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Abstract
Domain adaptation solves a learning problem in a
target domain by utilizing the training data in a
different but related source domain. As a simple
and efficient method for domain adaptation, corre-
lation alignment transforms the distribution of the
source domain by utilizing the covariance matrix
of the target domain, such that a model trained on
the transformed source data can be applied to the
target data. However, when source and target do-
mains come from different institutes, exchanging
information between the two domains might pose
a potential privacy risk. In this paper, for the first
time, we propose a differentially private correlation
alignment approach for domain adaptation called
PRIMA, which can provide privacy guarantees for
both the source and target data. In PRIMA, to re-
lieve the performance degradation caused by per-
turbing the covariance matrix in high dimensional
setting, we present a random subspace ensemble
based covariance estimation method which splits
the feature spaces of source and target data into sev-
eral low dimensional subspaces. Moreover, since
perturbing the covariance matrix may destroy its
positive semi-definiteness, we develop a shrinking
based method for the recovery of positive semi-
definiteness of the covariance matrix. Experimental
results on standard benchmark datasets confirm the
effectiveness of our approach.

1 Introduction
Supervised machine learning will encounter poor generaliza-
tion performance with limited labeled data, while manual la-
beling of sufficient training data for emerging application do-
mains is labor-intensive and time-consuming. This motivates
the development of domain adaptation, a technique that aims
to transfer a model from a source domain where sufficient
training data are available to a target domain where few or no
labeled data are available.

In many settings, the source and target domains do not
want to share the raw data or statistics due to privacy con-
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cerns. For example, the source and target domains may
come from two different medical institutions who hold med-
ical records related to certain types of drugs or procedures.
In order to perform domain adaptation without privacy leak-
age, we adopt the notion of differential privacy [Dwork et al.,
2006b], which provides strict and verifiable privacy guaran-
tees, and makes almost no assumptions about the attacker’s
background knowledge. Recently, LeTien et al. [LeTien et
al., 2019] proposed a differentially private optimal transport
model for privacy-preserving domain adaptation. However,
optimal transport relies on two restrictive assumptions, which
are: 1) the target samples are an affine transformation of the
source samples; 2) the source and target domains have shared
features.

In contrast to optimal transport which exploits only shared
features, correlation alignment [Sun et al., 2016] can use
both shared and domain specific features by capturing the
feature correlations of source and target domains, which
is particularly crucial when the two domains contain few
or even no shared features. What’s more, compared with
the recent deep adaptation approaches [Long et al., 2015;
Ganin et al., 2016] which are quite complex and expensive,
requiring tuning of many hyperparameters, correlation align-
ment is more efficient and can achieve better or comparable
performance. Without requiring any target labels, correla-
tion alignment first transforms the source distribution to as
close as possible to the target one by utilizing the covariance
matrix of the target domain. Then a model trained on the
transformed source data is applied to the target data. Clearly,
the covariance matrix of the target domain utilized by the
source domain may leak sensitive information of the target
data [Dwork et al., 2014]. Moreover, the model applied by
target domain may leak sensitive information of the source
data [Abadi et al., 2016].

In this paper, we start from a straightforward approach,
which can provide privacy guarantee for correlation align-
ment based domain adaptation, and allow both the source
and target domains to perform domain adaptation without
trusting each other. Specifically, to obtain a private co-
variance matrix of the target domain, we perturb the real
covariance matrix by Gaussian noise [Dwork et al., 2014;
Ge et al., 2018]. In addition, to obtain a private model,
we perturb gradients by Gaussian noise during the gradi-
ent based model training [Bassily et al., 2014; Abadi et al.,
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2016]. However, such a straightforward approach has two
limitations: 1) the upper error bound of the perturbed covari-
ance matrix grows linearly with the dimension [Wang and
Xu, 2019], which makes the straightforward approach suf-
fer from poor performance in high-dimensional setting; 2)
it is not clear whether the covariance matrix can keep posi-
tive semi-definiteness when it is perturbed, a property that is
normally expected from a classifier. To address these limita-
tions of the straightforward approach, we propose our differ-
entially PRIvate correlation alignment approach for doMain
Adaptation, which is referred to as PRIMA. In PRIMA, to
reduce the large error caused by perturbing covariance ma-
trix in high-dimensional setting, we present a random sub-
space ensemble based covariance estimation method which
splits the feature spaces of source and target data into several
low dimensional subspaces. In particular, we employ the for-
ward selection strategy to determine the dimension of each
subspace. In addition, to tackle the problem that the posi-
tive semi-definiteness of the covariance matrix is destroyed,
we develop a shrinking based method for the positive semi-
definite matrix recovery by computing the nearest positive
semi-definite matrix to the perturbed covariance matrix.

