative refinement part, and the feature Em to
generate the output Dn of nth decoder block. The decoder
process is defined as:

Dn = Concat(Em, Dup
n , Drefine

n ). (5)

The output feature D3 of the last decoder block is then
fed into the reconstruction layer to output the ith video frame
IHR
i :

IHR
i = R(D3) (6)

where R is the reconstruction layer.

3.4 Directional Frequency-Enhanced Alignment
The other limitation of previous frequency-based methods
is that the learning model may attend to some less infor-
mative spatial regions with low-fidelity frequency represen-
tations. This may degrade model efficiency. Ideally, the
model would be able to pay more attention to spatial re-
gions with higher fidelity information. This goal motivates
us to design an alignment module that focuses more on high-
fidelity regions. Therefore, we propose a novel alignment
model, DFEA, which consists of double enhancements of
task-related information to ensure the retention of valid infor-
mation in high-fidelity regions and the weakening of invalid
information in low-fidelity regions.

As shown in Figure 2, we map F j
i into the query Qj

i , the
key Kj

i , and the value V j
i . Differently, we map F j

i−1 into
the key Kj

i−1 and the value V j
i−1. We do this to preserve

task-relevant information in ith frame, as well as adaptively
select alignment information in (i− 1)th frame. Specifically,
we first utilize Qj

i , Kj
i and Kj

i−1 to calculate the correlation
matrix (Cj

i )
′ and (Cj

i−1)
′. Next, the correlation matrix multi-

plies its corresponding value to obtain the correlation features
(F j

i )
′

and (F j
i−1)

′
. Then, to further enhance the correlation

information, we concatenate (F j
i )

′
and (F j

i−1)
′

to calculate
the enhanced matrix (Cj

i )
′′ and (Cj

i−1)
′′. Subsequently, the

enhanced task-relevant features (F j
i )

′′
and (F j

i−1)
′′

are gen-
erated by the matrix multiplication between the enhanced ma-
trices and the original frequency value features.

In addition, we argue that the frequencies of different direc-
tions for the same frame are not independent but correlated.

Therefore, the offsets obtained by learning different direction
frequencies in the same frame should also be related to each
other. Based on this analysis, as shown in Figure 2, we design
to use previously learned offers Θj−1

offset to help learn offers
Θj

offset in the current direction. Here, j − 1 does not refer to
the mathematical meaning, but the previous frequency direc-
tion. Last, the alignment features Aj

i−1 of the jth direction is
generated as follows:

Aj
i−1 = DC(F j

i−1,Θ
j
offset) (7)

where DC(·) denotes deformable convolution.
Unlike the original DCN-based alignment to directly con-

catenate two features to learn offsets, our proposed DFEA
enhances the valid information of ith and i− 1th frames and
ensures that its learning offsets are more accurate and valid.
This way makes the alignment process more stable.

4 Experiments
4.1 Datasets and Implementation
Datasets. We adopt two widely used datasets to train: REDS
[Nah et al., 2019] and Vimeo-90K [Xue et al., 2019]. Fol-
lowing [Chan et al., 2021a], we apply REDS4 as our test set,
and REDSval4 as the validation set. We also use Vid4 [Liu
and Sun, 2013], UDM10 [Yi et al., 2019] and Vimeo-T [Xue
et al., 2019] as test sets.
Implementation and Training Details. We employ Adam
optimizer by setting β1 = 0.9 and β2 = 0.999. The learning
rate is initialized as 2.5 × 10−5. We apply RGB patches of
size 64×64 as inputs. We set the mini-batch size to 32. In
addition to our proposed DFLoss, we also adopt Charbonnier
loss [Lai et al., 2017], and ε is set to 1 × 10−3. The total
number of iterations is 600K. The model is trained under the
PyTorch framework with an NVIDIA RTX 2080Ti GPU. To
speed up the convergence, we develop shallower networks to
initialize deeper network parameters.

