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Abstract

A major challenge in Al is dealing with uncertain
information. While probabilistic approaches have
been employed to address this issue, in many sit-
uations probabilities may not be available or may
be unsuitable. As an alternative, qualitative ap-
proaches have been introduced to express that one
event is no more probable than another. We pro-
vide an approach where an agent may reason de-
ductively about notions of likelihood, and may hold
beliefs where the subjective probability for a belief
is less than 1. Thus, an agent can believe that p
holds (with probability <1); and if the agent be-
lieves that ¢ is more likely than p, then the agent
will also believe ¢q. Our language allows for arbi-
trary nesting of beliefs and qualitative likelihoods.
We provide a sound and complete proof system for
the logic with respect to an underlying probabilistic
semantics, and show that the language is equivalent
to a sublanguage with no nested modalities.

1 Introduction

Dealing with uncertainty and vagueness is a pervasive prob-
lem in Artificial Intelligence (AI). Traditional probabilistic
approaches utilising a numeric assessment of likelihood have
been employed extensively to address this issue. An issue
with these approaches is that not infrequently it may be dif-
ficult or even impossible to determine such numeric values.
On the other hand, a probabilistic approach may be too fine-
grained for a particular application. As a result, various non-
numeric techniques have been developed including, notably,
nonmonotonic approaches. In a different vein, several logical
approaches to qualitative probability have been introduced,
to express that one event is no more probable than another. In
such approaches, one may assert that one proposition is more
probable than another, but without giving specific numeric
values to the propositions.

Similarly, people will often hold a proposition to be con-
tingently true, even though they would readily acknowledge
that the probability of the proposition is less than 1. For ex-
ample, suppose I test negative for some illness; for a highly
reliable test, I might contingently believe I do not have the
illness, and act based on that supposition. People will also
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reason with such beliefs and likelihood, e.g., if I believe I do
not have the illness, but I believe it is more likely that my
condition will improve than it is that I do not have the illness,
then I also believe my condition will improve.

This paper takes as a starting point the Logic of Qualitative
Probability (LQP) [Delgrande et al., 2019], which allows one
to express that a sequence of formulas ® is no more likely
than another sequence W. Here ¢ & v = 1 @ x asserts that
the combined probability of ¢ and +y is not greater than the
combined probability of ¥ and y, but without giving specific
probabilities for the formulas. Such an expression is given an
intuitive interpretation by requiring in the underlying seman-
tics that the sum of the probabilities of the sentences in P is
less or equal to the sum of the probabilities of the sentences
in U,

In this paper we extend LQP by adding an explicit belief
operator B, where B¢ can be read: ¢ is believed with prob-
ability at least ¢ for some threshold ¢ > 0.5. The B oper-
ator subsumes the modal logic KD45 and so, for example,
the formula (B¢ A B1) D B(¢ A ) is valid. As well, one
can reason with beliefs related by our notion of likelihood;
specifically, if an agent believes that ¢ holds, and that ¢ is no
more likely than v, then the agent will believe that ¢ holds.
The language allows arbitrary nesting and intermingling of
the B and < operators. Besides a formal semantics of the
new logic ELL, we provide a sound and complete axiomati-
sation, and discuss various properties including the fact that
every sentence is logically equivalent to a sentence without
nested beliefs.

2 Background

With qualitative probability, the goal is to specify conditions
on a binary operator, expressed ¢ =< 1, with the intended
interpretation that v is at least as probable as ¢. Formally,
the goal is to ensure that, for a set of formulas involving <
assertions, there is a realising probability assignment; i.e.,
an assignment of probabilities to formulas that is consistent
with <. The best known early work on qualitative proba-
bility is that of de Finetti [1937], who proposed a set of ba-
sic principles. Subsequently, Kraft er al. [1959] extended
these to a set that was necessary and sufficient. Segerberg
[1971] put these notions in the context of a modal logic and
provided a sound and complete axiomatisation. Gérdenfors
[1975] developed a simpler framework for <. Delgrande er
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al. [2019] extended the arguments of < to sequences of for-
mulas, and provided a simpler system that avoided an ex-
ponential blowup of earlier approaches. We adopt this ap-
proach here as the basis of a logic of qualitative probabil-
ity, and we embed it in an approach that includes contin-
gent belief based on an epistemic logic of reasonably likely
possibilities. We also note work by Fagin et al. [1990;
1994]; while this work is quantitative in nature, it allows for
reasoning about probability and provides for multiple agents
and a modal operator for knowledge.

