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Abstract
Information abstraction is one of the methods for
tackling large extensive-form games (EFGs). Re-
moving some information available to players re-
duces the memory required for computing and
storing strategies. We present novel domain-
independent abstraction methods for creating very
coarse abstractions of EFGs that still compute
strategies that are (near) optimal in the original
game. First, the methods start with an arbitrary ab-
straction of the original game (domain-specific or
the coarsest possible). Next, they iteratively de-
tect which information is required in the abstract
game so that a (near) optimal strategy in the orig-
inal game can be found and include this informa-
tion into the abstract game. Moreover, the meth-
ods are able to exploit imperfect-recall abstractions
where players can even forget the history of their
own actions. We present two algorithms that fol-
low these steps – FPIRA, based on fictitious play,
and CFR+IRA, based on counterfactual regret min-
imization. The experimental evaluation confirms
that our methods can closely approximate Nash
equilibrium of large games using abstraction with
only 0.9% of information sets of the original game.

1 Introduction
Dynamic games with a finite number of moves can be mod-
eled as extensive-form games (EFGs) – a game model capa-
ble of describing scenarios with stochastic events and imper-
fect information. EFGs can model recreational games (e.g.,
poker) as well as real-world situations in physical security,
auctions, or medicine. EFGs are game trees, where nodes
correspond to states of the game and edges to the actions of
players. Imperfect information of players is represented by
grouping indistinguishable states of a player into information
sets, which form the decision points of the players.

The size of the extensive-form representation of games
grows exponentially with the number of moves the players
∗This paper is an extended abstract of an article published in Ar-

tificial Intelligence [Čermák et al., 2020]
†Contact Author

can play in a sequence (i.e., the horizon of the game). There-
fore, models of many practical problems are very large. For
example, the smallest version of poker played by people in-
cludes over 1014 information sets [Bowling et al., 2015]. The
memory required to store the strategy (a probability distribu-
tion over actions in each information set) is often a severe
limitation in computing strategies in these models. There are
two main approaches that tackle this issue: online computa-
tion and the use of abstractions.

Online strategy computation avoids computing the com-
plete strategy explicitly before playing the game. Instead,
the strategy is computed while playing the game and only
for the situations encountered by the player. Recent on-
line game playing algorithms provide performance guaran-
tees [Moravčı́k et al., 2017; Lisý et al., 2015] and strong prac-
tical performance [Moravčı́k et al., 2017; Brown and Sand-
holm, 2017], but they also have severe limitations. First of all,
these algorithms require a substantial computational effort to
make each decision. This is prohibitive in many applications,
mainly in robotics and on embedded devices. Furthermore,
the most successful methods exploit the specific structure of
poker where all actions of the players are fully observable and
the amount of hidden information is restricted. Showing in
what way these algorithms can be generalized to games with-
out these simplifying properties remains an open problem.

Abstraction methodology solves a smaller abstract game,
which is a simplification of the large original game. An ab-
straction may consider distinct, but similar, to be the same
or assume the players use only a subset of actions. The so-
lution of the simplified game is then used for playing the
original game. This methodology was, for a long time, in
the center of attention of the computational poker commu-
nity [Gilpin and Sandholm, 2007; Kroer and Sandholm, 2014;
Brown and Sandholm, 2017] and even led to the first com-
puter program that outperformed professional poker play-
ers in the smallest variant of the game played by people
[Rehmeyer et al., 2008]. However, if the original game is too
large to be processed even with algorithms linear in the num-
ber of the nodes in the game tree, it is very hard to provide
any guarantees on the performance of the strategy computed
using abstractions. In many (e.g., security) applications, it is
desirable to have worst-case guarantees on the performance
of the computed strategy. Therefore, we focus on solving
games where it is feasible to traverse all nodes in the game
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tree, but we still want to minimize the memory required to
store the computed strategy.

Having equilibrium solving algorithms with small memory
requirements is practical for several reasons. First, it allows
for solving larger games with more commonly available hard-
ware. Second, a small computed strategy is much more prac-
tical in applications. Besides being easier to store and transfer
over a network, it is also faster to query during the gameplay.
Third, a small strategy is easier to use in portfolio-based ap-
proaches, where we want to store multiple different strategies
for a game in order to play better [Brown et al., 2018] or ex-
ploit suboptimal opponents [Bard et al., 2013].

The problem of reducing the amount of memory required
for computing a strategy was addressed by several recent al-
gorithms since the size of required memory is an important
bottleneck for scaling up the computation [Bowling et al.,
2015]. CFR-BR [Johanson et al., 2012] allows computing
a strategy in one-quarter of the memory required by CFR by
replacing the updates of one of the players by a best response
computation. CFR-D [Burch et al., 2014] allows for using a
quadratic computation time to compute a strategy close to the
beginning of the game, as a trade-off for requiring only in the
order of square root of the storage space. DOEFG [Bošanský
et al., 2014] initially stores data only about a small part of the
game in which players can use only small subsets of their ac-
tions. This restricted game is iteratively expanded with new
actions, which can improve players’ expected utility until the
equilibrium is provably found. All these algorithms assume
it is possible to traverse the whole game tree for at least one
of the players.