4.2 Comparison with State-of-The-Art Methods
We compare our method with 12 SOTA models that are Ba-
sicVSR++ [Chan et al., 2022], TTVSR [Liu et al., 2022],
IconVSR [Chan et al., 2021a], BasicVSR [Chan et al.,
2021a], VSR-T [Cao et al., 2021], TDAN[Tian et al., 2020],
EDVR [Wang et al., 2019], TOFlow [Xue et al., 2019],
FRVSR [Sajjadi et al., 2018], DUF [Jo et al., 2018], RBPN
[Haris et al., 2019] and MuCAN [Huang et al., 2017]. The
results are in Table 1. Our DFVSR achieves SOTA per-
formance on all datasets for both BI and BD degradations.
Compared to BasicVSR++ [Chan et al., 2022] which is the
representative progressive method, our model achieves supe-
rior performance on all datasets by using fewer parameters.
Furthermore, DFVSR also surpasses the recent transformer-
based method VSR-T [Cao et al., 2021] by 1.57 dB, 1.54
dB, and 0.56 dB, respectively. The qualitative comparisons
are shown in Figure 3. These visual results show that our
method restores clearer details and a more precise structure.
Furthermore, our method is also very efficient in the recovery
of bright and dark areas. This gain is considered significant
for VSR tasks.
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BI degradation BD degradation
Params (M) REDS4 Vimeo-T Vid4 UDM10 Vimeo-T Vid4

Bicubic − 26.14/0.7292 31.32/0.8684 23.78/0.6347 28.47/0.8253 31.30/0.8687 21.80/0.5246
TOFlow − 27.98/0.7990 33.08/0.9054 25.89/0.7651 36.26/0.9438 34.62/0.9212 25.85/0.7659
FRVSR 5.1 37.09/0.9522 35.64/0.9319 26.69/0.8103
DUF 5.8 28.63/0.8251 − − 38.48/0.9605 36.87/0.9447 27.38/0.8329
RBPN 12.2 30.09/0.8590 37.07/0.9435 27.12/0.8180 38.66/0.9596 37.20/0.9458 −
EDVR 20.6 31.09/0.8800 37.61/0.9489 27.35/0.8264 39.89/0.9686 37.81/0.9523 27.85/0.8503
MuCAN − 30.88/0.8750 37.32/0.9465 − − − −
VSR-T 32.6 31.19/0.8815 37.71/0.9494 27.36/0.8258 − − −
BasicVSR 6.3 31.42/0.8909 37.18/0.9450 27.24/0.8251 39.96/0.9694 37.53/0.9498 27.96/0.8553
IconVSR 8.7 31.67/0.8948 37.47/0.9476 27.39/0.8279 40.03/0.9694 37.84/0.9524 28.04/0.8570
TTVSR 6.8 32.12/0.9021 − − 40.41/0.9712 37.92/0.9526 28.40/0.8643
BasicVSR++ 7.3 32.39/0.9069 37.79/0.9500 27.79/0.8400 40.72/0.9722 38.21/0.9550 29.04/0.8753
DFVSR (Ours) 7.1 32.76/0.9081 38.25/0.9556 27.92/0.8427 40.97/0.9733 38.51/0.9571 29.56/0.8983

Table 1: Quantitative comparison (PSNR and SSIM) of different methods on REDS4, Vimeo-T, Vid4 and UDM10 with upscale factor 4 under
BI and BD degradations. The top-2 results are highlighted in red and blue colors.

TDAN BasicVSR IconVSR TTVSR BasicVSR++ Ours GT 

MuCAN BasicVSR IconVSR TTVSR BasicVSR++ Ours GT 

TDAN                     BasicVSR IconVSR TTVSR BasicVSR++ Ours GT 

MuCAN BasicVSR IconVSR TTVSR BasicVSR++ Ours GT 

Figure 3: Challenging scenario. The results demonstrate that our method has the ability to restore more details and clearer structure.

4.3 Ablation Study

We conduct the ablation study to explore the contributions of
the proposed components. We start with a baseline, which is
the cascaded R-FFNs. We denote the model generated by the
baseline as A0. A0 uses original non-frequency features to
train. Then, we gradually insert the components to validate
the necessity of each component. The quantitative results are
in Table 2.
Effectiveness of the input strategy of frequency features.
There are two strategies for input here. One is to input dif-
ferent frequencies into the model training together, and the

other is to gradually input different frequencies into the model
training. We train the two strategies separately. The model
generated by the former strategy is denoted as A1−1, and the
latter strategy applies the proposed model to gradually incor-
porates frequency features to generate a model, which is de-
noted as A1−2. The results show that A1−2 is better. This
illustrates that progressively fusing the frequencies yields bet-
ter results.
Effectiveness of the DFLoss module. We test the contri-
bution of our proposed DFLoss based on the A1−2 model
(trained only by Charbonnier loss). We design to train two
models (A2−1 and A2−2), which use Charbonnier loss LCL
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A0 A1−1 A1−2 A2−1 A2−2 A3−1 A3−2 A4−1 A4−2 A4−3
Input strategy ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DFLoss ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Asymmetrical U-shape ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
DFEA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
PSNR 32.27 33.02 34.79 35.33 35.62 35.91 36.73 36.81 37.94 38.51