There has also been work that develops modal accounts of
belief based on notions of probability. Most such approaches
are very weak, and the approaches described below all violate
the principle of Conjunction:

(Bo A By) O B(op A1)

and so cannot be given a Kripke-style semantics.
Burgess [1969] develops a modal account P¢ intended
to capture the notion that ¢ is probably true. Kyburg
and Teng [2012] introduce O.¢ that holds whenever the
probability of —¢ is no more than e. Herzig and Longin
[2003] consider a modal account of P¢, where P¢ expresses
that ¢ is more probable than —¢. Halpern and Rabin [1987]
introduce the modal operator L¢ with intended interpretation
that “¢ is reasonably likely to be a consistent hypothesis”;
see also [Halpern and McAllester, 1989]. In the approach,
L¢ N\ L—¢ is satisfiable when both ¢ and —¢ are satisfiable,
and Lo V L—¢ is a theorem. van der Hoek [1996] provides
a semantics for < using Kripke structures and defines modal
necessitation in terms of <. However, he shows that this
approach shares some of the shortcomings encountered by
Segerberg and Gérdenfors.

An account that satisfies Conjunction is given by Leit-
geb [2013]. Leitgeb develops a possible worlds semantics,
where probabilities are associated with possible worlds, but
the combined probability of the worlds characterising an
agent’s beliefs have probability 0.5 < r < 1 for a given 7.
He is also interested in maintaining Conjunction following a
conditioning of the agent’s beliefs; i.e., if ¢ is consistent with
an agent’s beliefs K, then the probability of the K worlds
satisfying ¢ with respect to the set of ¢ worlds also exceeds
r. For this, Leitgeb shows that a condition of P-stability is
required; that for a set of worlds K C W characterising an
agent’s beliefs, the probability of any w € K is greater than
the probability of W \ K. P-stability is of particular interest
here, since we recover this property in our approach; however
for us it arises from the interaction of relative likelihood (=)
with our belief modality B. Thus, we arrive at the constraint
of P-stability, but from a different direction. Leitgeb arrived
at it since he wanted conditioning on a formula to yield “co-
herent” beliefs (i.e., satisfying Conjunction). We wanted the
principle (BM) “modus ponens for likelihood”, which led us
to the same principle.

Lastly we note more general work providing insight into
combining logic and probability: Kyburg [1994], Russell
[2015], van Benthem [2017] and Belle [2017].
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3 The Logic ELL

We now introduce our language and the semantics for the
Epistemic Logic of Likelihood (ELL). As remarked earlier,
this builds on the logic LQP [Delgrande et al., 2019]. Two
points can be made here. First, any sufficiently expressive
approach to qualitative probability (e.g., Segerberg’s [1971]
or Girdenfors’s [1975]) could have been used. Second, al-
though our language allows sequences of formulas as argu-
ments to =, this is inessential to our approach; the presence
of (non-trivial) sequences is used in [Delgrande er al., 2019]
to guarantee that a set of consistent formulas has a realising
probability assignment.

3.1 Syntax

Let P be a finite set of atomic propositions. Let Lpy, be the
propositional language over P. The language £ of Epistemic
Logic of Likelihood (ELL) is given as follows:

¢p:=p(EP)[-¢|oVe|Bp [ =P
Pu=¢| DD

The language provides for the usual propositional connec-
tives, a modal operator for belief (B¢), and qualitative pref-
erences over sequences of sentences (®; < $5). Note that
@ is not an operator, but rather punctuation in a < formula;
Thus p @ ¢ = r can be read as “the combined probability of
p and gq is not greater than that of .

