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Abstract

Molecular interactions are significant resources for
analyzing sophisticated biological systems. Iden-
tification of multifarious molecular interactions at-
tracts increasing attention in biomedicine, bioinfor-
matics, and human healthcare communities. Re-
cently, a plethora of methods have been proposed
to reveal molecular interactions in one specific do-
main. However, existing methods heavily rely on
features or structures involving molecules, which
limits the capacity of transferring the models to
other tasks. Therefore, generalized models for
the multifarious molecular interaction prediction
(MIP) are in demand. In this paper, we propose
a contrastive self-supervised graph neural network
(CSGNN) to predict molecular interactions. CS-
GNN injects a mix-hop neighborhood aggregator
into a graph neural network (GNN) to capture high-
order dependency in the molecular interaction net-
works and leverages a contrastive self-supervised
learning task as a regularizer within a multi-task
learning paradigm to enhance the generalization
ability. Experiments on seven molecular interac-
tion networks show that CSGNN outperforms clas-
sic and state-of-the-art models. Comprehensive ex-
periments indicate that the mix-hop aggregator and
the self-supervised regularizer can effectively facil-
itate the link inference in multifarious molecular
networks.

1 Introduction

There are various molecular interactions/associations in bio-
logical systems, such as drug-target interactions [Cheng et al.,
20121, drug-drug interactions [Zhang et al., 2017], protein-
protein interactions [Kovécs et al., 20191, drug-disease asso-
ciations [Yu et al., 2020], and miRNA-disease associations
[Huang et al., 2020al, and they implicate significant infor-
mation for sophisticated biological system analysis [Huang
et al., 2018]. Although many interactions have been revealed
by the wet experiments or clinic reports, a portion of inter-
actions remains undiscovered. However, wet experimental
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methods for identifying molecular interactions are extremely
costly and time-consuming. The computational methods, in
contrast, can efficiently discover potential interactions and
guide in vivo validation, which provides an economic alter-
native.

Since molecular interaction discovery is a prerequisite for
the downstream analysis (e.g., disease diagnosis and drug
discovery), a great number of computational methods have
been proposed to reveal molecular interactions in one spe-
cific domain (e.g., drug-drug interactions and drug-target in-
teractions). Existing methods heavily depend on features and
structures involving the molecules in one specific task, which
limits the generalization capacity of transferring the models
to other tasks. Thus, the generalized models for multifarious
molecular interaction prediction are in demand.

Molecular interactions can be naturally formulated as net-
works where molecules and interactions are regarded as
nodes and edges respectively. Then, network-based algo-
rithms such as random walk and label propagation can be
applied for molecular interaction prediction (MIP). Recently,
network/graph-based deep learning techniques, e.g., graph
neural networks (GNNs) [Wu et al., 2021], have emerged as a
dominant class of methods which advance network analysis.
In the light of GNNs, many tasks, such as node classification,
graph classification, and link prediction, have been success-
fully handled. In GNNs, one of the most popular categories
is graph convolutional networks (GCNs) [Kipf and Welling,
2017] which learn node representation by neighborhood ag-
gregation and feature transformation. GCN provides a flex-
ible and powerful frame for representation learning, which
motivates us to resolve molecular interaction prediction prob-
lems.

A desired molecular interaction prediction method should
have transferable, generalized, and robust performances,
whereas several bottlenecks have restricted it. On the one
hand, in molecular interaction networks, the degree distribu-
tion of nodes links are often nonuniform and sparse [Liu er
al., 2020], which challenges many methods. Additionally, in
many GNN frameworks, due to the immediate neighborhood
aggregator, node representations learned by stacking multi-
ple layers are over smoothed and redundant, which under-
mines the effect of the indirect nodes. On the other hand,
the scarcity of annotated data restricts the predictive capacity
of models. Typically, we can only acquire the few molecu-
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lar interactions and features involving the entities, but these
specific features are usually not transferable. Therefore, the
generalized methods are expected to make prediction merely
based on limited interactions.