Table 2: Ablation studies on Vimeo-T with upscale factor 4 under BD degradation. A in the table represents different models.

EDVR                         BasicVSR BasicVSR++                Ours                         GTT (time)

Figure 4: Temporal consistency comparison. Only our method recovers the details of the area pointed by the orange arrow. Also, our method
recovers more details in the overall profile to make the output more temporally consistent.

and DFLoss LDF . The total loss is defined as: L = λ1LCL+
λ2LDF . To train A2−1, we set λ1 = 0.7 and λ2 = 0.3. On
the contrary, to train A2−2, we set λ1 = 0.3 and λ2 = 0.7.
The experimental results show that both A2−1 and A2−2

models are better than A1−2. And these two models gain
improvements of 0.54dB and 0.83dB respectively. In addi-
tion, the performance of A2−2 is further better. This shows
that directional frequencies can be an effective guide for the
appearance and motion of objects in video.
Effectiveness of the Asymmetrical U-shaped architecture.
To explore the contributions of the proposed Asymmetrical
U-shaped architecture. We train two U-shape models based
on the A2−2 model. A model trained using a common sym-
metric U-shape architecture (ie, delete Drefine for Equation
(5)), called A3−1. Another model is trained with our pro-
posed asymmetric architecture, called A3−2. As shown in Ta-
ble 2, the results of both A3−1 and A3−2 are better than A2−2.
This shows the importance of supplementary spatial informa-
tion. In addition, the proposed A3−2 achieves better results.
It demonstrates the superiority of the proposed Asymmetric
U-shape. It also shows that our proposed architecture can
supplement more effective spatial information. This shows
the necessity of further refinement of the decoder features.
Effectiveness of the DFEA module. We designed three
alignment modules based on A3−2. The first alignment mod-
ule, that is, the original way of DCN-based alignment, per-
forms a concatenate operation on the frequency features of
the input two frames. The second alignment module uses one
attention operation on the frequency features of the input two
frames. The third alignment module is our proposed DFEA,
which designs double enhancements of task-related informa-
tion to ensure the retention of high-fidelity frequency regions.
The models generated by these three modules are respectively
denoted as A4−1, A4−2, and A4−3. The experimental re-

sults show that A4−3 (DFVSR) has the best performance, and
A4−2 is the second best. This reflects the importance of en-
hancing the weight of high-fidelity regions. In addition, it
demonstrates the efficiency of our alignment method.

4.4 Temporal Consistency
In Figure 4, we show the comparisons of the temporal pro-
files between our DFVSR and three SOTA VSR methods, Ba-
sicVSR++ [Chan et al., 2022], BasicVSR [Chan et al., 2021a]
and EDVR [Wang et al., 2019]. We collect a column (blue
dotted lines) and obtain the temporal profile to compare tem-
poral consistency. We can observe that our DFVSR produces
smoother temporally consistent results by comparing all of
the methods. Furthermore, in the area indicated by the orange
arrow, the comparison results demonstrate that our model pre-
serves more details and produces high-quality products with
temporal consistency.

5 Conclusion
In this paper, we propose a novel and effective DFVSR net-
work to improve the performance of VSR tasks. We propose a
novel representation, DFR, which not only borrows the prop-
erty of frequency representation of detail and structure infor-
mation but also contains the object motion information that
is extremely significant in videos. Based on this representa-
tion, we propose a new implicit alignment module, DFEA,
to ensure the retention of high-fidelity frequency regions to
generate the high-quality alignment feature. Furthermore, we
design a novel Asymmetrical U-shaped network architecture
to progressively fuse these alignment features and output the
final output. This architecture enables the intercommunica-
tion of the same level of resolution in the encoder and decoder
to achieve the supplement of spatial information. The above
designs ensure the final video is a high-quality product.
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