We use lower case Greek letters ¢, 1, and x, possibly with
subscripts or superscripts, as metavariables for formulas. The
upper case Greek letters ®, W, and A are similarly used for
sequences. Sequences may be written using indexed prefix
notation so that, for example, ©?_, ¢; denotes ¢1 ® ¢p2 B ¢3.
A modal formula is a formula of the form B¢, -B¢, ¢ =<
¥, or =(¢ = 1), where ¢,7p € L. The lower case Greek
letters 1 and v are reserved to denote modal formulas. The
propositional connectives A, D, = are defined in the usual
way. We also adopt the following abbreviations:

1 for some fixed tautology;

0 for —1;

GV for P<UVAVY < P;
<P for ®<UA-(V=<dP);and,
O¢ for 1=X¢.

3.2 Semantics

In this section we introduce the semantics for ELL.
A model is M = (W, P,r, V), where:

* W is a finite set of states or worlds;
* P: W — (0,1] is a probability assignment (sums to 1);
* r € (0.5,1.0] is a belief threshold; and

eV : W — 27, with condition that V (w;) = V(ws)
implies w1 = wa.

We define a possible-world belief set (pw-belief set) to be the
smallest subset K C W such that:

s P(K)>r;
* we K andw' ¢ K implies P(w) > P(w’); and
« ifw € K, then P(w) > P(W \ K).
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The pw-belief set is the set of “reasonably likely” worlds and
helps determine which formulas are believed. We explain
why a unique pw-belief set always exists as follows. Con-
sider an ordered partition of the finitely many worlds, where
worlds in the same partition have the same probability, and
where partitions are arranged from greatest to least probabil-
ity. The set Ky = W of all worlds has probability (1.0) above
or equal to any threshold r, and vacuously satisfies the other
desired properties. In case it is not the smallest such set, it-
eratively throw away the class of least-probable worlds; for
each ¢+ > 0, K is the result of removing the least possible
worlds from K;_;. There are finitely many non-empty K;
the smallest one satisfying the three conditions above is K.

Let M = (W, P,r, V) be a model with belief set X' C W.
The satisfaction relation is given by:

M,wlkEp iff
M,w = —¢ iff
MwkEo¢vy iff
MuwEd=<V iff

p € W(w), where p € P

M, w ¢

Mw = 6 or Myw = 0

Z¢e<1> Zw’|:¢ P(uw’) <
Zwe\y Zw/\:w P(w')

M,w = B¢ iff M,w' | ¢forallw’ € K

If M, w [= ¢, then ¢ is true (or satisfied) at world w in model
M, and we say that ¢ is valid just if M, w |= ¢ for every M
and every world w in M.

Our semantics of belief generalizes the approach where
belief is defined as having probability 1 by setting K to be
the set of all possible worlds. Other established treatments,
such as the Lockean thesis and Lenzen’s weak belief allow
for belief without certainty but determine whether an event
is believed solely on the probability of the event. For better
compatibility with modal logic, our belief takes into account
the whole probability structure. From a pw-belief set K, we
can define a binary relation R on W, where (w,w’) € R
iff w' € K. Our definition for the truth of B¢ coincides
with B being the standard modal box operator for relation
R, ie, M,w E B¢ if and only if M,w' [ ¢ for all
w' € {w | wRw'}, since K = {w' | wRw'}. R is se-
rial, transitive, and Euclidean, and hence a standard epistemic
relation for belief. Thus our belief operator satisfies the stan-
dard KD45 axioms of epistemic logic.

Example 1. Consider a model with two atomic proposi-
tions, d for “having a disease” and c for “the condi-
tion will improve”. 4 possible worlds result, expressed by
propositions that are true or false (bar over the proposi-
tion): {cd,ed, cd,ed}. Assign probabilities: P(cd) = 0.25,
P(cd) = 0.6, P(ed) = 0.1, and P(ed) = 0.05.

Let v = 0.55. Then K = {cd}. The following formulas
are true at all worlds: B(—d) (I believe I do not have the
disease); B(c = —d) (I believe it is more likely that my con-
dition will improve than it is that I do not have the disease);
and B(c) (I believe that my condition will improve); and also
—0=d (I am not certain that I do not have the disease); thus
I believe I do not have the disease though my probability of
not having it is less than 1.