In this paper, we propose a contrastive self-supervised
graph neural network (CSGNN) for molecular interaction
prediction (MIP) while tackling the above challenges. CS-
GNN leverages a mix-hop [Abu-El-Haija ef al., 2019] aggre-
gator in the deep graph neural network framework aiming to
model and capture the dependent relation between indirect
neighbors. Further, a contrastive self-supervised graph neural
network, which maximizes mutual information between local
patches and the network-level context, is elaborated to assist
CSGNN with effective representation learning from scarce
data. The contributions can be summarized as:

* The proposed CSGNN can accurately predict interac-
tions between multifarious molecular entities, merely
based on known interactions, not depending on any fea-
tures or structures of entities.

¢ In molecular interaction networks, we consider the im-
portance of high-order dependency and design a deep
mix-hop graph neural network to model the dependency,
which is proved to be effective in ablation study.

* We introduce a contrastive self-supervised learning task
as a regularizer of molecular interaction prediction
within a multi-task learning paradigm, and develop a
delicate framework CSGNN, which provides a novel in-
sight for molecular representation learning.

2 Related Works

In molecular interaction networks, the goal of molecular in-
teraction prediction is to predict if a given pair of biomed-
ical entities such as proteins, drugs, or diseases will inter-
act. There are three types of network-based methods: (1)
Similarity-based learning assumes that there likely exists
a link if a pair of non-connected nodes are similar or close
in the networks [Liu et al., 2020]. (2) Matrix completion
transforms the interaction prediction as a matrix completion
problem [Zhang et al., 2020b]. (3) Graph representation
learning acquires representations of entities from networks
for downstream link prediction [Zhang et al., 2020al. Al-
though these pioneers have produced good performances, a
neglected deficiency is that most of them are designed for the
specific molecular interaction tasks and cannot be transferred
to other tasks.

Recently, the application of graph neural networks in mul-
tifarious molecular interaction prediction tasks has received
increasing attention. For example, MR-GNN [Xu et al.,
2019b] utilizes a dual graph neural network to predict struc-
tured entity interactions. SkipGNN [Huang et al., 2020b]
infers interactions between molecules via a skip graph neu-
ral network. Generally, like most deep learning based meth-
ods, GNNs require massive amounts of labeled data for
model training. But in practice, only few known interac-
tions/associations in the molecular interaction networks are
available. Therefore, how to learn powerful representations
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from networks with limited data is crucial for the develop-
ment of high-accuracy predictive models.

A number of graph-specific self-supervised learning pre-
text tasks have been designed to learn powerful representa-
tions for nodes or graphs. Contrastive learning, an impor-
tant category of self-supervised methods, which aims to dis-
criminate relative instance pairs and negative-sampled pairs
through implicitly serving the intra-pair proximity as super-
visory signals, deserves much attention. For examples, a
few classic graph embedding methods, such as LINE [Tang
et al., 2015], struc2vec [Ribeiro et al., 2017] and Graph-
Sage [Hamilton et al., 2017], define different kinds of node
proximity; GCC [Qiu et al., 2020] aims to distinguish be-
tween similar subgraph pairs and other dissimilar ones; DGI
[Velickovic et al., 2019] seeks to classify node-graph pairs
and ‘fake’ counterparts; the method which Hassani and Ah-
madi [2020] extend from DGI introduces graph data augmen-
tation to expand contrastive samples; InfoGraph [Sun e al.,
2020a] and GraphCL [You er al., 2020] use a similar con-
trastive learning framework to learn graph-level representa-
tions. Another well-designed self-supervised method is ex-
plicit in the paradigm of supervised settings (classification
or regression) with the targets automatically generated from
the data itself. For examples, M3S [Sun et al., 2020b] uti-
lizes a clustering algorithm to yield pseudo labels in a self-
training framework for semi-supervised node classification;
GPT-GNN [Hu et al., 2020] forces GNN to predict masked
nodes and edges; S2GRL [Peng er al., 2020] takes the mini-
mized hop counts between two nodes as the supervisory sig-
nals. In this paper, we extend DGI and formulate it as a self-
supervised auxiliary task to enhance the performance of link
prediction task.

