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Abstract
Since single-modal controllable manipulation typ-
ically requires supervision of information from
other modalities or cooperation with complex soft-
ware and experts, this paper addresses the problem
of cross-modal adaptive manipulation (CAM). The
novel task performs cross-modal semantic align-
ment from mutual supervision and implements
bidirectional exchange of attributes, relations, or
objects in parallel, benefiting both modalities while
significantly reducing manual effort. We introduce
a robust solution for CAM, which includes two es-
sential modules, namely Heterogeneous Represen-
tation Learning (HRL) and Cross-modal Relation
Reasoning (CRR). The former is designed to per-
form representation learning for cross-modal se-
mantic alignment on heterogeneous graph nodes.
The latter is adopted to identify and exchange the
focused attributes, relations, or objects in both
modalities. Our method produces pleasing cross-
modal outputs on CUB and Visual Genome.

1 Introduction
Generating natural and meaningful outputs from one modal-
ity that semantically matches given supervision information
from the other modalities is a challenging problem with
vast potential applications, including image editing, language
style transfer, and computer-aided design. Considering that a
cross-modal model can receive inputs from multiple modal-
ities simultaneously, it is a natural idea that the outputs of
these models should also cover all the input modalities simul-
taneously. However, the current research focuses on the out-
put of a specific modality [Nam et al., 2018; Li et al., 2019;
Dhamo et al., 2020]. For example, text-guided image ma-
nipulation generates natural-looking images from language
descriptions [Li et al., 2020a; Li et al., 2020b], and image-
guided text manipulation produces language conforming to
grammar rules [Cornia et al., 2019] from a conditional im-
age. However, cross-modal adaptive manipulation for bidi-
rectional generation on both modalities has received less at-
tention.
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Figure 1: Highlights of the novel CAM task.

While one can introduce additional supervision to manip-
ulate images or texts, it is challenging for a non-expert user
to design appropriate rules, specific priors or adopt profes-
sional tools for single-modal manipulation. Additionally, the
generation from single-modal manipulation has been mostly
restricted to object-centric scenarios [Dhamo et al., 2020] and
the limited functionality of fixed or mobile devices. By com-
parison, cross-modal adaptive manipulation aims to achieve
cross-modal mutual supervision with no need for specific pri-
ors, adaptively exchanging attributes, relations, or objects in
input modalities, and generating outputs for both inputs by
multi-task learning. Therefore, CAM can better fit cross-
modal scenarios and inspire related research.

We specify the introduced task, i.e., consider the two crit-
ical modalities of vision and language. Given an image and
a sentence, on the one hand, it allows modifying visual pre-
sentations (e.g., texture, color, and category) of the image ac-
cording to the input sentence; on the other hand, it supports
adjusting textual contexts (e.g., noun, adjective, and verb) of
the sentence by the input image. The differences between our
task and previous works are listed in Figure 1.

Our contributions are summarized as follows: (1) The
weaknesses of single-modal controllable manipulation are
addressed, and a novel task, namely cross-modal adaptive
manipulation (CAM), is introduced, which has excellent po-
tential for cross-modal applications. (2) A strong baseline is
proposed to solve the CAM task. The HRL module performs
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Figure 2: The pipeline of our method. We propose a graph representation learning approach for the novel cross-modal manipulation task.

cross-modal representation learning for semantic alignment,
and the CRR module implements cross-modal relation rea-
soning in input modalities. (3) Experiments on CUB and Vi-
sual Genome verify that our approach outperforms the lead-
ing methods of single-modal controllable manipulation.

2 Related Work
Single-modal Controllable Manipulation. Distinct from a
portion of generative networks that are typically uncontrol-
lable, another line of research can be summarized as single-
modal controllable manipulation, which mainly includes text-
guided image manipulation and image-guided text manipula-
tion. For text-guided image manipulation, [Nam et al., 2018]
utilized a text-adaptive generative adversarial network to se-
mantically manipulate images while preserving independent
contents in the original image. [Li et al., 2020b] proposed
a word-level discriminator to facilitate training a lightweight
generator for image manipulation using natural language de-
scriptions. For image-guided text manipulation, which is dif-
ferent from image caption (no additional text input) and rarely
paid attention to, many applications can benefit from this task,
such as the children’s early teaching robot dialogue system.