If instead r = 0.8, then K = {cd,cd}. Now B(—d) is
false, but B(c) remains true. Note, that in this and the pre-
vious case, each w € K has probability greater than that of

W\ K, i.e. we have P-stability.

Example 2. Consider two more atomic propositions, p and q
representing other possible explanations for the condition be-
ing tested. Suppose the probability assignment is: p(cdpq) =
0.25, p(edpq) = 0.05, p(cdpq) = 0.25, p(cdpg) = 0.30,
p(edpq) = 0.1, p(edpq) = 0.5,

Note, every event of Example 1 has the same probabil-
ity; the difference is the outcome cd of Example 1 has been
refined with sub-possibilities. Then with r = 0.55, K is
{cdpq, cdpq, cdpg}, while in Example 1, it was {cd}. Al-
though the formula c\—d has the same weight as before (0.6),
it is no longer believed, while before (in Example 3.1) it was.
Thus this refinement of Example 1 illustrates how belief takes
into account the outcomes and not just the probability of the
event in question.

Example 3. [ arrive at the parking lot at the university to
find my car gone. My belief threshold is 0.9. Consider propo-
sitions: a — my spouse took the car; b — the car has been
towed; c — the car is stolen. We have the constraint that a, b, c
are pairwise mutually exclusive. Consider a model where
P(a) = 0.6, P(b) = 0.35, and P(c) = 0.05. Then I con-
tingently believe that either my spouse took the car or it was
towed. I don’t believe it was stolen.

4 Proof System

We now introduce the proof system for ELL. Recall that
and v denote modal formulas; that is formulas of the form
B¢, =B¢, ¢ < 1, or =(¢p < ). The schema from (PC)
through (K3) are from LQP [Delgrande et al., 2019]. The
remainder are particular to this logic. The axiomatisation is
not intended to be minimal; we have attempted to present the
axioms simply and perspicuously.

Axioms of LQP
(PC) All tautologies of classical propositional logic
(Triv) 0<1
(Tran) (& < %) 5 (¥ < A) > (< A))
(Tot) (2 < W)V (¥ < )
(Sub) O(¢1 = ¢2) AD(Y1 = ¢2) D

(010221 DY) = (2P XY ® 7))
(Com) (&1 @Dy XV) = (P20 P, XV)
((I)j\IH@\I’Q)E((I)j\IJQEBWl)
(Add) ((1)1 =< \Ifl) A ((DQ = \112) D
(O @ P XUy @ Vy)

(Suce) (1P <10 7P)D (P =<XT)
K1) 0=9¢

(K3) O=(pNp) D (d@ Y=oV i)

Additional axioms for ELL
(Ref) Do D ¢
(BT) B1
(BM) (BoAB(¢p=v)) D By
(BK) B(¢ > ¢) > (B¢ > By)

2601



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

(BD) B¢y D -B—¢
(O-Red) p=0p
(B-Red) © = Bpu

for ;4 a modal formula

for 1 a modal formula

Inference Rules
(MP) From - ¢ D 1 and - ¢, infer - ¢
(O-Nec) From I ¢, infer - D¢

[Delgrande et al., 2019] shows that the logic underlying O
is KD. Given the additional axioms of reflexivity (Ref) and
iterated modalities (O-Red), it is clear that O is characterised
by modal logic S5. Similarly, given the axioms (B1), (BK),
and (BD), and the fact (see below) that the rule of necessita-
tion is derivable, B subsumes modal logic KD45. The axiom
(BM) is interesting in several respects. First, it allows beliefs
to be derived from other beliefs and beliefs regarding likeli-
hood. Second, it clearly is analogous in form to (BK).

We now provide some results of interest. The first few are
immediate from the underlying logic, but nonetheless are of
interest given our intended interpretations of likelihood (for
B) and certainty (for O).

Proposition 4. The following formulas are provable from the
axiomatisation.

1. B(B¢ D ¢)

2. (BoAByY)=B(p A1)

3. (B-Nec): From &= ¢ infer - Bd.
4. Consequences of (BM):

(a) (-BY AB(¢ 2 ¢)) D ~B¢
(b) (B=¢ ANB(¢ = ¢)) > B~y
(c) (B¢ A~By) D B(¥ < ¢)
—B-iY) A Bo D ¢ < 1.

