
Abstract 
Learning higher-level representations from data has 
been on the agenda of AI research for several dec-
ades. In the paper, I will survey various approaches 
to learning symbolic higher-level representations: 
feature construction and constructive induction, 
predicate invention, propositionalization, pattern 
mining, and mining time series patterns. Finally, I 
will give an outlook on how approaches to learning 
higher-level representations, symbolic and neural, 
can benefit from each other to solve current issues 
in machine learning.  

1 Introduction 
While the ability to construct complex high-level features 
from low-level features is widely acknowledged for deep 
(and also shallow) neural networks, learning symbolic high-
er-level representations1 has not been much in the focus of 
attention recently. However, learning symbolic higher-level 
representations has been studied as well, in various forms, at 
least from the second half of the 1980s up until today. The 
reason for both efforts, neural and symbolic, is the belief 
that learning higher-level representations and in fact, hierar-
chies of abstractions, is crucial for developing intelligent 
systems. In this paper, I will focus on symbolic higher-level 
representations and give an overview and discussion of dif-
ferent approaches along those lines: feature construction and 
constructive induction (from features to features, see Sec-
tion 2), predicate invention (from predicates to predicates, 
see Section 3), propositionalization (from predicates to fea-
tures, see Section 4), pattern mining (from data to patterns, 
see Section 5), and time series patterns and shapelets (from 
time series to time series patterns/shapelets, see Section 6). 
These approaches are presented side by side in this paper 
and discussed in one systematic scheme: I will start with the 
                                                 
1 We could have used “learning symbolic representations from 
data” instead of “learning symbolic higher-level representations”, 
but we wanted to stress the goal of ultimately having layered, hier-
archical representations, which is currently only achieved for new 
predicates [Muggleton et al., 2018] and sequences [Wang et al., 
2018]. In any case, it is not the intention to discuss higher-order 
representations in the sense of logics or functional programming. 

definition of the terms, the purpose, the (expected) benefits, 
and the promise of that family of methods. Next, I will pre-
sent a short classification and scheme of the different meth-
ods within that family of methods. Third, I will list a few 
example methods from that category. Fourth, I will discuss 
open problems (and problems that may remain open), a cur-
rent view, and (potentially) current research in that area. 
Each section will be concluded by a few pointers to imple-
mentations. The list of methods and approaches is by no 
means comprehensive. Many are left out for brevity and in 
the interest of discussing all these families of methods in 
one paper. In Section 7, an outlook on future work on the 
basis of this part of the literature is given. 

2 Feature Construction and Constructive In-
duction 

Definition, purpose, benefits, and promise. Methods for 
constructive induction automatically perform a representa-
tion change of the input data for a given learning task. In the 
context of propositional learning, constructive induction is 
achieved by feature construction, the construction of new 
features from existing features, often by logical connectives 
or arithmetic operators. The goal is to overcome representa-
tional shortcomings, to find more compact and more accu-
rate hypotheses or models.  
 
Classification and scheme. According to [Matheus & Ren-
dell, 1989], methods for constructive induction (i) need to 
detect whether a change of representation is necessary (de-
tection), (ii) need to select new features for inclusion in the 
new representation (selection), (iii) optionally generalize 
feature definitions (generalization), and (iv) potentially have 
to decide whether to discard features along the way (evalua-
tion).  
   Detection is necessary, because the construction of irrele-
vant features affects learning similar to noise in the data 
[Wnek & Michalski, 1992]. Moreover, the complexity of the 
definitions has to be added to the complexity of the hypoth-
eses. Since the set of features that can be constructed is po-
tentially very large and its detailed evaluation is intractable 
in general, only a small subset can be included in the repre-
sentation. In the propositional case, selection in constructive 
induction corresponds to the well-known problem of feature  

A Brief History of Learning Symbolic Higher-Level Representations from Data 
 

(And a Curious Look Forward) 
 
 

Stefan Kramer 
Johannes Gutenberg University Mainz, Germany 

kramer@informatik.uni-mainz.de 
 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4868



 
Figure 1: Feature construction in FRINGE [Pagallo & Haussler, 
1990] (upper row) and DCFringe [Yang et al., 1991] (lower 
row) based on recurring patterns near the fringe of a decision tree 
 
selection. Generalization may be necessary if a new term is 
too specific to be useful, but is part of only few approaches. 
Evaluation is necessary if a feature turns out to be less use-
ful than expected in the process downstream. 
   [Wnek & Michalski, 1992] introduced a taxonomy of con-
structive induction systems according to the source of in-
formation that is used by the constructive induction opera-
tors. So the main distinction is different from the one in 
Matheus’ framework, which is based on aspects like detec-
tion and selection: 
 
• Data-driven constructive induction (DCI): DCI analyzes 

the training examples in order to perform constructive 
induction. Specifically, new descriptors are found by 
the search for correlations and dependencies among ex-
amples, attributes, and concepts. 

• Hypothesis-driven constructive induction (HCI): HCI 
refers to methods that transform representation spaces 
by analyzing learned hypotheses. Methods for hypothe-
sis-driven constructive induction typically construct 
new features in iterations, where each iteration involves 
a learning step and a step which constructs new features 
based on the hypotheses from the learning step. 

• Knowledge-driven constructive induction (KCI): These 
systems use expert-provided domain knowledge to con-
struct new features. Further, representation changes can 
be validated by domain experts. 

• Multi-strategy constructive induction (MCI): MCI sys-
tems combine different approaches to the transfor-
mation of feature spaces. 
 