1.1 Contribution
In our paper [Čermák et al., 2020], we propose algo-
rithms that reduce the memory required for computing and
representing a (near) optimal strategy for a game using
automatically-constructed imperfect-recall abstractions cre-
ated by domain-independent algorithms. The abstraction con-
siders distinct situations in the game to be equivalent.

Domain independent. Most existing methods for automat-
ically constructing abstractions in extensive-form games were
designed primarily for poker. They explicitly work with con-
cepts like cards and rounds of the game [Shi and Littman,
2000; Billings et al., 2003], or at least assume that the actions
are publicly observable [Brown and Sandholm, 2015] and or-
dered [Gilpin et al., 2007]. This is not true in many other
domains (e.g., in security). The algorithms proposed in this
paper are completely domain-independent and applicable to
any extensive-form game.

Imperfect recall. Computationally efficient algorithms
for computing (near) optimal strategies in extensive-form
games [von Stengel, 1996; Zinkevich et al., 2007; Hoda
et al., 2010] require players to remember all the informa-
tion gained during the game – a property denoted as per-
fect recall. Therefore, the automated abstraction methods de-
signed to be used with these algorithms [Gilpin et al., 2007;
Brown and Sandholm, 2015] must construct perfect-recall ab-
stractions to provide performance guarantees. Requiring per-
fect recall has, however, a significant disadvantage – the num-

ber of decision points and hence both the memory required
during the computation and the memory required to store the
resulting strategy grows exponentially with the number of
moves. To achieve additional memory savings, the assump-
tion of perfect recall may need to be violated in the abstract
game resulting in imperfect recall. Using imperfect recall
abstractions can bring exponential savings in memory and
these abstractions are particularly useful in games in which
exact knowledge about the past is not required for playing
optimally. While it may be easy to identify specific exam-
ples of imperfect recall abstractions for some games, it is
unknown how to systematically and algorithmically identify
which information is required for solving the original game
and which can be removed. For example, it is usually impor-
tant to estimate the opponent’s cards in imperfect information
card games. While past events generally reveal some infor-
mation, it is not clear which exact event is relevant or not.

The only method for automatically constructing imperfect-
recall abstractions with qualitative bounds is presented in
[Kroer and Sandholm, 2016]. It considers only a very re-
stricted class of imperfect-recall abstractions. The informa-
tion sets can be merged only if they satisfy strict properties
on the history of actions and there is a mapping between the
applicable actions in these information sets such that future
courses of the game and possible rewards are similar. In our
work, we take a different approach and instead of constrain-
ing which information sets can be merged, we design algo-
rithms that start with a very coarse abstraction and refine in-
formation sets where necessary. Our approach does not re-
quire any specific structure of the abstract game or refined in-
formation sets. We introduce two domain-independent algo-
rithms that, starting from an arbitrary imperfect recall abstrac-
tion of the original two-player zero-sum perfect recall EFG,
simultaneously solve the abstract game, detect the missing
information causing problems, and refine the abstraction to
include this information. This process is repeated until prov-
able convergence to the desired approximation of the Nash
equilibrium of the original game.

2 Proposed Algorithms
Our algorithms can be initialized by an arbitrary abstrac-
tion since the choice of the initial abstraction does not affect
their convergence guarantees. Hence, for example, in poker,
we can use the existing state-of-the-art abstractions used by
the top poker bots. Even though these abstractions have no
guarantees that they allow solving the original poker to op-
timality, our algorithms will further refine these abstractions
where necessary and provide the desired approximation of the
Nash equilibrium in the original game. If there is no suit-
able abstraction available for the solved game, the algorithms
can start with a simple coarse imperfect recall abstraction
(we provide a domain-independent algorithm for construct-
ing such abstraction) and again update the abstraction until it
allows approximation of the Nash equilibrium of the original
game to the desired precision.

The first algorithm is Fictitious Play for Imperfect Recall
Abstractions (FPIRA)1 that is based on Fictitious Play (FP).