3 The Proposed CSGNN

3.1 Problem Formulation

A molecular interaction network can be viewed as an undi-
rected attributed graph G = (V, £, X), where V represents
the set of nodes that correspond to molecular entities (e.g.,
drugs, diseases or proteins) and £ C V x V denotes the set
of edges indicating the existence of interaction between two
entities in V. X € RIVI*™ s a feature matrix where each
node in V is encoded as a predefined m-dimensionality at-
tribute vector (e.g., a generated graph embedding or a one-hot
coding). Specifically, the graph can be further represented as
an adjacency matrix A € {0,1}/V*IVI where A,,, = 1 if
there exists a link from w to v in the graph (i.e., (u,v) € &)
and A, , = 0 otherwise. Note that G is a undirected graph,
hence, A is symmetric. Our goal of molecular interaction
prediction is to learn a mapping function O(w) : £ — [0, 1]
from edges to scores, where w is parameter, such that we can
obtain the probability that two arbitrary nodes interact each
other [Huang et al., 2020b].

3.2 Overview

Figure 1 illustrates the overview of our proposed contrastive
self-supervised graph neural network framework, which con-
tains a deep mix-hop graph neural network undertaking the
molecular interaction prediction task and a contrastive graph
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Figure 1: Overview of CSGNN.

neural network implementing the self-supervised learning
task. The deep mix-hop graph neural network captures the
indirect interactions in the molecular interaction networks;
the contrastive graph neural network makes use of the infor-
mation derived from data itself to enhance the generalization
ability of the predictor. Two tasks, incorporated into an ob-
jective function, are jointly trained.

In the following, we will describe technical details of the
deep mix-hop graph neural network and the contrastive graph
neural network.

3.3 Deep Mix-Hop Graph Neural Network

Graph neural networks (GNNs) use the graph structure and
node attribute to learn the high-level compact representations
of nodes, denoted by H € RIVI*? where h, = Hv,:] is
the latent representation of the node v. In general, GNNs
iteratively update the representation of a node by aggre-
gating representations of its neighbors. After [ iterations,

the hidden state of node v can be denoted as: hff) =
oD (RS, FORGTY - u € N(v)}), where O)() is
a combination function (e.g., summation, element-wise prod-
uct, concatenation operation or a neural network) of /-th itera-
tions. A (v) denotes a set of nodes adjacent to v. Specifically,
we initialize A" = X [v,:].

To model the high-order proximity in molecular interaction
networks, we design a deep mix-hop graph neural network,
which can highlight the role played by indirect neighbors, as
shown in Figure 1. The update rule of the hidden states of
nodes in our model can be defined as:

h{ = ORIV, {f]gl)({hg_l) tu € Ni(0))zr) (D)

where f,gl)(-) is an aggregation function of [-th iteration on
k-th hop, and Ny (v) denotes the set of k-hop neighbors of v.
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Later, we decode the representations of node u and node
v into the probability of their interaction: Py, = p (hy, hy),
p(+) is a scoring function (e.g., inner product, bilinear func-
tion or a neural network). Then the loss of supervised molec-
ular interaction prediction task can be formulated as:

1 R ~
ek T o1 lnlt )
(u,v)eT

where 7 is the sampled training set of node pairs and py,
denotes true label for the interaction between nodes « and v.

3.4 Contrastive Graph Neural Network

The proposed CSGNN leverages a self-supervised learning
task which conducts contrastive learning between the origi-
nal networks and corrupted networks by maximizing mutual
information.

Following DGI [Velickovic et al, 2019], the self-
supervised auxiliary task maximizes mutual information be-
tween a local patch (i.e., node-level representation) and its
global context (i.e., graph-level representation). One original
intention of above design is guiding the node representations
to capture the global information of the entire graph. We em-
ploy a readout function, I : H € RVIX4 — 5 € R? (ie.,
s = I'(H)), to summarize the obtained local patches into the
global context s.

