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Abstract
The label-free nature of unsupervised cross-modal
hashing hinders models from exploiting the exact
semantic data similarity. Existing research typically
simulates the semantics by a heuristic geometric
prior in the original feature space. However, this
introduces heavy bias into the model as the origi-
nal features are not fully representing the underly-
ing multi-view data relations. To address the prob-
lem above, in this paper, we propose a novel unsu-
pervised hashing method called Semantic-Rebased
Cross-modal Hashing (SRCH). A novel ‘Set-and-
Rebase’ process is defined to initialize and update
the cross-modal similarity graph of training data. In
particular, we set the graph according to the intra-
modal feature geometric basis and then alternately
rebase it to update the edges within according to
the hashing results. We develop an alternating op-
timization routine to rebase the graph and train the
hashing auto-encoders with closed-form solutions
so that the overall framework is efficiently trained.
Our experimental results on benchmarked datasets
demonstrate the superiority of our model against
state-of-the-art algorithms.

1 Introduction
The era of big data has witnessed continuous research atten-
tion in cross-modal hashing because of its low computational
complexity and storage requirement for large-scale multime-
dia retrieval [Zhang et al., 2018a]. The key challenges of this
realm are preserving as much similarity information as possi-
ble and simultaneously mitigating the modality heterogeneity.

Among the existing methods, supervised cross-modal
hashing [Jiang and Li, 2017; Shen et al., 2017; Erin Liong et
al., 2017; Tang et al., 2016; Bronstein et al., 2010; Zhang and
Li, 2014] obtains better retrieval performance. These tech-
niques utilize label information which can be shared by both
image and text data to exploit similarity between samples of
different modalities. However, labeled dataset is limited and it
may cause huge cost to label large scale multi-modal datasets
∗Equal contribution.
†Contact Author.
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Figure 1: The schematic diagram of our setting (left) and rebasing
(right) process. Dotted lines of semantic graph mean probability of
these edges are smaller and solid lines represent high possibility
edges. And red lines denote connections existing only in one modal.

by hand, which constraints the practicality of supervised al-
gorithms despite their outstanding performance.

Exempted from manual data labeling, unsupervised cross-
modal hashing is regarded as a more practical alternative
compared with its supervised counterpart. There are two main
kinds of unsupervised cross-modal retrieval algorithms nowa-
days, whose main focus lie on quantization and similarity-
search respectively. Cross-modal quantization minimizes the
gap between binary codes and low dimension projection
of origin data [Zhang and Wang, 2016; Irie et al., 2015;
Long et al., 2016]. The second kind cross-modal similarity-
search methods includes Cross View Hashing (CVH) [Kumar
and Udupa, 2011], Collective Matrix Factorization Hashing
(CMFH) [Ding et al., 2014], Predictable Dual-view Hash-
ing (PDH) [Rastegari et al., 2013] and Inter-Media Hashing
(IMH) [Song et al., 2013]. Though impressive progress have
these models made, there still exist several challenges in this
field. Hence, we motivate our work according to the following
three issues.

First, the hardness in determining data semantic relations
without label. Unsupervised hashing techniques basically
have no access to the actual data semantics. To obtain rea-
sonable retrieval results, several existing single-modal [Liu
et al., 2011; 2014; Su et al., 2018; Zhang et al., 2018b;
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Liu et al., 2017] and cross-modal approaches [Jian et al.,
2018] resort to the heuristic geometric prior, i.e., determining
the degree of data relevance according to the original feature
distances and leaving it fixed during training. This solution
is obviously sub-optimal as the original features are usually
not designed for nearest-neighbor search and the distances
between them can be heavily biased. One solution is to grad-
ually update these semantic relations during training, which
has been proven to be effective in [Shen et al., 2018]. How-
ever, [Shen et al., 2018] is designed for single-modal hashing
only, fail to handle multi-modal data.