Example methods. Two early and notable example are 
FRINGE [Pagallo & Haussler, 1990] for the construction of 
features from decision trees (see Figure 1) and DUCE [Mug-
gleton, 1987] for the construction of features from learned 
rule sets (see Table 1). Both approaches (amongst others) 
search for repeated occurrences: FRINGE at the fringe of 
decision trees, in the original version for conjunctive fea-
tures (Figure 1, upper row) and in an extended version for 
disjunctive features (Figure 1, lower row). DUCE applies a 
number of operators to compress its rule sets, one being the 
inter-construction operator that turns regularities in the 
premises of rules into new features (see Table 1(a)).  
 
Problems, current view, and current research. The  prob- 

                            B ∧ C ∧ D ∧ E → X 
       A ∧ B ∧ D ∧ F → Y 
                     ⇒ 
       B ∧ D → Z 
       C ∧ E ∧ Z → X 
       A ∧ F ∧ Z → Y 
 
       B ∧ C ∧ D ∧ E → X 
       A ∧ B ∧ D ∧ F → X 
                     ⇒ 
       C ∧ E → Z 
       A ∧ F → Z 
       B ∧ D ∧ Z → X 
 
Table 1: Operators in DUCE: (a) inter-construction of new feature 
Z based on patterns in premises of rules (here: B ∧ D). (b) intra-
construction by putting the “residues” of commonalities of clauses 
into the definition of new feature Z (here: C and E resp. A and F). 
 
lem is the evaluation with respect to a ground truth and also 
comprehensibility. It is easy to construct a lot features, but it 
is hard to assess how good and useful they are. In neural 
networks, by constrast, construction and evaluation of feat-
tures are done simultaneously; here they are separate. An-
other problem is comprehensibility: Newly defined features 
are most useful if they provide abstractions or generaliza-
tions that human users are able to interpret. Ensuring this 
clearly is not an easy task.   
   In learning of decision trees or rules, other topics are cur-
rently pursued, like extremely randomized learning schemes 
[Geurts et al., 2006] or schemes that frame decision tree 
learning as an optimization task with respect to a loss func-
tion [Chen & Guestrin, 2016]. Complete search in the space 
of decision trees has also become feasible under syntactic 
constraints [Nijssen & Fromont, 2010], such that the con-
struction of features (to overcome representational short-
comings concerning the language and algorithmic bias) is 
not necessary anymore. Simplifying or compressing deci-
sion trees or rule sets by intermediate definitions is currently 
not a popular research topic. 
 
Implementations do not seem to be available at this point 
of time. However, learning features with discrete definitions 
is actively investigated in predicate invention and proposi-
tionalization (see the next two sections). 

3 Predicate Invention 
 
Definition, purpose, benefits, and promise. Learning in 
relational domains (with objects described by relations and 
with relational background knowledge) depends on the 
available vocabulary, i.e., the available predicate, function, 
and constant symbols. If the vocabulary is limited for a 
learning task at hand or the task to be learned relies in a 
complex way on the available base representation, then the 
invention of new predicates, defined in terms of existing 
predicates, can contribute to more compact, more accurate, 
and better comprehensible models (see, e.g., the definition 
of stairs in Table 2(a)) based on visual elements). 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4869



stair(X, Y)  :- stair1(X, Y). 
stair(X, Y)  :- stair1(X, Z), stair(Z,Y). 
stair1(X, Y) :- vertical(X, Z), 
                horizontal(Z, Y). 
 
P(X, Y) :- Q(Y, X). 
P(X, Y) :- Q(X, Z), R(Z, Y). 
 
clock_angle(O, H, A) :- highlight(O, H), 
   convex(O), light_source(L), 
   light_source_angle(O, L, A). 
 
clock_angle(O, H, A) :- 
   highlight(O, H), concave(O), 
   light_source(L), 
   light_source_angle(O, L, A1), 
   opposite(A1, A).  
 
Table 2: Predicate invention: (a) Predicate stair1 is defined to be 
a sequence of a vertical and a horizontal element. (b) Some sec-
ond-order schemes for learning rules and inventing new predicates 
in so-called meta-interpretive learning (METAGOL). (c) Use of 
complex new predicates like convex in the context of logical vi-
sion, where occurrences of shadow and light are learned depending 
on the position of a light source, its angle, and the shape of an ob-
ject [Muggleton et al., 2018]. 
 
Classification and scheme. We can distinguish between 
reformulation approaches, demand-driven approaches and 
clause-refinement methods [Stahl, 1993; Kramer, 1995].  
Reformulation approaches introduce new intermediate pred-
icates as a reformulation of an existing theory in order to 
express it more compactly. This is done in any case, not 
only if learning “fails” in the given representation. The 
knowledge base can be compressed either by inverse resolu-
tion or by a schema-driven approach. The input of compres-
sion algorithms are usually clauses, either instances of the 
training set or disjuncts of a previously learned or partial 
hypothesis. Inverse resolution [Muggleton & Buntine, 1988] 
is a method for “factoring out” the generalization of two or 
more clauses, and assigning the “residues” to a new predi-
cate (analogously to the intra-construction operator for the 
definition of new propositional features, see Table 1 (b)). 
This results in a new predicate describing the variation of 
the input clauses relatively to their common generalization. 
Schema-driven methods use second-order clauses (see Table 
2 (b)) for predicate invention. Newly defined predicates are 
simply instantiations of predefined or induced schemata. A 
schema can be instantiated by turning its predicate variables 
into predicate symbols. In contrast to reformulation ap-
proaches, demand-driven systems aim to detect situations 
where the given vocabulary is insufficient for the learning 
task at hand. Clause-refinement methods [Kramer, 1995] 
make an over-general clause consistent by adding a literal 
which contains a new predicate. Before the actual refine-
ment step, we have to determine the clause of the theory that 
is to blame for the incorrectly covered instances. Clause-
refinement methods depend on the existence of negative 