Our contributions can be summarized as follows:

• We present a differentially private correlation alignment
approach for domain adaptation, call PRIMA, to protect
data privacy of both the source and target domains. To
our knowledge, PRIMA is the first correlation alignment
based approach for differentially private domain adapta-
tion. We prove that PRIMA achieves (ε, δ)-differential
privacy for the source and target data respectively.

• Based on random subspace ensemble, we propose a dif-
ferentially private covariance estimation method for the
high-dimensional setting, where the forward selection
strategy is employed to determine subspace dimension.

• To recover the positive semi-definiteness of the covari-
ance matrix, we develop a shrinking based method. Util-
ity analysis shows that the recovered covariance matrix
can provide better utility than the non-recovered one.

• We demonstrate the superiority of PRIMA through two
concrete examples: logistic regression (LR) and deep
neural network (DNN). Experimental results show that
PRIMA outperforms the state-of-the-art methods.

2 Related Work
In the literature of differentially private domain adaptation,
the most related work to ours is [LeTien et al., 2019]. Us-
ing random projection, LeTien et al. [LeTien et al., 2019]
propose a differentially private domain adaptation approach
based on optimal transport. However, optimal transport can
only work if the target samples are an affine transformation
of the source samples. In addition, optimal transport is sen-
sitive to outliers of the source domain that have no corre-
spondence in the target one, and can work only if there ex-
ist shared features in both domains. Wang et al. [Wang et al.,
2020] propose a differentially private deep domain adaptation
approach which uses an adversarial-learning strategy to con-
struct domain-invariant features for classifying the unlabeled

target data. However, their approach supposes that the source
and target data owners trust each other and is only applica-
ble to deep models. Wang et al. [Wang et al., 2018] pro-
pose a differentially private multiple-source hypothesis trans-
fer learning approach. However, their approach needs to have
access to a publicly available auxiliary dataset. Yao et al.
[Yao et al., 2019] first propose a privacy-preserving logistic
regression approach by stacking, then combine the proposed
approach with hypothesis transfer learning. However, their
approach trains on a fully labeled target data, and cannot be
applied to the scenario where no labeled data are available in
the target domain.

3 Preliminaries
3.1 Domain Adaptation
Domain adaptation (DA) aims at adapting a model trained
in a source domain for use in a target domain, where the
source and target domains may be different but related. Let
Xs ∈ Rd and Xt ∈ Rd be the feature spaces of source
and target data respectively. We denote the source data as:
Ds = {(xis, yis)}

ns
i=1, where xis ∈ Xs, and yis is the label of

xis. Similarly, we denote the target data as: Dt = {(xjt )}
nt
j=1,

where xjt ∈ Xt. Let P(Xs) and Q(Xt) be the marginal
distributions of Xs and Xt, respectively. The key assump-
tion of domain adaptation is that P(Xs) 6= Q(Xt), but
P(Ys|Xs) = Q(Yt|Xt).

As a simple yet efficient method for domain adaptation,
correlation alignment (CORAL) aligns the marginal distribu-
tions of the source and target domains by aligning their co-
variance matrices. To minimize the distance between the co-
variance matrices of the source and target domains, correla-
tion alignment applies a transformation matrix H to the orig-
inal source feature space Xs and uses the Frobenius norm as
the matrix distance metric:

min
H
||C~s −Ct||2F = min

H
||H>CsH−Ct||2F , (1)

where Cs and Ct are the covariance matrices of Xs and Xt

respectively, C~s is the covariance matrix of the transformed
source data {XsH, Ys}. After CORAL transforms the source
data, a model trained on the transformed source data can be
directly applied to target domain.