Then, we corrupt the original graph by an explicit (stochas-
tic) corruption pipeline to convert the graph into a fake” one:

IT:(X,A) e(RYVPxm RIVIXIVE
(X, A) € RV RV

Next, we utilize a noise-contrastive type objective with a
standard binary cross-entropy (BCE) loss between the posi-
tive pairs (each pair consists of global information and one

3)



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Datasets Nodes Edges Density Degree
ChG-Miner (DTT) 7,343 15,139 0.06% 4.12
ChCh-Mine (DDI) 1,514 48,514 4.23% 64.09
HuRI-PPI (PPI) 5,604 23,322 0.15% 8.32
DG-AssocMiner (DGI) 7,813 21,357 0.07% 5.47
DD-Miner (DIA) 6,878 6,877 0.03% 2.00
DCh-Miner (DDA) 7,199 466,657 1.80%  129.65
ChSe-Decagon (DSA) 10,823 174,997 0.30% 32.33

Table 1: The statistic of seven widely used datasets.

of local patches) and the negative ones (each pair consists of
global information and one of corrupted patches) to model
self-supervised leaning task. Naturally, we present the fol-
lowing loss function:

1
by=——— [ S Ex a[log (R,
2 ER (7;} (x,A)[log¥(hy, s)]

“
+ Z E’(X,A) [log(l - w(’t"vv S))])

veY’

The contrastive learning mechanism maximizing mutual
information between the original global context and local
patches, to some extent, allows our model to be more “dis-
criminative” for node representation learning. Further, we ex-
tend the contrastive learning mechanism from another view:
maximizing mutual information between the corrupted global
context and local patches, which can be viewed as the “dual
problem” of above problem:

1 o
TR (Z E %, 4)llog¥(hy, 3)]

vey’

03 =
(%)
+ 3 Ex ayllog(l = #(h, é))])

uey

where § denotes the corrupted graph-level representation.
This architecture, on the one hand, exploiting more infor-
mation derived from data itself, enhances the generalization
ability. On the other hand, it consider both views of the of
network (i.e., original and corrupted views) simultaneously,
which enables the model more balanced” and robust.

Intuitively, to train a model by the missing link task and
the self-supervised leaning task, we optimize the following
objective that combines Eq.2, Eq.4 and Eq.5:

= afl + 562 + ’}/63 (6)

where a, (3, v are hyperparameters which balance the contri-
bution of different tasks. The pseudo-codes of CSGNN are
illustrated in Algorithm 1.

4 Experiment

4.1 Datasets and Settings

We consider seven publicly available network datasets. (1)
ChG-Miner consists of 5,018 drugs which target 2,325 pro-
teins via 15,139 drug-target interactions (DTIs). (2) ChCh-
Miner contains 48,514 interactions between 1,514 drugs

Algorithm 1 The Contrastive Self-Supervised Graph Neural
Network Algorithm

Input: Molecular interaction network G; functionf(-), ¢(-),
p(+), (), I'(-), ¥(-); parameters «, 3, 7y; training set
T

Output: O(w)
1: while CSGNN not converge do
2 HO =X

3 (X,A)« II(X,A)

4 HO=X

5. foru € Vdo

6: for! =1,2,...,Ldo

7 fork=1,2,..., K do

8: Calculate f,gl)({hg,lfl) cv € Ni(u)})
9: end for

10: Update kY via Eq.(1)
11: end for
12:  end for

13: s« I'(H)

14:  Calculate H, 5 like line 5-13

15:  for (u,v) € T do

16: Calculate py,, 10g puy + (1 — Puw) 10g(1 — Do)
17:  end for

18:  Calculate ¢; via Eq.(2)

19: foru €V do

20: Calculate E(x 4)[log¥(hy, s)]
21: Calculate E x a)[log(1 — ¥ (h., 5))]
22:  end for

23:  for v € V' calculate loss like line 19-22
24:  Calculate {5 and /3 via Eq. (4) and Eq. (5)
25: Vwaly 4+ Bly + L3

26: end while

27: return O(w)

(DDIs). (3) HuRI-PPI includes 23,322 interactions among
5,604 proteins (PPIs) in HI-III network. (4) DG-AssocMiner
comprises 519 diseases which associate 7,294 genes through
2,1357 associations (DGIs). (5) DD-Miner is a dataset
with 6,877 associations between 6,878 diseases (DIAs) (6)
DCh-Miner contains 5,536 diseases associate 1,663 drugs
via 466,657 associations (DDAs). (7) ChSe-Decagon in-
cludes 639 drugs, 10,184 side-effects and 17,499 associa-
tions (DSAs) among them. We download DTIs, DDIs, DGIs,
DIAs, DDAs, and DSAs from BioSNAP [Marinka Zitnik and
Leskovec, 2018], and collect PPIs from CCSB[Luck et al.,
2020]. The detailed information is listed in Table 1.