examples, because they aim to discriminate between posi-
tive and negative instances. Methods for inverse resolution 
only take positive instances or clauses of a theory as input. 
Methods for learning recursive new predicates, e.g., by 
schemata, characterize positive examples in a special way: 
They describe everything that the given examples have in 
common, namely their base-case and the repeated applica-
tion of an operator. 
 
Example methods. CIGOL [Muggleton & Buntine, 1988] 
introduced inverse resolution and mostly employed the in-
tra-construction operator, whereas RINCON [Wogulis & 
Langley, 1989] employed the inter-construction operator to 
invent new predicates. In CIGOL, the intra-construction 
operator is called W-operator, and it is based on (and ena-
bled by) Plotkin's least general generalization (lgg) and 
relative least general generalization (rlgg) [Plotkin, 1970; 
Plotkin, 1971]. Generalised Closed-World Specialisation 
(GCWS) [Srinivasan et al., 1992] is a way to obtain struc-
tured theories in inductive logic programming. It is able to 
invent predicates for exceptions and exceptions of excep-
tions, etc., as is needed for learning complex concepts like 
the one of an intercalary year. GCWS is an example for a 
clause-refinement method. Statistical predicate invention 
[Kok & Domingos, 2007] iteratively refines clusters of 
symbols based on the clusters of symbols they appear in 
atoms with, allowing for multiple cross-cutting clusterings. 
METAGOL [Muggleton et al., 2018] is a current and very 
successful schema-driven approach. It relies on the availa-
bility of a library of meta-schemata as an inductive bias. 
Given a suitable library of templates, it is able to learn quite 
deep sets of clauses, with recursion as well as newly invent-
ed predicates.  
 
Problems, current view, and current research. The prob-
lems with predicate invention are similar to those with fea-
ture construction: too many options to invent new predicates  
and too few options to assess the utility of candidates. Com-
prehensibility of new predicates is also a requirement that is 
hard to meet. Meta-interpretive learning (see METAGOL), 
although in its central idea not entirely new, has enabled 
substantial progress recently. One may argue that the avail-
ability of a suitable template library is a limiting factor, 
however, hyperparameter optimization and the search for 
suitable network architectures in current deep learning does 
not appear much easier in comparison. 
 
Implementations. In contrast to feature construction, im-
plementations are available, e.g., GCWS is available in 
Aleph2, and METAGOL3 can be downloaded from github. 

4 Propositionalization 
Definition, purpose, benefits, and promise. Propositional-
ization is the  representation change of  transforming a  rela- 
 
                                                 
2 https://www.cs.ox.ac.uk/activities/programinduction/Aleph 
3 https://github.com/metagol/metagol 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4870



?- person(K), parent(K, Y), has_pet(Y, cat). 
 
p(K, Z) :- person(K), has_account(K, Y), 
           overdraft(Y, Z). 
 
Table 3: Propositionalization: (a) A conjunctive query with key K 
defining a Boolean feature for an instance K (true if it succeeds 
for some K, false otherwise). This is called an existential feature. 
(b)  A clause defining a feature for a relational example. K denotes 
the key (i.e., the identifier of the instance). It is assumed that a 
person may have several accounts Y, each with a different numeri-
cal overdraft limit Z. Such a clause may be the basis for several 
types of features, e.g., by applying aggregate functions on the set 
of different values for Z. This is called an aggregate feature. 
 
tional representation of a learning problem into a proposi-
tional (feature-based, attribute-value) representation [Kra-
mer et al., 2001]. The idea is to build higher-level feature 
representations from lower-level relational data, just like 
super-pixels are constructed from pixels in image data. Tak-
ing such an approach, feature construction can be decoupled 
from model construction. In propositionalization, the search 
space of relational features is not gradually searched and 
expanded as in inductive logic programming (ILP), but all 
relational features with certain properties, e.g., up to some 
maximal syntactic size or within a minimal and maximal 
frequency of occurrence, are generated and used to trans-
form the representation. The advantage is that it is possible 
to take advantage of any progress with propositional learn-
ing algorithms in this way. The disadvantage is the potential 
loss of information due to size or frequency constraints. If 
propositionalization does not give the desired results, it 
should at least be used as a baseline to show that more ad-
vanced search and optimization strategies are worth the ef-
fort. 
 
Classification and scheme. Propositionalization schemes 
can be categorized according to the types of features that are 
constructed. One basic distinction is the one between exis-
tential features and aggregate features (see Table 3). Exis-
tential features are defined by conjunctive queries, which, 
when succeeding for an instance, give the value true, and 
false, otherwise. Aggregate features [Krogel & Wrobel, 
2001] are more complex: We consider a defined set of vari-
ables except the key, which give the answer substitutions for 
that query (when the key variable is bound to some instance 
identifier). In the above example (see Table 3 (b)), K is the 
key, and the user has defined variable Z to be the one of 
interest for relational feature construction. When the query 
is evaluated for some instance K, we gather all values for Z , 
and, in the final step, apply a user-defined set of aggregate 
functions (like minimum, maximum, mean, standard devia-
tion, mode, etc.) to that set of values to define propositional 
values. Clearly, variants are possible: The clause in Table 3 
(b) can be the basis for some test against a threshold (e.g., Z 
> 10000), or it can be used not to turn the problem into a 
propositional problem, but, without aggregates, into a multi-

instance learning or multi-tuple learning problem [De 
Raedt, 2008].   
 