However, the existing works only perform single-modal
controllable manipulation for visual or language generation,
thus only obtaining biased models which can only be applied
in restricted applications. In this work, we introduce the novel
CAM task for multi-modal generations, simultaneously ben-
efiting the modalities of both inputs.

Graph Representation Learning. The latest develop-
ments in graph representation learning have revolutionized
various applications as they are well suited for realistic sce-
narios. Generally, the main ways to apply graph networks for
non-structural scenarios include visual and language are: (1)
incorporate structural information from other modalities to
improve the performance of the current modality. For exam-
ple, using information from knowledge graphs to guide zero-
shot recognition classification [Kampffmeyer et al., 2019], or
performing more delicate relation exploration for a more in-
terpretable reasoning process [Wang et al., 2018]; (2) infer
or assume the relational structure defined on graphs in a sin-

gle modality. For instance, [Yao et al., 2019] regarded the
documents and words as nodes to construct the corpus graph
and used the Text GCN to guide the representation learning
of nodes. [Liu et al., 2019] conducted evidence aggregating
and reasoning based on a fully connected evidence graph.

However, these approaches implement graph representa-
tion learning by introducing external supervision or only per-
forming single-modal relation reasoning. In contrast, we ex-
plore cross-modal graph representation learning and bidirec-
tional relation reasoning in the way of mutual supervision,
leading to a novel multi-task learning framework.

3 Proposed Method
Task Definition. We introduce the cross-modal adaptive
manipulation task: given an image Ii and a sentence Si as
inputs, on the one hand, the job semantically manipulates Ii
according to Si so that the visual presentation of the manip-
ulated output Io match the linguistic descriptions of Si while
preserving Si-independent information in Ii; on the other
hand, it adaptively manipulates Si according to Ii so that lan-
guage presentation of the manipulated output So match the
visual contents of Ii while keeping Ii-independent informa-
tion in Si. Notably, the above two procedures are performed
simultaneously.

An overview of our solution is shown in Figure 2, which
could be split into two parallel pipelines. For controllable
image manipulation, the pipeline is based on GAN [Good-
fellow et al., 2020] framework, in which the generator G is
trained to produce Io = G(Ii, Si), and the discriminator D
is adopted to ensure that realistic images are generated to se-
mantically match the conditional text. The pipeline adopts the
Encoder-Decoder framework for controllable text manipula-
tion, including the encoder En to capture the distribution of
manipulated sentences and the decoder De to output the de-
sired words sequentially. In the following, we first introduce
the main contributions of this work, i.e., the HRL module and
CRR module, which are shared as the first part of both G and
En. After that, we will briefly describe the other features of
GAN and the Encoder-Decoder framework, which are mainly
based on the existing works.
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Figure 3: The two main modules of the proposed framework for multi-task learning.

3.1 Heterogeneous Representation Learning

Given both inputs, We first construct an image graph GI for
Ii and a sentence graph GS for Si, respectively. Specifically,
we adopt a pre-trained model to discretize the input image
to obtain multiple objects and treat each object as a visual
node, eventually getting the GI with its adjacency matrix AI .
During this period, we use a similar approach to build the GS