3.2 Differential Privacy
Definition 1 (Differential privacy (DP) [Dwork et al., 2006a;
Dwork et al., 2006b]). A randomized mechanismM : Xn →
Rd satisfies (ε, δ)-differential privacy if for any two datasets
D,D′ ∈ Xn differing by a single element and for any set of
possible output O ⊆ Range(M) :

Pr[M(D) ∈ O] ≤ eε Pr[M(D′) ∈ O] + δ, (2)
where ε is the privacy budget and δ is the failure probability.
Theorem 1 (Gaussian mechanism [Dwork et al., 2006a]).
Given a function f : Xn → Rd, the Gaussian Mech-
anism MG(D, f, ε) = f(D) + zg , where zg is drawn
from Gaussian distribution N (0, σ2Id), satisfies (ε, δ)-DP
for some δ > 0, if σ ≥

√
2 log(1.25/δ)∆2(f)/ε. Here

∆2(f) is the `2-sensitivity of the function f , i.e. ∆2(f) =
supD,D′ ||f(D)− f(D′)||2.
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3.3 Random Subspace Ensemble
Random subspace ensemble (RSE) or simply Random Sub-
space (RS) [Skurichina and Duin, 2002] is an ensemble learn-
ing method which samples from the original feature space
and builds one classifier on each subspace. Given training
data X = {(xi)}ni=1, whose rows represent the set of data
samples and whose columns represent the set of features.
Let F1:d = {F1,F2, ...,Fd} be the set of features, where
F i is the i-th feature of X . In RSE, one randomly selects
p (p � d) features from F1:d, and obtains a p-dimensional
subspace. Assume m is the ensemble size, the i-th sub-
space is X̂i = (F i,1,F i,2, ...,F i,p)> (i ∈ [m]), where
F i,j (j ∈ [p]) is randomly selected from F1:d. Then one
constructs classifiers ψi(X̂i) in the random subspaces X̂i and
combines m classifiers by simple majority voting.

4 Proposed Approach
4.1 Overview
Our approach PRIMA consists of three phases: RSE based
covariance estimation, positive semi-definite matrix recovery
and model training. In the first phase, target domain employs
RSE to split its feature space into several low dimensional
subspaces, and perturbs the covariance matrix of each sub-
space. In particular, to determine the dimension of each sub-
space, the target domain uses the forward selection strategy in
generating subspaces. In the second phase, the target domain
modifies each perturbed covariance matrix to make it positive
semi-definite via shrinking, and sends the modified matrices
to the source domain. In the last phase, the source domain
first generates subspaces according to the splitting results of
the target domain, and then performs correlation alignment
to transform each subspace by exploiting the received co-
variance matrices. Finally, the source domain trains mod-
els on the transformed source subspaces, and perturbs gra-
dients during the gradient-based training. Figure 1 illustrates
an overview of our approach.

4.2 RSE based Covariance Estimation
To obtain a private estimation of the covariance matrix of the
target domain Ct, we add noise sampled from Gaussian dis-
tribution N (0, 2log(1.25/δ)/ε2) to every element in the real
covariance matrix Ct = 1

nt
XtX

>
t , where the sensitivity is

at most one [Dwork et al., 2014; Ge et al., 2018; Jiang et al.,
2016; Wang and Xu, 2019]. As shown in [Dwork et al., 2014;

Figure 1: An illustration of PRIMA.

Amin et al., 2019], the upper error bound of the perturbed
covariance matrix is d

√
log(1/δ)/ntε , where d is the di-

mension of the target data. Here, the bound d
√
log(1/δ)/ntε

represents the Frobenius distance between the perturbed co-
variance matrix and the real covariance matrix, which is tight.
We can see that the upper error bound is quite large in high
dimensional setting.