Baselines. We compare CSGNN with several state-of-the-
art methods, which can be categorized as:

e Matrix Factorization (MF) decomposes the input data
matrix to acquire low-dimension representations. Two
representative MF-based methods are selected, includ-
ing GraRep [Cao et al., 2015] and HOPE [Ou et al.,
2016].

* Random Walk (RW) utilizes random walk strategy on
graphs to generate several node sequences. One most
representative RW-based method Struc2Vec [Ribeiro et
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Metrics Data MF RW NN GNN _ CSGNN
HOPE [ GraRep | Struc2vec | LINE | SDNE | GCN [ GAT [ GraphSage [ GIN [ SkipGNN | -GCN [ -GIN
DTI 0.8064 | 0.7359 0.7706 0.6599 | 0.7637 | 0.9233 | 0.6512 0.7243 0.9082 0.9096 0.9258 | 0.9137
DDI 0.6425 | 0.6789 0.7615 0.6894 | 0.7526 | 0.8569 | 0.5963 0.8114 0.8793 0.8824 0.9350 | 0.9590
PPI 0.6301 | 0.6635 0.7980 0.7111 | 0.7500 | 0.9051 | 0.7418 0.7980 0.9173 0.9082 0.9214 | 0.9233
AUC DGI 0.944 | 09168 0.8907 0.8281 | 0.8948 | 0.9918 | 0.6694 0.9466 0.9917 0.9899 0.9919 | 0.9917
DIA 0.4381 | 0.4588 0.6337 0.4568 | 0.7375 | 0.8330 | 0.5047 0.4219 0.8696 0.7223 0.8844 | 0.8707
DDA | 0.8958 | 0.8226 0.8437 0.8509 | 0.9695 | 0.9890 | 0.5000 0.9851 0.9938 0.9941 0.9914 | 0.9944
DSA | 09311 | 0.8666 0.8997 0.8841 | 0.9609 | 0.9918 | 0.5000 0.9785 0.9925 0.9902 0.9925 | 0.9926
DTI 0.7690 | 0.6517 0.6291 0.3029 | 0.4764 | 0.9253 | 0.7070 0.7686 0.9165 0.9050 0.9307 | 0.9237
DDI 0.2501 | 0.3695 0.6236 0.3650 | 0.5374 | 0.8386 | 0.5348 0.7520 0.8526 0.8594 0.9210 | 0.9523
PPI 0.1983 | 0.3157 0.6476 0.3391 | 0.5277 | 0.9091 | 0.7338 0.7843 0.9206 0.9136 0.9256 | 0.9313
AUPR DGI 0.9596 | 0.9315 0.8290 0.6937 | 0.8141 | 0.9885 | 0.6509 0.9409 0.9890 0.9849 0.9896 | 0.9895
DIA 0.1458 | 0.1437 0.4096 0.1167 | 0.4098 | 0.8453 | 0.5109 0.4375 0.8700 0.7242 0.8730 | 0.8618
DDA | 0.9068 | 0.8168 0.7700 0.7857 | 0.9399 | 0.9878 | 0.5000 0.9769 0.9929 0.9931 0.9903 | 0.9937
DSA | 09640 | 0.9196 0.8903 0.8111 | 0.9332 | 0.9878 | 0.5000 0.9625 0.9894 0.9849 0.9893 | 0.9899

Table 2: Performances of CSGNN and baselines

al., 2017] is chosen as baseline.

e Neural Network (NN) captures hidden patterns under-
lying the network structure from input data to learn
graph embeddings. Two most representative NN-based
methods LINE [Tang er al., 2015] and SDNE [Wang ef
al., 2016] are chosen.