Second, the cross-modal consistency of empirical similar-
ity. With the heuristic semantic simulation discussed above,
each modality would have its own similarity connections ac-
cording to its geometric prior. It is possible that two sam-
ples undergo similarity disagreement under different modali-
ties/views, which confuses the training process. This problem
also necessities similarity updating together with optimiza-
tion to come up with a modal-unified graph.

Third, the sparsity of data semantic connection during
training. A sparse similarity graph saves the time of train-
ing, while a densely-connected one may introduce undesired
noise. In this sense, one needs to simplify the similarity graph
during training, only keeping the manifest connections.

In this paper, to tackle the aforementioned issues, we pro-
pose a novel unsupervised method called Semantic-Rebased
Cross-modal Hashing (SRCH). We define a special ‘Set-and-
Rebase’ routine to learn semantic-aware graphs for better en-
coding performance. The ‘set’ operation constructs a geomet-
ric sparse graph which contains unimodal neighborhood re-
lationship in each modal, and then the ‘rebase’ operation is
alternately coupled with binary code learning to tune and fit
the geometric graph structures according to the code learn-
ing results. Our method uses sparse graph structure inspired
by RCC [Shah and Koltun, 2017] and COMIC [Peng et
al., 2019] to preserve similarity information hidden in orig-
inal data from different modals. To map data from different
modalities into one common space, we suppose generated bi-
nary codes of the same sample from different modals are the
same on training set for simplicity. This is reasonable because
different modal data of a sample describes the same object
and can use only one code to represent it. As a powerful unsu-
pervised convention, the auto-encoding fashion is employed
to improve the robustness of our model. The overview struc-
ture of our method can be found in Fig. 2. The main contri-
butions of this method are summarized as below.

1) We propose a ‘Set-and-Rebase’ mechanism to learn a
sparse graph structure over the training set including ge-
ometric and semantic graphs to preserve similarity infor-
mation for binary code learning.

2) Different from those existing unsupervised cross-modal
hashing methods, our method focus on both similarity pre-
serving and quantization to gain satisfied retrieval perfor-
mance. Besides, the auto-encoding structure is included to
improve our model, which is seldom used in cross-modal
hashing.

3) Comprehensive experimental evaluations are conducted
on four popular datasets, including Wiki [Rasiwasia et

al., 2010], MIRFlickr-25K [Huiskes and Lew, 2008],
MSCOCO [Lin et al., 2014] and NUS-WIDE [Chua et al.,
2009], showing the proposed model significantly outper-
forms the state-of-the-art unsupervised methods.

2 Methodology
Although our method can be used in multi-modal datasets, we
conduct our experiment on two modal datasets for simplicity.
Let XV ∈ RdV ×n and XT ∈ RdT×n represents normal-
ized image features and text vectors respectively of n train-
ing samples, where dV and dT are the dimensions of image
feature and text vector respectively. Our task is to map these
image features and text vectors into l bit binary hashing codes
BV or BT where Bg ∈ {+1,−1}l×n, g ∈ {V, T}. Because
we want to map image features and corresponding text vec-
tors into the same Hamming space in training process, we set
BV = BT = B on training set for simplicity.

2.1 Model Overview
The overall pipeline of SRCH is shown in Fig. 2. Our model
follows an auto-encoding schema where image and text sam-
ples feed their own projectors. The latent codes on the bottle-
neck are therefore quantized as the final hash codes. We set,
i.e., initialize, the cross-modal semantic graph according to
the geometric prior of the original feature space and rebase
the graph together with other model parameters in an alter-
nating manner.

2.2 Sparse Graph Setting and Rebasing
Set the Semantic Geometric Prior
In our setting stage, geometric sparse graph structures in dif-
ferent modalities are built, and these geometric graphs are
fixed during training. The ways to construct sparse graph
structure are various due to different algorithms. One typical
method is to search the nearest several nodes for any node,
which can avoid isolated points and is more flexible. We use
this strategy to construct our sparse graph which can be for-
mulated like Eq. (1). e(i,j) in equation represents undirected
edge connecting sample xi and xj , andNN(xj , k) means the
set of k nearest neighbors of sample xj . The threshold of the
neighbor number k decides the amount of containing similar-
ity information,

e(i,j) =

{
1, if xi ∈ NN(xj , k)