To address the above limitation, we first employ RSE to
split the original feature space Xt into m low dimensional
subspaces. In particular, to avoid the allocation of privacy
budget ε which results in much added noise, we leverage
the composition property of differential privacy [McSherry,
2009] and split Xt into non-overlapping subspaces X̂1:m

t =

{X̂1
t , X̂

2
t , ..., X̂

m
t }. We denote the dimension of X̂i

t by pit and
have

∑m
i=1 p

i
t = d. Then, we add Gaussian noise to the cor-

responding covariance matrices Ĉ1:m
t = {Ĉ1

t , Ĉ
2
t , ..., Ĉ

m
t }

of X̂1:m
t . Finally, we obtain m perturbed covariance matrices

C̃1:m
t = {C̃1

t , C̃
2
t , ..., C̃

m
t }.

Clearly, the choice of the dimension pit of each subspace
X̂i
t (i ∈ [m]) is a serious dilemma: a small pit leads to sig-

nificant information loss of the subspace X̂i
t , while a large pit

leads to poor utility of the perturbed covariance matrix C̃i
t.

To choose a proper dimension pit of each subspace, we first
define an criterion to measure the information loss of X̂i

t and
the utility of C̃i

t, then employ the forward selection strategy
[Caruana and Freitag, 1994] to determine the dimension pit of
each subspace by minimizing such criterion.

The criterion contains two types of errors: reconstruction
error and noise error. Specifically, we use the reconstruction
error [Farahat et al., 2013] to measure the information loss of
the subspace X̂i

t , and use the noise error to measure the utility
of the perturbed covariance matrix C̃i

t. The reconstruction
error R(X̂i

t) measures the sum of squared errors between the
original data Xt and the reconstructed data based on X̂i

t . In
particular, the reconstruction error is defined by: R(X̂i

t) =
||Xt−PX̂i

t
Xt||2F , where PX̂i

t
is an nt×nt projection matrix

that projects the columns of Xt onto the span of the subspace
X̂i
t of columns. The projection matrix PX̂i

t
can be calculated

as: PX̂i
t

= X̂i
t((X̂

i
t)
>X̂i

t)
−1(X̂i

t)
>. The upper error bound

of the perturbed covariance matrix C̃i
t measures the utility of

C̃i
t, which can be regarded as the noise error. In particular,

the noise error can be defined by: G(X̂i
t) =

pit

√
log(1/δ)

ntε
. As

a result, the criterion is formulated as follows:

arg min
∑m

i=1
||Xt −PX̂i

t
Xt||2F +

pit
√
log(1/δ)

ntε

s.t.
∑m

i=1
pit = d

0 < pit ≤ d,m ≥ 1.

(3)

To minimize criterion (3), we adopt the forward selection
strategy. Specifically, the forward selection strategy begins
with an empty set S , and adds features sampled from feature
set Ft one by one; meanwhile, deletes the sampled features
from Ft. Once the errors (i.e., the sum of reconstruction and
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noise errors) of current S are larger than the previous one,
the forward selection strategy stops the above process. The
size of S is the dimension of the generated subspace S>. To
determine the dimensions of all the subspaces, we repeat the
forward selection strategy until Ft is empty.

4.3 Positive Semi-definite Matrix Recovery
The positive semi-definiteness, which is a property of the co-
variance matrix Ct, may be destroyed by the RSE based co-
variance estimation. Clearly, destroying the positive semi-
definiteness will lead to poor performance of domain adap-
tation. To this end, we present a shrinking based method to
recover the positive semi-definiteness of the perturbed covari-
ance matrix C̃i

t (i ∈ [m]).
Shrinking is widely used in statistical estimation [Ledoit

and Wolf, 2004; Higham et al., 2016]. Given an indefinite
matrix Σ0, and a positive semi-definite (PSD) matrix Σ1,
shrinking is to seek the elementwise minimal change to Σ0

in the direction Σ1 - Σ0 by forming a convex linear com-
bination Ω(α) = αΣ1 + (1 − α)Σ0 of Σ0 and Σ1, where
α ∈ [0, 1] is the shrinking parameter. Based on the idea of
shrinking, our task is to seek the nearest PSD matrix to C̃i

t by
computing Ω(αi) = αiΣi

t + (1− αi)C̃i
t, and ensure that the

recovered covariance matrix Ω(αi) provide better utility than
the perturbed one C̃i

t.
To guarantee Ω(αi) is PSD, the key is to choose an optimal

shrinking parameter αi∗ to satisfy:

αi∗ = min{αi ∈ [0, 1] : f(αi) ≥ 0}. (4)

The function f is defined by f(αi) = λmin(Ω(αi)), where
λmin denotes the smallest eigenvalue of a matrix. f(αi) ≥ 0
is due to the fact that a matrix is PSD if and only if its
smallest eigenvalue is non-negative. Since f is concave and
continuous [Higham et al., 2016], and f(0) < 0, f(1) =
λmin(Ω(1)) = λmin(Σi

t), it follows that αi∗ is the unique
zero of f in (0, 1) if the matrix Σi

t is PSD. Therefore, we use
a bisection method to choose the optimal shrinking parame-
ter, which is to find a zero of function f on a given interval
(0, 1). Specifically, we first let αi` = 0 and αiγ = 1, then
repeatedly bisect the interval [αi`, α

i
γ ] and select the subin-

terval in which the function f changes sign. The process is
continued until the selected subinterval is sufficiently small.
The final bisection point is the optimal shrinking parameter
αi∗. Therefore the nearest PSD matrix to C̃i

t is Ω(αi∗). For
convenience, we denote Ω(αi∗) as Ci,+

t .
Moreover, to ensure that the utility of the recovered co-

variance matrix Ω(αi) is better than C̃i
t, we should choose

the PSD matrix Σi
t which satisfies ||Σi

t||F < ||C̃i
t||F . Since

correlation alignment performs domain adaptation by mini-
mizing the distance in the Frobenius norm between the co-
variance matrices of the source and target domains, the dis-
tance in the Frobenius norm between the recovered PSD ma-
trix Ci,+

t and the real covariance matrix Ci
t determines the

utility of Ci,+
t . From Theorem 2, we can see ||Σi

t||F used
in the procedure of the PSD matrix recovery guarantees the
distance between Ci,+

t and Ci
t less than the distance between

C̃i
t and Ci

t, which ensures the recovered covariance matrix
Ci,+
t provides better utility than the perturbed matrix C̃i

t.

Theorem 2. Let Z denote the noise matrix introduced by the
RSE based Covariance Estimation. For any αi ∈ (0, 1),
||Ci,+

t − Ci
t||2F < ||C̃i

t − Ci
t||2F , if Σi

t satisfies ||Σi
t||F <

||C̃i
t||F .

Proof. If ||Σi
t||F < ||C̃i

t||F , we get

||Σi
t||F < ||C̃i

t||F ≤ ||C̃i
t||F −

1

αi
||Z||F +

1

αi
||Z||F

⇔ ||Σi
t||F < ||C̃i

t −
Z

αi
||F +

1

αi
||Z||F (5)

⇔ αi||Σi
t||F − αi||C̃i

t −
Z

αi
||F − ||Z||F < 0

⇔ ||αiΣi
t − αiC̃i

t + Z||F − ||Z||F < 0 (6)

where (5) and (6) follow from the triangle inequality of the
Frobenius norm.

It is clear that ||Ci,+
t −Ci

t||2F − ||C̃i
t−Ci

t||2F = (||Ci,+
t −

Ci
t||F +||C̃i

t−Ci
t||F )(||Ci,+

t −Ci
t||F −||C̃i

t−Ci
t||F ), where

||Ci,+
t −Ci

t||F +||C̃i
t−Ci

t||F > 0 follows from the definition
of the Frobenius norm. Thus, to guarantee ||Ci,+

t −Ci
t||2F <

||C̃i
t − Ci

t||2F , we need to ensure ||Ci,+
t − Ci

t||F − ||C̃i
t −

Ci
t||F < 0. Since Ci,+

t = αiΣi
t + (1− αi)C̃i

t, we have

||Ci,+
t −Ci

t||F − ||C̃i
t −Ci

t||F
= ||αiΣi

t + (1− αi)C̃i
t −Ci

t||F − ||C̃i
t −Ci

t||F
= ||αiΣi

t − αiC̃i
t + Z||F − ||Z||F

Based on (6), to ensure ||Ci,+
t −Ci

t||F−||C̃i
t−Ci

t||F < 0, we
require ||Σi

t||F < ||C̃i
t||F , which completes the proof.