with its AS .
We need to find bridges to link both input modalities to per-

form representation learning for cross-modal semantic align-
ment. Specifically, we search for objects co-occurrence in
both modalities to serve as bridge nodes. As shown in Figure
3, the visual object ‘bird’ and the word ‘bird’ appear in the
input modalities, respectively. In this case, we treat ‘bird’ as a
bridge object and create four kinds of nodes, including birdI ,
birdS , birdIS and birdSI , which indicate the visual node of
GI , the language node of GS , and the copies of birdI and
birdS , respectively. The first two nodes (denoted as reserved
nodes) are kept in the built graphs of their original modali-
ties, while the last two nodes will serve as bridge nodes to
create heterogeneous graphs for cross-modal representation
learning. Significantly, the node birdIS derived from visual
modality is added to GS , while the node birdSI generated
from language modality is incorporated into GI . We define
F (birdIS) = F (birdI), F (birdSI) = F (birdS) where F (·)
returns the initial node features. A multi-layer perceptron
(MLP) layer is then utilized to map the feature dimension of
visual nodes to the same as the accordingly word embeddings.
After that, we extend the adjacency matrix under each modal-
ity by introducing the bridge nodes from the other modality
to obtain the extended version AEI of the extended image
graph GEI and the corresponding AES of GES . In this way,
we obtain two heterogeneous graphs consisting of nodes from
both input modalities.

Heterogeneous representation learning is then performed
in the extended graphs of GEI and GES in two steps. First,
the representation aggregations based on regular graph con-
volutions [Kipf and Welling, 2016] is performed indepen-

dently on each heterogeneous graph, i.e., this step in GEI

could be implemented by a layer-wise propagation rule:(
H l+1

I ;H l+1
bg

)
= ReLU

(
ˆAEI

(
H l

I ;H
l
bg

)
W l

)
,

where ˆAEI is the normalization of AEI , W l is a layer-
specific trainable weight matrix, and (; ) means the row-wise
concatenation. H l

I indicates the feature matrix of visual
nodes in the l-th layer, and H l

bg is the feature vectors of in-
troduced bridge nodes from the language modality. The same
propagation process is performed in GES .

After one-layer propagation of both graphs, we update the
representation of all reserved nodes in both graphs periodi-
cally with the help of the copy mechanism. Take the reserved
node birdI for example, in the second step, we merge the rep-
resentation of related nodes through a linear transformation:

H̄birdI
= λ1HbirdI

+ λ2MLP (HbirdIS
+HbirdS

) ,

where HbirdI(,IS,S)
denotes the feature vectors of node

birdI(,IS,S), and λ1 and λ2 are the weighting factors. Af-
ter that, the representation of node birdI is updated by:
HbirdI

= H̄birdI
. The above two-step learning process is it-

erated by L graph layers and finally, we obtain HL
I and HL

S .
In this way, the introduced bridge nodes can learn the rep-
resentation of both modalities and spread information in the
heterogeneous graphs, progressively aligning the semantics
of nodes from both input modalities while providing modal-
consistent representation for subsequent relation reasoning.

3.2 Cross-modal Relation Reasoning
We introduce the bidirectional graph masking mechanism to
implement cross-modal relation reasoning parallelly. Based
on the updated representation of cross-modal nodes, we re-
move all the bridge nodes and predict two soft masks MI and
MS for the original GI and GS , which are formulated as:

hIS = MeanPooling(HL
I ;H

L
S ),

M̂I(,S) = HL
I(,S) ·WI(,S) · hIS ,

MI(,S) = Sigmoid
(

MaxPooling
(
M̂I(,S)

))
,
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Method A N L2 IS FID P-G P-D RPE (h) IT (s)
SISGAN [Dong et al., 2017] 2.34 2.42 0.43 2.41 16.81 - - - -
AttnGAN [Xu et al., 2018] 2.27 2.16 0.24 3.23 14.64 - - - -
TaGAN [Nam et al., 2018] 1.86 1.95 0.12 3.26 15.49 - - - -

ManiGAN [Li et al., 2020a] 1.76 1.63 0.12 8.16 10.53 41.1M 169.4M 0.12 2.45
Lightweight GAN [Li et al., 2020b] 1.55 1.60 0.09 8.11 9.21 18.5M 71.8M 0.08 0.39

Ours 1.33 1.49 0.07 8.34 8.74 26.7M 47.4M 0.07 0.35

Table 1: Quantitative comparison for synthesized images on the CUB dataset. Accuracy (A) and Naturalness (N) are evaluated by users, and
the values indicate the average ranking. For Accuracy, Naturalness, L2, and FID, lower is better; for IS, higher is better. We also compare
the number of parameters in generator (P-G) and discriminator (P-D), runtime per epoch (RPE), and inference time for generating 100 new
modified images (IT). For P-G, P-D, RPE, and IT, lower is better. All methods are benchmarked on a single Nvidia GeForce RTX 3080 GPU.