0, if xi /∈ NN(xj , k)
. (1)

The left half of Fig. 1 is a schematic diagram of our geo-
metric sparse graph constructed on both image (up) and text
(down) domain. The circles with the same color are samples
from the same class and there are some wrong connections
with red color in this figure due to the lack of label informa-
tion as these sample pairs are close to each other in specific
domain, like a cat and a dog. Those close samples are con-
nected together through their similarity information, consti-
tuting several clusters whose number depends on the thresh-
old.
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Figure 2: The framework of our proposed Semantic-Rebased Cross-modal Hashing (SRCH). The Set and Rebase steps plotted in dashed
boxes which gradually learns data relevance throughout the training process.

Rebase the Graph by Code Similarity
In rebasing stage, we use continuous real values ranging from
0 to 1 to represent the probability of semantic connection be-
tween samples pairs instead of binary values to perform graph
fusion. These probability values are learned according to the
similarity of two samples in various modalities written as Eq.
(2), where the detailed representation of Φ(xi,xj) will be
given in following part. In general, the probability of those
connections which exist in both graphs are larger than those
only exist in one graph. For those connections which neither
exist in image domain nor in text domain, the probability val-
ues are set to zero. The iterative learning process is illustrated
as the right half of Fig. 1.

S(i,j) = p(e(i,j) = 1) = Φ(xi,xj). (2)

2.3 Objective Function
Auto-Encoding Objective
In order to generate efficient binary codes which contain suf-
ficient similarity information in both image domain and text
domain, the structure of auto-encoder is utilized with its loss
function as formulated below.

LA
g = ‖WgXg −B‖2F +

∥∥Xg −W T
g B

∥∥2
F
, (3)

s.t.B ∈ {+1,−1}l×n,BBT = nI,W T
g Wg = I,

where g ∈ {V, T} and the second constraint BBT = nI is
aimed to generate mutually independent binary codes.

In Eq. (3), the first item aims to reduce the gap between
mapped low dimension feature and discrete binary codes. For
simplicity, the transpose matrix of W is used to replace the
inverse mapping matrix and thus a constraint W T

g Wg = I is
added on the projection matrix. In this case the regularization
term ‖Wg‖2F is unnecessary due to the fact that ‖Wg‖2F =

tr(W T
g Wg) = tr(I) = const.

Semantic Loss
Aiming to allow generated binary codes to retrieve cross-
modal samples, a sparse semantic graph S is learned from

both image and text set and is used to improve the quality of
hashing codes B and S(i,j) represents the probability of con-
nection between sample i and j. The updating process of S
will be presented detailedly in the next part.

LS
g =

∑
(i,j)∈εg

Cg(i,j)

∥∥S(i,j)(zi − zj)
∥∥2
2
. (4)

Here Z is continuous low-dimensional embedding of input
features which is shared by both modalities similar to binary
codes of training setB. For simplicity, we suppose the dimen-
sion of Z is equal toB. In this equation, binary codesB is re-
placed by Z due to that the distance of continuous Euclidean
space contain more information than that of discrete Ham-
ming space. Besides, we hope they are close to each other, as
formulated below.

LZ =
1

2
‖Z −B‖2F . (5)

Besides, the symbol εg in Eq. (4) is our constructed sparse
graph in image domain (g = V ) or text domain (g = T ),
and Cg(g ∈ {V, T}) are the weights of edges in this sparse
graph to balance the contribution of each data point in objec-
tive function. And the computation of Cg(i,j) is presented in
Eq. (6).

Cg(i,j) =

1
N

N∑
m=1

ag(m)

√
ag(i)ag(j)

. (6)

The variable ag(m) in Eq. (6) is the degree of m-th data
point in the graph and the numerator is the average degree of
data points.

Toward Semantic Graph Sparsity
To strengthen the semantic connection for edges which ex-
ist in εg , Least Square Error constraint is added on semantic
graph S with all ones matrix. And the objective function in
each domain g ∈ {V, T} is presented below.