Example methods. The first methods were due to Nada 
Lavrač and Sašo Džeroski [Lavrac et al., 1991], methods 
based on clauses, either syntactically constrained and evalu-
ated by some score function [Flach & Lachiche, 2001] or 
constrained by minimum frequency (minimum support) 
[Dehaspe & Toivonen, 1999] were following. WARMR 
[Dehaspe & Toivonen, 1999], the frequent pattern mining 
variant for conjunctive queries, can also be regarded as the 
first approach to graph mining, although it was proposed in 
an even more expressive formalism. Propositionalization 
based on aggregate functions was proposed only slightly 
later [Krogel & Wrobel, 2001].   
 
Problems, current view, and current research. Many of 
the transformation methods still belong to the standard rep-
ertoire for preprocessing relational datasets today. Two re-
cent approaches are wordification and dynamic or lazy 
propositionalization. Wordification [Perovsek et al., 2015] 
considers an instance (i.e., a row in a table) as a document  
and individual attribute values as words in this document. 
More complex words can be formed from building n-grams 
from simple words, and taking into account foreign key re-
lations among tables. Documents are transformed into a 
bag-of-words representation by calculating TF-IDF values 
for each word of each document. Dynamic propositionaliza-
tion [Schouterden et al., 2019] constructs these features in a 
lazy manner that is guided by the learner. The gradual ex-
pansion of the feature table resembles the way how ILP sys-
tems  gradually  construct  longer  clauses  by  first  con-
structing  shorter  ones and considering only the promising 
ones for further expansion. Answer substitutions are cached 
for further iterations. Overall, lazy propositionalization blurs 
the line between propositionalization (a static transfor-
mation scheme, as defined above) and relational learning 
(dynamic search through the space of clauses/features), but 
still may be a promising middle ground with advantages 
neither of the two extremes have: less loss of information 
than traditional propositionalization and faster running times 
than traditional relational learning. 
 
Implementations. Functionality for the construction of rela-
tional features based on learned clauses can again be found 
in Aleph (see above). Tertius [Flach & Lachiche, 2001], 
RELAGGS [Krogel & Wrobel, 2001], and wordification 
[Perovsek et al., 2015] are implemented in the relational 
data mining module (https://github.com/xflows/rdm) of the 
web-based data mining platform ClowdFlows  (available at 
http://clowdflows.org). 
 
5 Pattern Mining 
 
Definition, purpose, benefits, and promise. Pattern mining 
is concerned with finding patterns of interest in a given da-
tabase. Patterns  are  defined to be elements of so-called pat- 
 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4871



 
Figure 2: Graph mining results in two example molecules [Maunz 
et al., 2010]. The identified pattern is shown in gray and occurs in 
both examples. Note that the pattern occurrences are not identical 
(N representing nitrogen is at one end of the pattern occurrence in 
the left molecular graph, and O representing oxygen is at one end 
of the right molecular graph). Regarding electronegativity, both N 
and O are treated equally in the graph matching procedure. 
 
tern languages. An interestingness predicate picks the sub-
set  of  patterns  from  that  language  that is interesting for a 
human user. The predicate can be defined as a logical ex-
pression combining criteria (constraints) that need to be 
fulfilled for a pattern to count as interesting. This definition 
works well for a variety of patterns in discrete data such as 
sets, multi-sets, strings, sequences, trees, graphs, hyper-
graphs, and logical representations. Generalization to the 
continuous domain is not straightforward, and not many 
convincing proposals exist. In the simplest case, the pattern 
language L is the powerset P(I) of a set of possible items I, 
in which case we speak of itemsets. Figure 2 shows the oc-
curence of a subgraph pattern (in gray) in two molecules 
from a real-world application. Another example, from Table 
3(a), shows a relational pattern that is represented by a con-
junctive query. Relational patterns subsume other pattern 
domains, in other words, everything from itemsets via 
graphs to hypergraphs can be represented in that way, how-
ever, clearly more efficient algorithms exist for “native” 
representations. Overall, the beauty of the approach is that a 
complete list of solutions is generated, not any arbitrary list 
from greedy search, meta-heuristics, or local optima from 
gradient descent or ascent. 
 
The first use of pattern mining is in exploratory data analy-
sis, specifically for the construction of association rules. 
This works essentially for any pattern language, as long as a 
generality order on the patterns is defined.  A generality 
order ≤ defines a pattern X to be more general (or equal) 
than Y, written as X ≤ Y, if it holds that whenever pattern Y 
occurs in an instance, then also X occurs in it (in all possible 
worlds, i.e., in all conceivable databases). One can imagine 
pattern X to be “contained” in pattern Y. Then it is easy to 
construct association rules of the form X → Y (that hold 
with a certain probability; for the other way round, Y → X, 
the probability is 1.0). That estimated  probability of P(Y|X) 
is usually called confidence. Such (unsupervised) rules can 
be browsed by analysists and used for data exploration. 
However, the one use of patterns that is much more common 
in practice is to use patterns in variables in other models, 
e.g., in classification, regression, clustering, or generative 
models. In this sense, patterns can be very useful for build-

ing higher-level symbolic representation from low-level 
data. Here, the raw, low-level data are, e.g., itemset data, 
sequences, or graphs, and the higher-level representations 
include patterns in those data, which enable a more abstract 
view.  
 