4.4 Model Training
After the PSD matrix recovery phase, the source domain first
generates m subspaces X̂1:m

s = {X̂1
s , X̂

2
s , ..., X̂

m
s }

by exploiting the results of the forward selection
strategy, and then performs correlation alignment on
each subspace to get m transformed source subspaces
{(X̂1

sH
1, Ys), (X̂

2
sH

2, Ys), ..., (X̂
m
s Hm, Ys)}. According to

[Jiang et al., 2013], the models trained on the transformed
source subspaces may leak sensitive information of the
source data. To obtain m private models trained on m
transformed source subspaces, we use the differentially
private mechanism proposed in [Abadi et al., 2016] to
perturb gradients using Gaussian noise during the stochastic
gradient descent and use the moments accountant theorem
[Abadi et al., 2016] to get a tight bound on the total privacy
budget. Specifically, at each iteration, one forms a batch b of
(X̂i

sH
i, Ys), and clips the gradient g in L2 norm by dividing

it by max(1, ||g||2c ). This ensures that the L2 sensitivity of g
is bounded by c. Then one computes the perturbed gradient
g̃ = 1/|b|

∑
x∈b g + N(0, σ2c2Id) using the Gaussian

mechanism with variance σ2. Finally, we obtain m private
models W = {wi}mi=1.
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4.5 Privacy Analysis
Theorem 3. PRIMA achieves (ε, δ)-DP for the source and
target data respectively, for any ε, δ > 0 and σ ≥√

2 log(1.25/δ)/ε.

Proof. For the target domain, applying Gaussian mechanism
to the covariance matrix Ĉi

t (i ∈ [m]) can satisfy (ε, δ)-DP.
Since the perturbed covariance matrices C̃1:m

t are estimated
on m disjoint subspaces, the parallel composition property
of DP [McSherry, 2009] ensures that the RSE based covari-
ance estimation phase satisfies (ε, δ)-DP. The positive semi-
definite matrix recovery phase depends only on the perturbed
covariance matrix C̃i

t, which also satisfies (ε, δ)-DP by the
post-processing property of DP [Dwork et al., 2006b]. In
summary, PRIMA achieves (ε, δ)-DP for the target data.

For the source domain, when training each model, we per-
turb gradients in each iteration, and use the moments accoun-
tant theorem [Abadi et al., 2016] to keep track of the privacy
parameters ε, δ. According to [Abadi et al., 2016] and Theo-
rem 2, the process of training the modelwi satisfies (ε, δ)-DP.
Similarly, the parallel composition property ensures that the
model training phase satisfies (ε, δ)-DP. In summary, PRIMA
achieves (ε, δ)-DP for the source data.

5 Experiments
5.1 Benchmark Datasets
We evaluate our approach on two popular domain adaptation
benchmark datasets. The first one is Office-Caltech10 dataset
[Gong et al., 2012], which contains 10 object categories from
an office environment (e.g., keyboard, laptop, etc.) in 4
sources: Webcam (W), DSLR (D), Amazon (A), and Cal-
tech256 (C) with 958, 295, 157 and 1,123 image samples re-
spectively. We follow [LeTien et al., 2019] to encode each
source into 4096-dimensional feature vectors. Using each
source as a domain, we get four domains leading to 12 do-
main adaptation tasks: A→D (train on A, test on D, the same
below), A→C, and so on. The second one is Amazon review
dataset [Blitzer et al., 2006], which contains Amazon reviews
on 4 domains, namely Book (BK), DVD (DV), Kitchen (KT)
and Electronics (EL). There are 1000 positive and 1000 neg-
ative reviews on each domain. We follow [Wang et al., 2020]
to encode every review into a 5,000-dimensional feature vec-
tor by using the bag-of-word method, and perform domain
adaptation under 4 pairs of source and target domains: KT→
DV, DV→BK, BK→ EL, EL→KT. For data preprocessing,
we normalize each feature into the interval [0, 1].