Model MAE ↓ SSIM ↑ LPIPS ↓ IS ↑ FID ↓
Cond-sg2im [Johnson et al., 2018] 14.25 84.42 0.081 11.14±0.80 13.40
SIMSG (P) [Dhamo et al., 2020] 13.82 83.98 0.077 10.61±0.37 16.69

SIMSG (GT) [Dhamo et al., 2020] 8.53 87.57 0.051 12.07±0.97 7.54
Ours (P) 10.27 86.15 0.050 11.08±0.72 10.31

Ours (GT) 7.41 89.02 0.047 12.39±0.75 7.06

Table 2: Quantitative comparison for synthesized images on the Visual Genome. For MAE, LPIPS, and FID, lower is better; for SSIM and
IS, higher is better. We report the results using ground truth scene graphs (GT) and predicted scene graphs (P).

where WI ,WS are learnable matrices, and (·) indicates ma-
trix multiplication. The process simultaneously performs
global relations reasoning on both graphs. Each generated
masking matrix enables the exchange of corresponding graph
nodes in both modalities by masking some nodes in one
modality and highlighting the corresponding (semantically
similar) nodes in the other modality. For instance, consider
the red node in the visual modality and the corresponding
blue node in the language modality, MI tries to mask the red
node and highlights the blue node for generating the image
with a ‘blue’ object. While MS attempts to do the oppo-
site operation for generating the sentence with a ‘red’ word
by masking the blue node and highlighting the red node. By
masking a portion of nodes and performing the representation
aggregation of all highlighted nodes in both graphs, two ad-
vantages are obtained in this way: (1) the exchange of nodes
is achieved across modalities without destroying the graph
structure of each modality; (2) bidirectional relation reason-
ing is implemented through learning MI and MS in paral-
lel on both modalities. Finally, the obtained soft masks will
be multiplied by the node features and processed by a linear
transformer to get the output:

HGI(,S)
= MLP

(
(HI ;HS)⊗MI(,S)

)
,

where ⊗ denotes the element-wise product operation.

Other Parts for Manipulations. For text-guided image
manipulation, GAN is adopted while its generator mainly
contains the two modules mentioned above, one additional
feature fusion part and a light decoder. We adopt the VGG-
16 network to encode the input image, and the obtained fea-
tures are combined with the representation of the node for fu-
sion. The decoder, which consists of a few upsampling layers,
is adopted for image generation. Additionally, we adopt the

text-adaptive discriminator introduced in [Nam et al., 2018]
to force the generator to receive feedback from each local dis-
criminator for each visual attribute.

We adopt the Encoder-Decoder framework for image-
guided text manipulation, whose encoder contains the two
modules mentioned earlier and a representation aggregation
part and whose decoder is composed of a visual attention-
based network. Specifically, we perform the representation
aggregation process to obtain the attention-guided represen-
tation of each node in the language modality. The decoder
generates one word at each time step conditioned on a visual
vector, a previous hidden state, and a previously generated
word.
Loss. During training, we adopt multiple losses to optimize
the whole framework and effectively highlight the optimal
graph nodes for manipulating attributes, relations, or objects
in each modality with a global perspective. Overall, two com-
monly used loss functions in generation tasks, namely the
GAN loss LGAN and the Encoder-Decoder loss LED, as well
as the designed cross-modal loss LCM are adopted. Signifi-
cantly, we introduce the cross-modal loss LCM which further
helps to shape the feature space:

LH =
1∥∥∥∣∣∣HGI(,S)

∣∣∣− ∣∣HI(,S)

∣∣∥∥∥+WS [(HGI ;HI) , (HGS ;HS)] ,

LM = ∥MI∥2 + ∥MS∥2 + γ
1

∥|MI | − |MS |∥
.