* Graph Neural Network (GNN) considers both topo-
logical information and node and/or edge information in
graph. Several most representative GNN-based methods
including GCN [Kipf and Welling, 20171, GAT [Velick-
ovic et al., 20181, GraphSage [Hamilton et al., 20171,
GIN [Xu et al., 2019a] and SkipGNN [Huang et al.,
2020b] are selected.

Metrics. In all experiments, each dataset is split into train-
ing, validation, and test sets as the ratio 7:1:2. Then, we train
models on the training sets, select models with the best per-
formance on the validation sets, and evaluate them on the
test sets. The area under the receiver operating characteristic
curve (AUC) and the area under the Precision-Recall Curve
(AUPR) are elected as two representative indicators. Each ex-
periment is conducted ten runs with random splits of dataset
and the average metric is computed to avoid bias.

Experimental settings. In the deep mix-hop graph neural
network, we empoly GCN [Kipf and Welling, 2017] and GIN
[Xu et al., 2019a] as message passing frameworks, and con-
catenate the representation from each hop, therefore, the node
representation can be formulated by:

) . h(lfl)

1
Z W u )
wENG (v)U{v} dydy

K
R = 1l 0(
k=1

)

K

h = || MLPD(1+6) b+ 37 hi™) @)
k=1 uEN (v)

where || is a concatenation operation, ¢ is a non-linear acti-

vation function, d, = 1 + [Nk ()], wg) is a weight matrix,

and eg) is a learnable parameter. Note that GIN can model

an injective function mapping initial matrix to node represen-
tations, which allows CSGNN to powerfully capture the dis-
tinct topological structure of the graph. In this paper, we set

mix-hop K = 2 and we use the random distribution ranging
from O to 1 to initiate the feature matrix X on 128 dimen-
sions.

We employ MLP with one hidden layer as the scoring func-
tion p(-). Concretely, the interaction prediction score can be
defined as:

ﬁuv :MLP(H(hu+hvahu®hvahu7hv)) (9)

where © is element-wise product. Note that, in above equa-
tion, multiple operations are performed to model multifarious
relationships between two entities.

In the contrastive graph neural network, empirically, we
randomly corrupt permutation of initial feature matrix X to
X via corruption function I7(-,-). Then, we select Mean as
the readout function I'(-), which is experimentally efficient
for large-scale data. Therefore, the graph-level representation
can be denoted by: s = Mean(H). Further, we instantiate
the contrastive discriminator ¥ (-, -) as o (hY W's). Here, we
use sigmoid as the activation function to produce the score
that represents probabilities of being a positive sample. Note
that the graph neural networks which encode the original and
corrupted network share the same parameters.

In the joint training, we set « = 1, 3 = 0.1 and v = 0.1.

We run CSGNN and other compared methods on our work-
station with 2 Intel(R) Xeon(R) Gold 6146 3.20GHZ CPUs,
128GB RAM, and 2 NVIDIA 1080 Ti GPUs. For more de-
tailed parameter settings, please refer to the source code’.

4.2 Results and Analysis

In this section, we conduct experiments to compare CSGNN
with all the baselines, where GCN and GIN are respectively
used as GNN encoders for CSGNN. The AUC and AUPR
scores of all models are shown in Table 2, and we have the
following observations from the results. Firstly, CSGNN out-
performs all the baselines and produces the most competi-
tive performance on seven benchmark datasets. Considering
MF-based methods, RW-based methods, NN-based methods,

'A reference implementation of CSGNN may be found at
https://github.com/BioMedicalBigDataMiningLab/CSGNN or
https://github.com/ChengshuaiZhao0/CSGNN
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Figure 2: Results of ablation experiments.