5.2 Experimental Setup
We showcase the application of our approach in LR and DNN
classifiers. For LR, since the Office-Caltech10 dataset is mul-
ticlass classification, we need to construct multiple binary
models (one for each class), and split the privacy budget
across sub-models. We use the simplest composition prop-
erty [McSherry, 2009], and divide the privacy budget evenly.
For DNN, we follow the standard of [LeTien et al., 2019] that
all methods are written with the same model architecture (a
3-layer neural network) for fair comparison.

There are 5 prime parameters in PRIMA. Among them, ε,
δ, σ are privacy parameters, batch size b, clipping bound c
are model training parameters. We follow the experimental
protocol used in [Abadi et al., 2016] by setting σ = 4, δ =
10−5, and compute the value of ε as a function of the training
epochs E. We follow the experimental protocol of [Abadi et
al., 2016] again by setting c as the median of the unclipped
gradients over the course of training. Empirically, batch size
b is set to 25. For both datasets, our experiments are repeated
for 20 times, and average accuracy is presented.

5.3 Experimental Results
Performance of Our Approach
In this part, we compare our approach PRIMA against two
privacy-preserving domain adaptation approaches: DPDA
[LeTien et al., 2019], GDPDA [Wang et al., 2020], as well as
four non-private domain adaptation methods CORAL [Sun
et al., 2016], SA [Fernando et al., 2013], OTDA [Courty et
al., 2016] and DANN [Ganin et al., 2016]. The private ap-
proaches DPDA and GDPDA are implemented based on the
non-private methods OTDA and DANN respectively. We do
not compare with DPDA-Target which is also proposed by
[Wang et al., 2020], as it can only protect the privacy of
the target data. Besides, since the covariance matrix used
in PRIMA is widely used as a fundamental ingredient for
subspace based domain adaptation [Fernando et al., 2013;
Cui et al., 2014], PRIMA can be extended to subspace based
domain adaptation. Therefore, we show the results on one
PRIMA variant, which has the same settings as PRIMA, ex-
cept that it replaces CORAL by SA [Fernando et al., 2013].
We denote such variant as PRISA.

Tables 1, 2, 3 and 4 show results on both datasets with
ε = 2. Figure 2 gives the results of varying privacy budget ε
on pair C→ A. As can be seen, PRIMA and PRISA achieve
better performance than the competitors DPDA and GDPDA
in almost all cases. Specifically, when fixing ε = 2, the accu-
racy of PRIMA and PRISA drop around 1% over non-private
methods while DPDA and GDPDA drop by 3% − 5% over
non-private methods. This is because, compared with DPDA
and GDPDA, PRIMA and PRISA can guarantee the source
and target domains have much closer distributions by im-
proving the utility of the perturbed covariance matrix. From
Figure 2, we can observe that PRIMA and PRISA achieve
competitive accuracies on a wide range of values for ε. By
contrast, DPDA and GDPDA show an unstable behavior. For
example, when ε varies from 4 to 1, the accuracy drops from
0.90 to 0.79 for the LR classifier of DPDA.

Ablation Study
In order to analyze the effects of the RSE based covariance
estimation and PSD matrix recovery methods, the following
methods are compared: 1) Basic, which first perturbs the co-
variance matrix of the target domain, and then perturbs the
gradients during model training; 2) RSE+Basic, which uses
RSE to split the source and target feature spaces into several
subspaces respectively, then applies the Basic method to each
subspace; 3) RSE+Basic+FS, which applies the forward se-
lection strategy to RSE+Basic; 4) Basic+Shrinking, which
applies the shrinking based PSD matrix recovery method to
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Method A→ C A→ D A→W C→ A C→ D C→W D→ A D→ C D→W W→ A W→ C W→ D AVG

OTDA 85.4 85.1 83.2 92.3 87.5 84.3 92.1 84.2 95.9 90.5 81.7 96.3 88.2
SA 85.1 85.9 81.8 93.2 87.9 85.1 93.4 86.5 97.6 88.1 80.4 98.7 88.6