We have LCM = LH + LM , where |·| indicates the first
norm of the matrix, and WS[a, b] computes the Wasserstein
distance between a and b. For LH , the first term encourages
the bridge nodes to sufficiently learn the representation from
other modalities, while the second term constrains the joint
distribution of the representation from both modalities to stay
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Figure 4: Qualitative results on the CUB dataset. We visualize the
color manipulation in the first row, and the texture manipulation is
shown in the second row.

Method BLEU TR s LD r Top-1 AP@50
AttnGAN - - - 0.55 0.51
TaGAN - - - 0.61 0.63

ManiGAN - - - 0.72 0.70
Ours 36.1 0.74 0.83 0.79 0.75

Table 3: Quantitative results on the CUB dataset, where all indica-
tors return the average value. We do not report the image-text simi-
larity scores for other methods which can not generate sentences.

close, maintaining the stability of the learning process. For
LM , The first two items are adopted to force MI and MS

to be sparse so that only a portion of cross-modal nodes are
highlighted for the graph-based aggregation. The third term
with the weighting factor γ makes the highlighted nodes by
MI , and MS tend to be distinctive after the relation reasoning
process, thus facilitating the exchange of cross-modal nodes
and avoiding the overfitting during training. The final loss
becomes: L = LGAN + LED + LCM .

4 Experiments
Experimental Setup. We verified our baseline in two as-
pects, including the manipulation of both attributes and rela-
tions of objects. For cross-modal attribute manipulation, we
evaluated our method on the CUB dataset [Wah et al., 2011].
For cross-modal relation manipulation, we validated on the
Visual Genome (VG) [Krishna et al., 2017].

Quantitative Results. The quantitative evaluations are
conducted on both synthesized images and generated sen-
tences. For synthesized images, we conducted a human eval-
uation and compared to relevant generative models including
SISGAN [Dong et al., 2017], AttnGAN [Xu et al., 2018],
TaGAN [Nam et al., 2018], ManiGAN [Li et al., 2020a], and
Lightweight GAN [Li et al., 2020b].

We randomly selected 20 images and 10 texts from the
test set of the CUB dataset and produced 200 image-sentence
pairs for each method. We invited 80 workers to compare the
results after looking at the input image, the input sentence,
and both outputs based on two criteria: (i) Accuracy: whether
the visual attributes (colors, textures) of the manipulated im-
age match the text, and the background-independent to the

text is preserved, and (ii) Naturalness: whether the manipu-
lated image looks natural and visually pleasing. Both criteria
are categorized into three ranks (1, 2, and 3), and the lower,
the better. We collected a total of 16000 results. Besides,
we computed L2 reconstruction error by forwarding images
with the ground-truth text descriptions, while Inception Score
(IS) and Fréchet Inception Distance (FID) are also evaluated
on a large number of modified samples produced from mis-
matched pairs, i.e., randomly chosen input images edited by
randomly selected text descriptions.

As shown in Table 1, our method consistently achieves
the highest average ranking on both Accuracy and Natural-
ness, the lowest reconstruction error, and better IS and FID
values. It indicates that our method generates more realis-
tic images, where the visual attributes are manipulated ac-
curately with the given descriptions and effectively preserve
the text-independent contents. We computed the parameters
and recorded the runtime for training a single optimization
epoch (RPE) and the inference time (IT) for generating 100
new modified images to evaluate the efficiency. The results
indicate that our method is more friendly to memory-limited
devices.

In addition, we evaluated our method on the Visual
Genome to verify its effectiveness in generating natural im-
ages. Since there is no ground truth for manipulations, we
formulated the quantitative evaluation as image reconstruc-
tion. In this case, we manipulated the relations between ob-
jects from the language descriptions and measured the recon-
struction quality given an input image. Table 2 shows the
reconstruction errors of comparative methods, showing that
our method significantly outperforms Cond-sg2im [Johnson
et al., 2018] and SIMSG [Dhamo et al., 2020]. Notably, our
method achieves better results on all frequently-used recon-
struction metrics (MAE, SSIM, LPIPS) [Dhamo et al., 2020]
and dominates for both inception score and FID, indicating
higher visual quality. Compared to SIMSG, which changes
the relations among objects by manipulating the generated
scene graphs, our method provides a way to directly manipu-
late the image by inputting simple language descriptions that
contain the desired modifications, improving efficiency with
less manual effort from the user.