B¢ D B(=¢ < ).

O¢ D B¢.

By ANB(p®x 2¢) D By

The first two items are theorems of KD45. The first states
that, while it may be that an agent’s beliefs are false (in that
¢ A B¢ may hold for some ¢), an agent will believe that its
beliefs hold. The second, in the left-to-right direction, states
that, if an agent believes ¢ and also v, then it believes their
conjunction. This is notable since the interpretation of B¢ is
that ¢ is believed by the agent despite the fact that the agent’s
assigned probability to ¢ may be less than 1.0. The third item
shows that Necessitation is a derived rule. The fourth item
gives several immediate consequences of (BM). For exam-
ple, in (a) if an agent doesn’t believe 1) and if ¢ is no more
probable than 1, then the agent doesn’t believe ¢.

Item 5 is a more intricate consequence of (BM) that justi-
fies the (semantic) property of P-stability (PSt): If w € K,
then P(w) > P(W\ K). Informally, we have: if ¢ is consis-
tent with an agent’s beliefs (i.e. ~B—1 holds), and the agent
believes ¢, then —¢ is less likely than i according to the

o N & W

agent. Semantically, 1) is characterized by a possible world,
and ¢ could exactly denote all that the agent believes, leading
to the informal semantic interpretation: if w € K, then W\ K
is less likely than w. The next item states that, if an agent be-
lieves that ¢ holds, then it believes that the probability of ¢ is
> 0.5. Item 7 shows that, if a proposition is certain, then it is
believed. The final item illustrates that reasoning with beliefs
and likelihood can extend to formulas in a sequence.

4.1 Modal Normal Form

In this section we show that, for any formula ¢ in ELL, there
is a formula ¢’ such that ¢ = ¢’ is a theorem of ELL and ¢’
is in an extended version of conjunctive normal form (CNF)
which contains no nested modalities. We also develop, for
completeness, a dual result where ¢’ is in an extended form
of disjunctive normal form (DNF).

Definition 5. ¢ € L is in modal conjunctive normal form
(MCNF) if it is of the form Ny V7L, @4, where:

1. ¢ ; is a propositional literal or modal formula; and

2. if ¢, ; is a modal formula {—} By or {-}(¥ < ®), then
¥ is in MCNF and U, ® are sequences of formulas in
MCNE.

Definition 6. ¢ € L is in reduced modal conjunctive normal
form (RMCNF) if it is in MCNF and, for any modal formulas
{=}Bvy or {=}(¥ < ®) occurring in ¢, we have that 1 is
a formula in propositional logic and ¥, ® are sequences of
formulas of propositional logic.

We define (reduced) modal disjunctive normal form,
(R)MDNEF, analogously. For the main result, for an arbitrary
formula ¢ € L we show that there are formulas ¢’ and ¢"
where ¢’ is in MCNF and ¢ is RMCNF, and where ¢ = ¢’
and ¢’ = ¢, and so ¢ = ¢, are theorems of ELL. The first
part is straightforward.

Theorem 7. For ¢ € L there is ¢’ € L where ¢’ is in MCNF
andt ¢ = ¢'.

The same result is dually obtained for MDNF.

The proof that, for a formula in MCNF, there is an equiva-
lent formula in RMCNF is essentially an inductive argument
based on the number of modal formulas that appear within
the scope of another modal formula. Leading up to this, we
have the following results.

Lemma 8. Let ¢, ¥ be formulas of ELL and p a modal for-
mula. The following are theorems of ELL:

1. B(uVvy)=pV B.
2.2 0(eAY) = (A (1 V1))
3 p20@=(dA(nV))).

The following theorem is used in the reduction step of the
main result.

Theorem 9. Let p be a modal formula; let ¢ and ¥ be for-
mulas; and let Ay and Ag be sequences, all in ELL.
The following are theorems of ELL.