Classification and scheme. The classification of method 
depends on pattern languages (also called pattern domains), 
constraints, and solution strategies and search strategies of 
the solvers. For simple minimum and maximum frequency 
constraints, classical level-wise search [Mannila & Toivo-
nen, 1997] can take advantage of the monotonicity or anti-
monotonicity of frequency-related constraints and thus ef-
fectively prune the search space. For class-correlated pattern 
mining with a convex score function, branch-and-bound 
strategies can be used [Morishita & Sese, 2000]. Pattern 
growth algorithms [Han et al., 2017] build data structures 
from the data, simplify the data along the way, and “read off 
the patterns” incrementally from that data structure. 
 
Example methods. Classical methods include the pioneer-
ing Apriori algorithm [Agrawal & Srikant, 1994] and FP-
Growth for itemsets [Han et al., 2017], gSpan for enumerat-
ing frequent subgraph patterns [Han et al., 2017], class-
correlated pattern mining [Morishita & Sese, 2000], optimal 
pattern mining algorithms for strings [Fischer et al., 2006], 
and the tree mining approach FreeTreeMiner [Chi et al., 
2003]. 
 
Problems, current view, and current research. Although 
progress has been made in reducing the very large solution 
sets that often are larger than the original data, the problem 
with a suitable selection remains. Well-known and tested 
strategies remove the redundancy in the patterns with regard 
to their occurrences in the data (keeping, e.g., only so-called 
frequent closed [Pasquier et al., 1999] or frequent free pat-
terns [Boulicaut et al., 2003]). Recent years have seen 
methods for pattern set mining [Guns et al., 2013] and pat-
tern sampling [Dzyuba et al., 2017]. Pattern set mining fo-
cuses on returning a suitable solution set in the first place, 
and not enumerating all solutions and only then considering 
constraints like pattern diversity and pattern coverage. Pat-
tern set mining is strongly related to rule learning and sub-
group discovery. Pattern sampling is the idea of sampling 
patterns with a probability proportional to their quality 
(measured by some score function). Pattern diversity and 
pattern coverage is not automatically taken care of by pat-
tern sampling.  
 
Implementations. Itemset mining is implemented in virtu-
ally every machine learning and data mining workbench and 
library. The only optimal pattern mining algorithms known 
today are for string mining [Fischer et al., 2006], as the or-
der in strings gives valuable information compared to unor-
dered elements in sets. One of the optimal string mining 
algorithms can be found on github4. Tree mining algorithms 

                                                 
4 https://github.com/atifraza/MiSTiCl/blob/master/string_miner 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4872



for the batch case5 and the streaming case6 are also availa-
ble. Implementations of the classical graph mining algo-
rithm gSpan are available stand-alone7 or as part of libraries. 

6 Time Series Patterns and Shapelets 
Definition, purpose, benefits, and promise. Shapelets [Ye 
& Keogh, 2011] are discriminative time series subsequences 
that allow generation of interpretable classification models, 
which provide faster and generally better classification than 
the nearest neighbor approach, using, e.g, dynamic time 
warping [Ding et al., 2008] as a distance measure. However, 
the shapelet discovery process requires the evaluation of all 
possible subsequences of all time series in the training set, 
making it extremely computationally intensive. Consequent-
ly, shapelet discovery for large time series datasets quickly 
becomes infeasible. A number of improvements have been 
proposed to reduce the training time. These techniques use 
approximations, algorithmic improvements, like pruning 
techniques making use of the triangular inequality or cach-
ing, or discretization, and often lead to reduced classifica-
tion accuracy compared to the exact method. 
 
Classification and scheme. The first distinction is whether 
we consider  the  time  series  completely  (in  dynamic time 
warping) or whether we focus on only relatively short sub-
sequences. The former approaches are typically based on 
variants of dynamic time warping (DTW) [Ding et al., 
2008], the latter on variants of shapelets [Ye & Keogh, 
2011; Hills et al., 2014], which are prototypical patterns of 
shorter length that can occur anywhere in the time series and 
are usually discriminative8. Further distinctions can be 
drawn: Methods can be categorized according to whether 
they are complete or whether they are heuristic or based on 
sampling, and whether they are directly embedded into a 
specific learning algorithm or whether they can be used in 
any subsequent algorithm. 
 
Example methods. The original proposal, YK-Shapelets 
[Ye & Keogh, 2011], includes early candidate pruning using 
an upper-bound on the information gain and reported a 
speed-up of three orders of magnitude compared to the brute 
force approach. Fast-Shapelets [Rakthanmanon & Keogh, 
2013] reduces the dimensionality of the data using SAX 
[Lin et al., 2007] and then performs a random projection 
based shapelet discovery using this lower dimensional data. 
It uses a heuristic approach and provides a huge reduction in 
computational costs, but requires extensive hyperparameter 
tuning. A recently published approach called Generalized 
Random Shapelet Forests (gRSF) [Karlsson et al., 2016] 
employs  ensembles and  a  randomized candidate sampling-   

                                                 
5 https://github.com/yunchi/FreeTreeMiner 
6 https://github.com/abifet/adatreenat 
7 https://github.com/betterenvi/gSpan 
8 Historically, most of the work on time series in the data mining 
literature after the year 2000 has focused on classification, alt-
hough clustering has attracted more and more attention recently. 