For generated sentences, BLEU [Papineni et al., 2002]
score, the TextRank criteria (TR s) [Mihalcea and Tarau,
2004], and the Levenstein distance ratio (LD r) [Yujian and
Bo, 2007] are used for measuring the image-text similarity
scores of our method. Furthermore, we compared the top-1
image-to-text retrieval accuracy (Top-1), and the percentage
of the matching images in the top-50 text-to-image retrieval
results (AP@50) with AttnGAN, TaGAN, and ManiGAN on
the CUB dataset. As shown in Table 3, our proposal outper-
forms other methods on the image-text matching task, fully
maintaining the image-independent contents from the input
sentences to guide the sentence generation.

Qualitative Results. Figure 4 shows the qualitative results
for cross-modal attribute manipulations on the CUB dataset,
verifying that the attributes of visual modality are accu-
rately exchanged with the corresponding attributes in lan-
guage modality. This indicates our method: (1) effectively
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Figure 5: Qualitative results on the Visual Genome. For cross-modal relation reasoning, nodes with black borders are masked, while nodes
with the red borders will be used as active nodes for subsequent processing. Nodes with the red fill indicate the focused objects or relations.
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and features grey wings.

- CRR

This bird with a blue head and breast
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Figure 6: Qualitative ablation on the CUB dataset. (- HRL): removes
the Heterogeneous Representation Learning module, and (- CRR):
removes the Cross-modal Relation Reasoning module.

disentangles visual attributes invariant to pose, shape, and
background in the visual modality; explicitly locating and
exchanging the focused attributes with the language modal-
ity to reconstruct for obtaining images with detailed textures;
(2) efficiently captures linguistic attributes by sufficiently an-
alyzing the syntactic structure and content of the text in the
language modality; accurately locating and exchanging the
focused attributes with the visual modality to produce high-
quality sentences.

To verify the effectiveness of our method for cross-modal
relation manipulations, we configured three different settings,
including object removal, replacement, and reposition,
and evaluated on the Visual Genome. All the image manipu-
lations are controlled by changing the corresponding text de-
scriptions. As shown in Figure 5, Our method successfully
removes the focused target (mirror) in the synthesized im-
age based on the text description, while text-independent vi-
sual features from the input image can be successfully trans-
ferred to the output. In object replacement, we provided
diverse replacements from foreground objects to background

components. In Figure 5, our method removes the old ob-
ject (‘giraffe’) very naturally from the input image while
the substituted object (‘elephant’) adapts well to the syn-
thesized image. A more challenging scenario is to change
the relations among objects, which typically involves object
reposition. The result in Figure 5 verifies that our method
can differentiate between semantic concepts such as ‘on’ and
‘holding’, and the focused object (‘clock’) are re-arranged
meaningfully according to the relation change indicated in the
input sentence. In addition to the relation manipulations of fo-
cused objects, our method performs well for the background
with uniform texture and complex structures. Moreover, the
generated sentences are high-quality and meaningful, and the
exchanges of target relations with the input images are effec-
tively accomplished.

Components Ablation. We ablated the major components
of our method qualitatively in Figure 6. First, removing the
HRL module is not conducive to cross-modal representation
learning for semantic alignment, leading to difficulties in im-
plementing transformations of both visual and linguistic in-
formation from the inputs to the outputs; second, remov-
ing the CRR module damages the bidirectional information
control in cross-modal relation reasoning, generating uncon-
trolled and unsatisfactory results on both modalities.

5 Conclusion

We have presented a strong baseline for cross-modal graph
representation learning and relation reasoning and applied our
proposal to the novel cross-modal adaptive manipulation task.
Experimental results verify the superior performance of our
method in cross-modal applications. We leave it for future
work to extend our research to more modalities.
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