1An earlier version of FPIRA appeared in [Čermák et al., 2017].
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In each iteration, it computes a best response to the oppo-
nent’s average strategy in the original perfect recall game.
Since it is a pure behavioral strategy stored only in the reach-
able parts of the game, its size is usually small. If the pure
strategy cannot be represented in the current abstraction of
the original game, the abstraction is refined. For example,
that happens when two different actions are supposed to be
played in the same abstract information set. Furthermore, we
need to detect whether adding this pure strategy to the av-
erage of the strategies played by the player in past iterations
can be represented in the current abstraction. We base this de-
tection on the difference between the quality of the strategies
expected from computing the average directly on the original
two-player zero-sum EFG with perfect recall and the result
obtained from applying it to the abstraction. Finally, we for-
mally prove that the guarantee of convergence of FP to the
Nash equilibrium of the original two-player zero-sum EFG
with perfect recall directly translates to the guarantee of con-
vergence of FPIRA.

The second algorithm is CFR+ for Imperfect Recall Ab-
stractions (CFR+IRA) where FP is replaced by the CFR+
algorithm [Tammelin, 2014] that is known to have a signif-
icantly faster empirical convergence to a Nash equilibrium.
To update the abstraction, we compare the expected theo-
retical speed of convergence of CFR+ in the original game
and the convergence achieved in the abstraction. The algo-
rithm solves the game using CFR+, traversing the whole un-
abstracted game tree in each iteration. All regrets and average
strategies computed as a part of CFR+ are stored in the infor-
mation set structure of the abstraction. There are two proce-
dures for updating the abstraction. (1) First, the abstraction
is updated to guarantee the convergence of the algorithm to
the Nash equilibrium. As a part of this abstraction update,
CFR+IRA samples a subset of kb unabstracted information
sets of the original game. It checks the immediate regret in
these monitored information sets for a well-chosen number
of iterations before sampling a new subset. If the immedi-
ate regret in any of the monitored information sets decreases
slower than guaranteed by the no-regret algorithm used for
CFR+, we know that the abstraction is too coarse and needs to
be refined, so that the monitored information set is detached
from its abstract information set. (2) Second, the abstraction
is updated using a heuristic update, which significantly im-
proves the empirical convergence of the algorithm and does
not break the convergence guarantees. In each CFR+ update,
the heuristic samples a subset of kh unabstracted information
sets that belong to the same abstract information sets. If the
actions with the highest regrets are different for different un-
abstracted information in the same abstracted information set,
the abstraction is refined. We provide a bound on the average
external regret of CFR+IRA and hence show that CFR+IRA
is guaranteed to converge to a Nash equilibrium of the origi-
nal two-player zero-sum EFG with perfect recall.

Both algorithms are conceptually similar to the Double Or-
acle algorithm (DOEFG, [Bošanský et al., 2014]) since they

We provide an improved version that can use a significantly smaller
initial abstraction. Additionally, we significantly extend the experi-
mental evaluation of the algorithm.

create a smaller version of the original game and repeatedly
refine it until the desired approximation of the Nash equilib-
rium of the original game is found. Our algorithms, however,
use imperfect recall information abstractions during the com-
putation, while DOEFG uses a restricted perfect recall game,
where the players are allowed to play only a subset of their
actions. Hence, the algorithms introduced in this article ex-
ploit a completely different type of sparseness than DOEFG.

3 Experiments
In the experimental evaluation, we compare the memory re-
quirements and runtime of CFR+IRA, FPIRA, CFR+, and
DOEFG. For CFR+IRA, we denote by BxHyCFR+IRA the
version with kb = x and kh = y. We present the
evaluation on various domains: graph pursuit-evasion game
parametrized by the allowed number of moves (GPx), imper-
fect information version of Goofspiel with x cards per player
(GSx), and poker variants with varying the number of bets
b, raise sizes r, and consecutive raises allowed c (Pbrc). We
demonstrate that CFR+IRA requires at least an order of mag-
nitude less memory than DOEFG and FPIRA to solve a di-
verse set of domains. Hence it is the most suitable algorithm
for (approximately) solving games with limiting memory re-
quirements. We show that even if CFR+IRA is initialized
with a trivial automatically built abstraction, it requires build-
ing information abstractions with as few as 0.9% of informa-
tion sets of the original game to find a good approximation
of the Nash equilibrium of the original game. Moreover, the
results suggest that the relative size of the abstraction built by
CFR+IRA will further decrease as the size of the solved game
increases. From the runtime perspective, we demonstrate that
the CFR+IRA may converge similarly fast to CFR+ applied
directly to the original game.

In Figure 1 we present the results showing the abstrac-
tion size for GP6, GS6 and P224. We depict the results for
CFR+IRA as averages with the standard error over 5 runs
with different seeds (the standard error is too small to be
visible). The CFR+IRA is capable of solving the games us-
ing abstractions with significantly fewer information sets than
the rest of the algorithms. For exploitability of the result-
ing strategies 0.05, the B100H900CFR+IRA uses on aver-
age 2.0%, 2.4%, 0.9% of information sets of GP6, GS6 and
P224, while DOEFG uses 13.3%, 12.0%, 4.0%. A slow run-
time prevented FPIRA from convergence to strategies with
exploitability below 0.05 in the given time. The experiments
presented in the full paper show that it converges in smaller
games. In case of GP6, GS6 and P224, kh + kb = 100 cor-
responds to storing regrets required for the abstraction update
only in 0.09%, 0.06%, 0.03% of information sets of the whole
game respectively.