 
Figure 3: Example shapelets capturing typical time courses for a 
certain class of time series [Raza & Kramer, 2017]. The algorithm 
producing this plot, Random-Shapelets, samples shapelets starting 
at different time points and thus covers different parts of the se-
quence. 
 
based shapelet discovery process for improved classification 
accuracy and reduced runtime. 
 
Problems, current view, and current research. Having 
both fast and exact methods for very large datasets of long 
time series is still not completely solved. The focus of whole 
time series and short important subsequences are just two 
extremes of a spectrum. Any option in between and also 
complementing each other would be interesting to see, with 
automatic choice of what is relevant for a given domain and 
dataset. The same goes for considering both the time do-
main and the frequency domain [Schäfer, 2015; Schäfer, 
2016] of time series data. Making using of optimal string 
mining algorithms (see above) for time series analysis is 
currently being investigated [Raza & Kramer, 2020]. The 
matrix profile [Yeh et al., 2016] (essentially a matrix with 
the smallest distance to any subsequence for any given sub-
sequence) has been shown to be a great tool for the discov-
ery of sequence patterns.  
 
Implementations. Numerous implementations exist of 
shapelets. The matrix profile implementation called 
STUMPY can be found on github9.  

7 Future Directions and Conclusions 
Having presented all these approaches in one paper, it is 
clear that they are not isolated attempts, but tightly related. 
In that sense, we hope that one field can benefit from a re-
lated field, if some advances are made there. Considering 
the progress with embeddings of different sorts, like word 
vectors (word2vec, GloVe, etc.) or other vector representa-
tions of structured objects (graph2vec, mol2vec, pa-
tient2vec, etc.), it is evident that these approaches have an 
advantage, because they usually can be further optimized 
and refined, while discrete symbolic structures can only be 
generated and evaluated in a next step. In other words, these 
structures do not evolve gradually during some phase of 
learning. Symbolic chunks of knowledge ideally stand out 
statistically and make sense to humans. Most current meth-
                                                 
9 https://github.com/TDAmeritrade/stumpy 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4873



ods only create a single layer of a symbolic representation, 
not a hierarchy with different levels of abstraction. Recent 
exceptions are methods for predicate invention [Muggleton 
et al., 2018] and sequence mining [Wang et al., 2018]. The 
whole area of relating continuous types of higher-level rep-
resentations to symbolic higher-level representations is, to 
my knowledge, largely unexplored.  
 
However, deep neural networks might benefit from higher-
level symbolic representations like patterns as well. Pat-
terns, for instance, for sequences and time series, can be 
computed very efficiently and could give neural networks 
for such data guidance or a prior that may lead to faster 
training times. Learning from fewer training instances, by 
unsupervised pre-training, to create a structure that is later 
“filled” by evidence, is currently a hot research topic (see 
the recent AAAI 2020 panel of Y. Bengio, G. Hinton, and 
Y. LeCun). Patterns can also be way to pre-filter instances 
for training for DNNs [Ahmadi et al., 2018] or to provide 
some raw material (i.e., building blocks) that can be further 
refined statistically [Lethan et al., 2013]. Finally, patterns 
and any kind of symbolic representations are useful to ex-
plain the behavior of deep neural networks, as soon such 
models have to interact with human users. These explana-
tions can be given on a global or a local level. Therefore, we 
believe that both neural and symbolic higher-level represen-
tations and their interrelationship have a role to play in the 
future of intelligent systems.   

References 

[Agrawal & Srikant, 1994] R. Agrawal, R. Srikant: Fast 
Algorithms for Mining Association Rules in Large Data-
bases, in: Proc. of the 20th International Conference on 
Very Large Data Bases (VLDB 1994), 487-499, 1994. 

[Ahmadi et al., 2018] Z. Ahmadi, P. Martens, C. Koch, T. 
Gottron, S. Kramer: Towards Bankruptcy Prediction: Deep 
Sentiment Mining to Detect Financial Distress from Busi-
ness Management Reports, in: Proc. of the 5th IEEE Inter-
national Conference on Data Science and Advanced Analyt-
ics (DSAA 2018), 293-302, 2018. 
 
[Boulicaut et al., 2003] J.-F. Boulicaut, A. Bykowski, C. 
Rigotti: Free-Sets: A Condensed Representation of Boolean 
Data for the Approximation of Frequency Queries, Data 
Mining and Knowledge Discovery, 7, 5–22, 2003. 
 
[Chen & Guestrin, 2016] T. Chen, C. Guestrin: XGBoost: A 
Scalable Tree Boosting System, in: Proc. of the 22nd ACM 
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 785–794, 2016. 

[Chi et al., 2003] Y. Chi, Y. Yang, R. Muntz: Indexing and 
Mining Free Trees, in: Proc. of the Third IEEE Internation-
al Conference on Data Mining (ICDM 2003), 509, 2003. 

[Dehaspe & Toivonen, 1999] L. Dehaspe, H. Toivonen: 
Discovery of Frequent DATALOG Patterns, Data Mining 
and Knowledge Discovery, 3(1):7-36, 1999. 
 
[De Raedt, 2008] L. De Raedt: Logical and Relational 
Learning, Springer, 2008. 
 