CORAL 86.2 87.2 83.5 94.7 90.4 87.8 94.7 88.3 98.3 89.6 83.8 99.8 90.4
DPDA 80.7 81.3 78.1 87.4 84.0 81.2 88.0 81.7 92.1 87.3 77.8 93.2 84.4
PRISA 83.7 84.3 80.4 91.7 85.3 84.3 91.8 84.9 96.1 87.2 78.9 97.9 87.2

PRIMA 85.6 85.4 82.7 92.8 87.6 87.0 93.2 86.1 97.6 88.3 81.9 98.7 88.9

Table 1: Accuracy (%) on Office-Caltech10 dataset for LR

Method A→ C A→ D A→W C→ A C→ D C→W D→ A D→ C D→W W→ A W→ C W→ D AVG

DANN 87.9 82.5 77.8 93.3 91.2 89.6 84.7 82.1 98.9 82.9 81.3 99.8 87.7
OTDA 88.3 93.1 94.9 92.5 92.5 94.1 92.5 87.0 98.7 93.2 87.6 98.7 92.7

SA 88.5 92.9 93.4 92.9 93.8 93.7 91.1 88.2 98.1 93.5 89.2 99.8 92.9
CORAL 89.2 94.1 94.3 93.0 94.5 93.2 92.1 90.7 98.9 94.4 89.6 99.8 93.7
GDPDA 82.5 79.1 74.2 90.2 87.9 86.7 81.8 78.9 95.3 78.2 77.2 96.1 84.0

DPDA 84.1 90.3 91.8 89.3 88.7 91.8 87.6 79.1 93.9 90.0 83.5 94.2 88.6
PRISA 86.9 91.8 92.1 91.5 92.6 91.9 89.7 86.8 97.3 91.8 87.5 98.4 91.5

PRIMA 87.6 93.2 93.7 92.1 92.3 91.4 91.6 88.1 97.6 92.5 87.9 98.1 92.2

Table 2: Accuracy (%) on Office-Caltech10 dataset for DNN

Method KT→ DV DV→ BK BK→ EL EL→ KT AVG

OTDA 75.3 72.1 73.8 78.1 74.8
SA 78.4 74.7 75.6 79.3 77.0

CORAL 73.9 78.3 76.3 83.6 78.0
DPDA 72.5 69.9 71.4 75.2 72.3
PRISA 76.8 73.6 74.9 78.4 75.9

PRIMA 72.1 76.9 75.6 82.8 76.8

Table 3: Accuracy (%) on Amazon review dataset for LR

Method KT→ DV DV→ BK BK→ EL EL→ KT AVG

DANN 72.1 75.3 74.5 83.8 76.4
OTDA 76.4 75.2 78.8 81.2 77.9

SA 80.4 79.6 78.5 82.3 80.2
CORAL 76.9 81.3 81.7 87.4 81.8
GDPDA 68.3 72.2 70.1 79.6 72.5

DPDA 75.5 74.1 77.3 80.3 76.8
PRISA 79.8 79.0 77.8 81.7 79.5

PRIMA 76.1 80.4 80.9 86.6 81.0

Table 4: Accuracy (%) on Amazon review dataset for DNN

Basic. We compare PRIMA with these four methods by per-
forming LR on pair C→ A.

Figures 3(a) and 3(b) give the results of varying pri-
vacy budget ε. From the results, we observe that: 1)
RSE+Basic achieves a higher accuracy than Basic, which in-
dicates that the RSE based covariance estimation can signif-
icantly improve the utility of the perturbed covariance ma-
trix by decreasing dimension; 2) RSE+Basic+FS outperforms
RSE+Basic, from which we can conclude that the forward
selection strategy can effectively generate subspaces; 3) Ba-
sic+Shrinking achieves better performance comparing with
Basic, which shows that the PSD matrix recovery method can
further improve the utility of the perturbed covariance matrix.

6 Conclusion
In this paper, we propose the first differentially private ap-
proach for correlation alignment based domain adaptation.
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Figure 2: Accuracy (%) on pair C → A with differential ε
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Figure 3: Ablation study results on pair C → A

We show that our approach guarantees (ε, δ)-differential pri-
vacy. Experimental results on real world data demonstrate the
superiority of our approach.
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