and GNN-based methods, CSGNN achieves the average im-
provement of 20.8%, 15.34%, 17.38%, and 11.68% in AUC
values, and 35.56%, 26.59%, 37.63%, and 11.9% in AUPR
values, respectively. The results demonstrate the superiority
of CSGNN when performing on molecular interaction pre-
diction. Secondly, CSGNN outperforms GCN and GIN by
2.58% and 1.7% in AUC values on average, and 2.54% and
1.85% in AUPR values on average, respectively. The re-
sults indicate that the consideration of the mix-hop context
and the contrastive self-supervised learning strategy boosts
the generalization ability of CSGNN, which will be further
discussed in Ablation Study. Thirdly, CSGNN with differ-
ent GNN encoders achieves different performances among
benchmark datasets. For benchmark datasets with low den-
sity (<0.1%), CSGNN with GCN encoder (i.e., CSGNN-
GCN) performs better than CSGNN with GIN encoder (i.e.,
CSGNN-GIN), while for other benchmark datasets, CSGNN-
GIN performs better than CSGNN-GCN. At last, we notice
that several baseline methods (such as GAT and LINE) work
well in node/graph classification do not obtain good perfor-
mances on molecular interaction prediction, because of the
distinct characteristics of biological networks.

4.3 Ablation Study

To further investigate the importance of components: the
mix-hop aggregator and the self-supervised learning task, we
design the following variants of CSGNN:

* CSGNN without mix-hop (w/o MH) only aggregates
immediate neighbors instead of mix-hop neighbors in
CSGNN.

* CSGNN without self-supervised learning task (w/o
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Figure 3: Visualization of DDI network.

SSL) removes the self-supervised learning task, and con-
structs GNN model based on mix-hop.

* CSGNN without mix-hop and self-supervised learn-
ing task (w/o MH + SSL) has neither mix-hop nor the
self-supervised learning task.

* CSGNN without molecular interaction prediction
task (w/o MIP) is trained only based on the contrastive
self-supervised learning objective. Then, the acquired
node representations will be used in downstream link
prediction task.

We conduct ablation study on seven datasets, and the re-
sults are shown in Figure 2. It is clear that CSGNN with
the mix-hop aggregator and the self-supervised learning task
achieves superior performances on most settings, and the re-
moval of any will undermine the predictive capacity of CS-
GNN. Overall, the mix-hop is more efficient than the con-
trastive self-supervised learning task. Besides, by introduc-
ing the contrastive self-supervised learning task, the datasets
with few annotations (e.g., DGI and DIA) benefit more sig-
nificantly compared to the datasets with sufficient ones (e.g.,
DDA and DSA). It’s worth mentioning that only depend-
ing on the contrastive self-supervised learning task, CSGNN
(w/o MIP) still achieves amazing performances, especially on
DSA and PPI datasets. In conclusion, both mix-hop and the
self-supervised learning task are necessary for CSGNN.

4.4 Visualization Analysis

In this section, we explore node representations on the
molecule level. We extract the learned representations of
molecule pairs in the interaction networks from the trained
CSGNN model, and project them into 2D space using t-
SNE [Maaten and Hinton, 2008]. Here, we take the ChCh-
Miner(DDI) dataset as an example to compare CSGNN with
GCN and SkipGNN. As illustrated in Figure 3, the proposed
CSGNN can well distinguish the linked molecules (red) and
unlinked molecules (blue); SkipGNN recognizes most of the
non-interacting pairs; GCN differentiates part of molecular
pairs. To further analyze the quality of learned representa-
tions, we calculate the inter-cluster and intra-cluster distances
via silhouette scores. CSGNN, SkipGNN, and GCN have
silhouette scores of 0.2792, 0.1777, and 0.1705 respectively,
indicating that CSGNN allows more delicate representations
for molecular interaction prediction.
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5 Conclusion

In this paper, we focus on crucial but rarely studied multifar-
ious molecular interaction prediction problem. Most existing
methods are dedicated to specific molecular interaction pre-
diction tasks, and cannot be well transferred to other tasks.
the scarcity of annotated data restricts the predictive capac-
ity of conventional GNNs. To address above limitations, we
propose a novel method CSGNN which leverages the deep
mix-hop graph neural network to capture high-order proxim-
ity and employs the contrastive graph neural network to en-
hance the transferable and generalized ability. We intuitively
incorporate contrastive learning task into the self-supervised
learning framework as auxiliary regularization. Comprehen-
sive experiments on seven public datasets show that CSGNN
outperforms classic and state-of-the-art molecular interaction
prediction models. CSGNN can be applied to various novel
molecular interaction prediction tasks merely based on anno-
tated interactions. In the future, we will explore more power-
ful representation learning techniques for molecular interac-
tion inference.
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