[Ding et al., 2008] H. Ding, G. Trajcevski, P. Scheuermann, 
X. Wang, E. Keogh: Querying and mining of time series 
data, in: Proc. of the VLDB Endowment, 1(2):1542-1552, 
2008. 

[Dzyuba et al., 2017] V. Dzyuba, M. van Leeuwen, L. De 
Raedt: Flexible Constrained Sampling with Guarantees for 
Pattern Mining, Data Mining and Knowledge Discovery,  
31(5):1266-1293, 2017. 

[Fischer et al., 2006] J. Fischer, V. Heun, S. Kramer: Opti-
mal String Mining Under Frequency Constraints, in: Proc. 
of the 10th European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases (PKDD  2006), 
139-150, 2006.  

[Flach & Lachiche, 2001] P.A. Flach, N. Lachiche: Confir-
mation-Guided Discovery of First-Order Rules with Tertius, 
Machine Learning, 42: 61–95, 2001. 
 
[Geurts et al., 2006] P. Geurts, D. Ernst, L. Wehenkel: Ex-
tremely randomized trees, Machine Learning, 63(1):3-42, 
2006. 

[Guns et al., 2013] T. Guns, S. Nijssen, L. De Raedt: k-
Pattern Set Mining under Constraints, IEEE Transactions on 
Knowledge and Data Engineering, 25(2):402-418, 2013. 

[Han et al., 2017] J. Han, M. Kamber, J. Pei: Data Mining: 
Concepts and Techniques, Morgan Kaufmann, 2017.  
 
[Hills et al., 2014] J. Hills, J. Lines, E. Baranauskas, J. 
Mapp, A. Bagnall: Classification of time series by shapelet 
transformation, Data Mining and Knowledge Discovery, 
28(4):851-881, 2014. 
 
[Karlsson et al., 2016] I. Karlsson, P. Papapetrou, H. Bos-
tröm: Generalized random shapelet forests, Data Mining 
and Knowledge Discovery, 30:1053–1085, 2016. 
 
[Kok & Domingos, 2007] S. Kok, P.M. Domingos: Statisti-
cal predicate invention, in:  Proc. of the Twenty-Fourth In-
ternational Conference on Machine Learning (ICML 2007), 
433-440, 2007. 

[Kramer, 1995] S. Kramer: Predicate Invention: A Compre-
hensive View, Technical Report, OFAI-TR-95-32, Austrian 
Research Institute for Artificial Intelligence, 1995. 
 
[Kramer et al., 2001] S. Kramer, N. Lavrac, P. Flach: Prop-
ositionalization Approaches to Relational Data Mining, in: 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4874



Dzeroski S., Lavrac N. (Eds.): Relational Data Mining, 
Springer Verlag, Berlin Heidelberg New York, 2001. 

[Krogel & Wrobel, 2001] M.-A. Krogel, S. Wrobel: Trans-
formation-Based Learning Using Multirelational Aggrega-
tion, in: Proc. of the 11th International Conference on In-
ductive Logic Programming (ILP 2001), 142-155, 2001. 

[Lavrac et al., 1991] N. Lavrac, S. Dzeroski, M. Grobelnik: 
Learning Nonrecursive Definitions of Relations with LI-
NUS, in: Proc. of the European Working Session on Learn-
ing (EWSL 1991), 265-281, 1991. 

[Lethan et al., 2013] B. Letham, C. Rudin, T.H. McCor-
mick, D. Madigan: An Interpretable Stroke Prediction Mod-
el using Rules and Bayesian Analysis, in: Proc. of the 17th 
AAAI Conference on Late-Breaking Developments in the 
Field of Artificial Intelligence, 2013. 
 
[Lin et al., 2007] J. Lin, E. Keogh, L. Wei, S. Lonardi: Ex-
periencing SAX: a novel symbolic representation of time 
series, Data Mining and Knowledge Discovery, 15(2):107-
144, 2007. 

[Mannila & Toivonen, 1997] H. Mannila, H. Toivonen: 
Levelwise Search and Borders of Theories in Knowledge 
Discovery, Data Mining and Knowledge Discovery, 1(3): 
241-258, 1997. 

[Matheus & Rendell, 1989] C.J. Matheus, L. Rendell: Con-
structive Induction on Decision Tree, in: Proc. of the 11th 
International Joint Conference on Artificial Intelligence 
(IJCAI 1989), 1989. 
 
[Maunz et al., 2010] A. Maunz, C. Helma, T. Cramer, S. 
Kramer: Latent Structure Pattern Mining, in: Proc. of the 
European Conference on Machine Learning and Principles 
and Practice of Knowledge Discovery in Databases 
(ECML/PKDD-2010), 2010. 

[Morishita & Sese, 2000] S. Morishita, J. Sese: Traversing 
Itemset Lattice with Statistical Metric Pruning, in: Proc. of 
the 19th Symposium on Principles of Database Systems 
(PODS 2000), 226-236, 2000. 

[Muggleton, 1987] S. Muggleton: DUCE: an Oracle-Based 
Approach to Constructive Induction, in: Proc. of the 10th 
International Joint Conference on Artificial Intelligence 
(IJCAI 1987), 1987. 
 
[Muggleton & Buntine, 1988] S. Muggleton, W. Buntine: 
Machine Invention of First-Order Predicates by Inverting 
Resolution, in: Proc. of the Fifth International Conference 
on Machine Learning (ICML 1988), Morgan Kaufmann, 
San Mateo, CA, 339-352, 1988. 