The plots in Figure 2 show the runtime comparison in sec-
onds. These plots further confirm the runtime dominance
of CFR+IRA over FPIRA. The high runtime of FPIRA is
the cause for omitting the results of FPIRA for smaller ex-
ploitabilities of the resulting strategies, as the time required
to compute them becomes prohibitive. Furthermore, the re-
sults show that the runtime is worse for CFR+IRA where
kb + kh = 100 compared to the case with kb + kh = 1000.
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Total IS count B10H90CFR+IRA B100H900CFR+IRA FPIRA DOEFG

Figure 1: The plots depicting the number of information sets (log y-axis) used by algorithms to compute strategies with the sum of their
exploitabilities depicted on the log x-axis for GP6, GS6 and P224.

B10H90CFR+IRA B100H900CFR+IRA FPIRA CFR+

Figure 2: The plots showing runtime of FPIRA and CFR+IRA in seconds (log y-axis) required to reach the given sum of exploitabilities of
resulting strategies of player 1 and 2 (log x-axis) for GP6, GS6 and P224 respectivelly.

Additionally, there is a more profound difference between
the CFR+IRA runtime and the runtime of CFR+. Both ob-
servations are expected since using kh + kb = 100 and
kh+kb = 1000 means that the algorithm uses less than 0.1%
and 1% of information sets for the abstraction update in all
3 domains. Hence it takes longer to refine the abstraction to
allow strategies with a smaller exploitability.

4 Conclusions
The imperfect recall abstraction methodology can signifi-
cantly reduce the memory required to solve large extensive-
form games and the size of the final solution. However, solv-
ing the resulting imperfect recall abstract games is a computa-
tionally hard problem and the standard algorithms for solving
extensive-form games are not applicable or lose their con-
vergence guarantees. Hence, there is only a limited amount
of work that focuses on using imperfect recall abstractions.
Previous works use either very restrictive subclasses of im-
perfect recall abstractions, heuristic approaches, or use com-
putationally complex algorithms to solve the imperfect recall
abstracted game.

In our full article [Čermák et al., 2020], we propose a
novel approach to imperfect recall information abstraction,
which does not require any specific structure of the imper-
fect recall abstraction of a game nor does it use computa-

tionally complex algorithms to solve it. We introduce two
domain-independent algorithms FPIRA and CFR+IRA which
can start with an arbitrary imperfect recall abstraction of
the solved two-player zero-sum perfect recall extensive-form
game. The algorithms simultaneously solve the abstracted
game, detect the missing information causing problems and
refine the abstraction to include it. This process is repeated
until provable convergence to the desired approximation of
the Nash equilibrium of the original game.

The experimental evaluation shows that CFR+IRA requires
at least an order of magnitude less memory than FPIRA
and the Double Oracle algorithm (DOEFG, [Bošanský et al.,
2014]) to solve given domains. Even when using trivial auto-
matically build initial imperfect recall abstraction, CFR+IRA
is capable of closely approximating Nash equilibrium of large
extensive-form games using abstraction with as little as 0.9%
of information sets of the original game. Furthermore, the re-
sults suggest that the relative size of the abstraction used by
CFR+IRA will further decrease as the size of the solved game
increases.
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Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard,
Trevor Davis, Kevin Waugh, Michael Johanson, and
Michael Bowling. Deepstack: Expert-level artificial in-
telligence in heads-up no-limit poker. Science, 2017.

[Rehmeyer et al., 2008] Julie Rehmeyer, Nathan Fox, and
Renzi Rico. Ante up, human: The adventures of polaris
the poker-playing robot. Wired, 16.12:186–191, Decem-
ber 2008.

[Shi and Littman, 2000] Jiefu Shi and Michael L Littman.
Abstraction methods for game theoretic poker. Comput-
ers and Games, 2063:333–345, 2000.

[Tammelin, 2014] Oskari Tammelin. Cfr+. CoRR,
abs/1407.5042, 2014.

[von Stengel, 1996] Bernhard von Stengel. Efficient Com-
putation of Behavior Strategies. Games and Economic Be-
havior, 14:220–246, 1996.

[Zinkevich et al., 2007] Martin Zinkevich, Michael Johan-
son, Michael H Bowling, and Carmelo Piccione. Re-
gret minimization in games with incomplete information.
In Advances in Neural Information Processing Systems,
pages 1729–1736, 2007.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5034


	Introduction
	Contribution

	Proposed Algorithms
	Experiments
	Conclusions