1. B@A(uVy) = (-uD B(@AY)) A (1D Bg))
2. BloV(pny)) = ((bp 2> Bo) A (D B¢ AY)))
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3 (@A (VY)Y @A =2 Ay = ((—
Ag)) A (D (p® A1 =X A)))

4 M2 (VYN BA = ((uD (A1 X (WA @
Ag) A (1D (A 6@ A))

5. (Vv (pAY) @A Ay = ((-p D (0B A <
Az)) A (1D ((9Ve) @ A1 = Ag)))
6. A 2 (AY)VP) DAz = (- D (A1 20D A2) A
(LD (A1 2 (Y Vo) ®Az)))
Consider the first item in the theorem. The left-hand side of
the equivalence is a B modal formula, where its argument
schema (viz. ¢ A (p V 1)) is applicable to (among others) a
formula in MCNF. Since p is a modal formula, we have a
nesting of modalities (=< or B within a B). The right-hand
side gives an equivalent formula, but where this nesting is
gone. Part 2 of the theorem states an analogous result for a
formula in MDNF. The next 4 parts do the same thing for
= with Parts 3 and 4 applicable to MCNF and Parts 5 and 6
applicable to MDNF. Thus for Part 3, on the left-hand side of
= we have a < formula with a nested modality: ((¢ A (u V
¥)) & Ay < Ay). Specifically, the sequence (¢ A (p V 9))
is in MCNF with modal formula p. The right-hand side of =
gives an equivalent formula in which g is no longer nested in
=.

Theorem 10. For ¢ € L in MCNF there is ¢’ € L where ¢’
is in RMCNF and ¢ = ¢' is provable in ELL.
Corollary 11. For ¢ € L there are formulas ¢' such that ¢'
is in RMCNF and ¢ = ¢' is provable in ELL.

Clearly the same argument can be made for a formula in
MDNEF, by appealing to Theorem 9, Parts 2, 5, and 6.

pD ((pAY) DA =

4.2 Soundness and Completeness

We now establish the soundness and completeness of our ax-
iomatisation of ELL with respect to its semantics.

Theorem 12. The axiomatisation is sound and complete with
respect to ELL-semantics: for every formula ¢ in ELL, & ¢ if
and only if F .

In the remainder of this section we outline our completeness
proof, that is if F ¢, then - ¢. We do so by proving the
contrapositive: we start with a consistent formula and find a
model that satisfies it.

To establish a suitable probability function for the model
we construct in our completeness proof, we use a strength-
ened version of Scott’s Theorem [Scott, 1964, Theorem 1.2]
concerning a real linear vector space L(S) with a basis S. A
subset N C L(S) is strongly realized by a linear functional
pon X C L(S)if

N={zxe X| f(zx) >0}, and
N\ (=N) ={ze X | f(x) >0}

where for any set A of vectors, —A = {—a | a € A}. The
revised Scott’s theorem that we will use is then:

Theorem 13 (Strengthened Scott’s Theorem). Let S be a fi-
nite nonempty set and let X be a finite, rational, symmetric
subset of L(S). For each N C X, there exists a linear func-
tional f on L(S) that strongly realizes N in X if and only if
the following conditions are satisfied:

1. foreach x € X, we have x € N or —x € N; and

2. for each n > 1 and x1,...,2, € N we have:

St x; = 0implies —x1 € N.

A Stronger Consistent Formula To Satisfy
We now set up the details for our completeness proof. Sup-
pose x is a consistent formula. Without loss of generality, we
assume it is in RMDNF. We wish to find a model for y, but
will find a model for another formula o, whose model will
also be a model for .

We determine o as follows. Let x’ be a consistent disjunct
of x. Let A consist of:

1. the conjuncts of x’;

2. all formulas B—¢, Bo, ¢ = 1,0 <X ¢, and ¢ < 0, where
¢ is a conjunction of a maximally consistent set of the
propositional literals from letters appearing in y, and
is a non-empty disjunction of conjunctions of maximally
consistent sets of propositional letters from letters ap-
pearing in x; and,

3. 0<X1land—(1=<0).

Notice that each formula in A is free of modal nesting. The
closure of A, denoted cl(A), consists of the set of formulas A
together with their negations. Let ¥ be a maximally consis-
tent subset of cl(A) that is consistent with x". Let o = A X.
Note that - o D x; we ultimately will find a model that sat-
isfies 0.