[Muggleton et al., 2018] S. Muggleton, W.-Z. Dai, C. Sam-
mut, A. Tamaddoni-Nezhad, J. Wen, Z.-H. Zhou: Meta-
Interpretive Learning from Noisy Images, Machine Learn-
ing, 107:1097–1118, 2018. 

[Nijssen & Fromont, 2010] S. Nijssen, E. Fromont: Optimal 
constraint-based decision tree induction from itemset lattic-
es, Data Mining and Knowledge Discovery, 21(1):9-51, 
2010. 

[Pagallo & Haussler, 1990] G. Pagallo, D. Haussler: Boole-
an Feature Discovery in Empirical Learning, Machine 
Learning, 5:71-97, 1990. 

[Pasquier et al., 1999] N. Pasquier, Y. Bastide, R. Taouil, L. 
Lakhal: Discovering Frequent Closed Itemsets for Associa-
tion Rules, in: Proc. of the International Conference on Da-
tabase Theory (ICDT 1999), 398-416, 1999. 

[Perovsek et al., 2015] M. Perovsek, A. Vavpetic, J. Kranjc, 
B. Cestnik, N. Lavrac: Wordification: Propositionalization 
by Unfolding Relational Data into Bags of Words, Expert 
Systems with Application, 42(17-18):6442-6456, 2015. 
 
[Plotkin, 1970] G. Plotkin: A Note on Inductive Generaliza-
tion, in: Meltzer B., Michie D. (Eds.): Machine Intelligence,  
5: 153–163, 1970. 
 
[Plotkin, 1971] G. Plotkin: A Further Note on Inductive 
Generalization, in: Meltzer B., Michie D. (Eds.): Machine 
Intelligence, 6: 101–124, 1971. 
 
[Rakthanmanon & Keogh, 2013] T. Rakthanmanon, E. 
Keogh: Fast Shapelets: A Scalable Algorithm for Discover-
ing Time Series Shapelets, in: Proc, of the 2013 SIAM In-
ternational Conference on Data Mining, 668-676, 2013. 
 
[Raza & Kramer, 2017] A. Raza, S. Kramer: Ensembles of 
Randomized Time Series Shapelets Provide Improved Accu-
racy while Reducing Computational Costs. CoRR 
abs/1702.06712, 2017. 
 
[Raza & Kramer, 2020] A. Raza, S. Kramer: Accelerating 
Pattern-Based Time Series Classification: A Linear Time 
and Space String Mining Approach, Knowledge and Infor-
mation Systems, 3, 2020. 
 
[Schäfer, 2015] P. Schäfer: The BOSS is concerned with 
time series classification in the presence of noise, Data Min-
ing and Knowledge Discovery, 29(6):1505-1530, 2015. 
 
[Schäfer, 2016] P. Schäfer: Scalable time series classifica-
tion, Data Mining and Knowledge Discovery, 30(5):1273-
1298, 2016. 

[Schouterden et al., 2019] J. Schouterden, J. Davis, H. 
Blockeel: LazyBum: Decision tree learning using lazy prop-
ositionalization. CoRR abs/1909.05044, 2019. 
 
[Srinivasan et al., 1992] A. Srinivasan, S.H. Muggleton,  M. 
Bain: Distinguishing Noise from Exceptions in Non-
Monotonic Learning, in: Proc. of the Second International 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4875



Workshop on Inductive Logic Programming (ILP 1992), 
1992. 

[Stahl, 1993] I. Stahl: Predicate Invention in ILP: an Over-
view, in: Proc. of the European Conference on Machine 
learning (ECML 1993), 313-322, 1993. 
 
[Wang et al., 2018] K. Wang, E. Sadredini, K. Skadron:  
Hierarchical Pattern Mining with the Automata Processor,  
International Journal of Parallel Programming, 46:376–
411, 2018. 

[Wnek & Michalski, 1992] J. Wnek, R.S. Michalski: Hy-
pothesis-driven Constructive Induction in AQ17-HCI: A 
Method and Experiments, Technical Report, Center for Arti-
ficial Intelligence, George Mason University, 1992. 
 
[Wogulis & Langley 1989] J. Wogulis, P. Langley: Improv-
ing Efficiency by Learning Intermediate Concepts, in: Proc. 
of the Eleventh International Joint Conference on Artificial 
Intelligence (IJCAI 1989), Morgan Kaufmann, Los Altos, 
CA, 657-662, 1989. 
 
[Ye & Keogh, 2011] L. Ye, E. Keogh: Time series shape-
lets: a novel technique that allows accurate, interpretable 
and fast classification, Data Mining and Knowledge Discov-
ery, 22(1):149-182, 2011. 
 
[Yang et al., 1991] D.-S. Yang. G. Blix, L.A. Rendell: The 
replication problem: A constructive induction approach, in: 
Proc. of the European Working Session on Learning (EWSL 
1991), 44-61, 1991. 

[Yeh et al., 2016] C.C.M. Yeh, Y. Zhu, L. Ulanova, N. 
Begum, Y. Ding, H.A. Dau, D.F. Silva, A. Mueen, E. 
Keogh: Matrix Profile I: All Pairs Similarity Joins for Time 
Series: A Unifying View that Includes Motifs, Discords and 
Shapelets, in: Proc. of the IEEE International Conference 
on Data Mining (ICDM 2016), 2016. 

 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Survey Track

4876