Applying Strengthened Scott’s Theorem
Let Y be the set of maximal consistent sets of propositional
literals involving letters appearing in . For each formula ¢,

let:
] ={weY | \wt ¢}

Given a set F C Y of worlds, let «(E) be the characteristic
function of F, that is, it assigns w to 1 for all w € F and w
to O forall w € Y\ E. For a formula ¢, let:

el = Y ufw)),
we[g]
assigning 1 to the worlds that make ¢ true and O to those that

make ¢ false. We then define the tools for Scott’s theorem as
follows:

N={> ] = > gl |2 =T e}
PeEW PED
X=NU-N

Proposition 14. Let ¢ be a propositional formula using only
those letters that appear in x. Then t- ¢ ~ @weW N\ w.

Lemma 15 (Satisfaction of Scott’s condition). X is a finite,
rational, and symmetric subset of L(Y'), and N C X, satis-
fying the conditions of Scott’s Theorem:

1. foreachx € X, we havex € N or —x € N; and

2. for each n > 1 and x1,...,x, € N we have:
Yoi, x; = 0 implies —xq1 € N.

Applying the strengthened Scott’s theorem (Theorem 13), we

obtain a linear functional f on L(Y") that strongly realizes N

in X.

2603



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Defining Probability Function

Proposition 16. f(.(Y)) > 0.

Let W = {v € Y| f(«({v})) > 0}. We then define function
Ponwe Wand E C W by

 F(fw))
Pw)=Feam)

We show P is a positive probability function on W.

P(E) =Y P(w).

weE

Proposition 17. P is a probability function on W.

By definition of W, P is never zero.

Determining K, r, and Properties of the Model
The set K is uniquely determined from Y. For each v € W,
v € K iff ~B= A v € 3. We define r = P(K).

Proposition 18. K # .

Proposition 19. The model is P-stable, that is if w € K,
then P(w) > P(W \ K).

Notice that P-stability guarantees that if w € K and v € K,
then P(w) > P(v).

Satisfiability
We find a potential satisfying world in .

Proposition 20. There exists aw € Y consistent with o, such
thatw € W.

We then show that w is satisfied at w.

Theorem 21. o is satisfied at w in the model.

5 Conclusions and Future Work

We have presented an approach that combines subjective
qualitative probability with epistemic logic, in which an agent
may believe that a formula is true even while believing that
the formula has probability less than 1. Besides drawing from
[Delgrande et al., 2019] our belief modality shares a seman-
tic characterisation with that of [Leitgeb, 2013]. So, in com-
mon with [Delgrande er al., 2019], one can make assertions
about relative likelihood; however we extend this approach
by allowing for deductive reasoning that combines belief and
likelihood, in which beliefs follow as a consequence of other
beliefs and assertions of likelihood. Similarly, Leitgeb gives
a possible-world characterisation of belief, and identifies the
key property of P-stability, with focus on conditioning with
respect to sets of worlds. We generalise this work in sev-
eral directions. We develop a proof theory that combines
this work with qualitative probability, and that is shown to
be sound and complete with respect to the probabilistic se-
mantics. We show that P-stability is a natural consequent of
axiom (BM), and so we provide a formal, syntactic justifi-
cation for this condition. As well, our approach fully com-
bines notions of qualitative probability and epistemic reason-
ing, and allows arbitrary nesting of our modal operators. Fi-
nally, we show the language is equivalent to a sublanguage
without nesting.

Several avenues for future work present themselves. A ma-
jor topic is to develop a notion of conditionalisation that is the
qualitative analogue of those in the literature on probability
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(e.g., Bayesian conditionalisation but also Jeffrey condition-
alisation). We suggest that work in belief revision will be rel-
evant here, at least for “conditioning” on information that is
inconsistent with the agent’s beliefs. If successful, this could
provide a plausible approach to contingent belief change that
is nonetheless based on underlying probability-based intu-
itions. More prosaically, the complexity of the formal system
should be investigated, although related logics suggest that
the satisfiability problem will be PSPACE complete.
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