LR
g =

∑
(i,j)∈εg

Cg(i,j)(S(i,j) − 1)2, (7)
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where g ∈ {V, T}.
Our final loss of each modality is presented as following.

Lg = LA
g + λLS

g + αLR
g + βLZ . (8)

And our whole loss can be written as:

L = LV + LT . (9)

2.4 Optimization
In this part, we try to solve the optimal value of B and Wg

from Eq. (9). As there are four variables in total and they are
coupled with each other, the problem is split into four steps
as stated below.
W-step. In this stage, B is fixed. Considering the constraint
W T

g Wg = I , the whole loss function related to Wg can be
simplified as following expression,

max
Wg

tr(WgXgB
T ), s.t.W T

g Wg = I, (10)

where the condition BBT = nI is also used during simpli-
fying process. The optimal solution of Wg can be written in
closed-form as Eq. (11) with SVD algorithm, which is proved
in [Hu et al., 2018],

W ∗
g = QUT , (11)

where U and Q are the left and right singular vectors of the
compact Singular Value Decomposition (SVD) of XgB

T .
Z-step. Fix all the other variables except Z, and then take
the derivative of (9) with regard to Z, we can get

∂LZ

∂Z
= 2β(Z −B) + 2λZH , (12)

where

Hg =
∑

(i,j)∈εg
Cg(i,j)S

2
(i,j)(ei − ej)(ei − ej)

T , (13)

and H = HI + HT . From Eq. (12), we can directly get the
optimal solution of Z∗, presented as below,

Z∗ = βB(βIn + λH)−1. (14)

S-step (graph rebase). Due to the complexity of optimiz-
ing whole semantic graph S, we update the graph values by
element for simplicity and thus the sub-problem turns into a
quadratic optimization of scalars. And we can get the solution
of S∗(i,j) directly through its gradient,

S∗(i,j) =
α

α+ λ ‖zi − zj‖22
= Φ(xi,xj), (15)

from which we can find that S(i,j) = 1 only when zi = zj .
And in other cases, S(i,j) is ranging from 0 to 1.
B-step. Due to the discreteness of hash codes B, the gra-
dient method is not suitable for solving it from such a loss
function. We rewrite Eq. (9) related to B as following ex-
pression,

max
B

tr(BT (βZ +
∑

g∈{V,T}
2WgXg)), (16)

Algorithm 1 The detailed process of SRCH

Input:
Normalized image Features XV and text Vectors XT ;
Parameters k, α, β, and λ;

Output:
Projection matrices in image domain WV and text do-
main WT ; Hash codes B;

1: Construct a sparse graph εg of Xg using m-kNN algo-
rithm on image (g = V ) and text (g = T ) domain re-
spectively;

2: Pre-compute weights of εg using Eq. (6);
3: Initialize hash codes of training set B and sparse seman-

tic graph S (Graph Set);
4: while stopping criterion not satisfied do
5: Fix B, optimize Wg, g ∈ {V, T} using Eq. (11);
6: Fix Wg(g ∈ {V, T}), B and S, update Z with Eq.

(14);
7: Fix Z, update S using Eq. (15) (Graph Rebase);
8: Fix Wg(g ∈ {V, T}) and Z, update B using Eq. (17).
9: end while

s.t.B ∈ {+1,−1}l×n,BBT = nI,

where the condition BBT = nI is used in (16). In fact, here
B can also be solved by SVD like Wg , just dividing B by√
n, and then binarize intermediate solution. However, two-

step optimization can also increase potential quantization loss
and we omit the constraint when solving B like ITQ [Gong et
al., 2013]. Thus, the optimal binary code B∗ can be obtained
as follows,

B∗ = sign(βZ +
∑

g∈{V,T}
2WgXg). (17)

Since the iterative processes of Wg , Z, S and B are de-
pendent on each other, at the beginning of iteration, initializ-
ing the value of B and S is required. For simplicity, we set
the initial value of B as uniformly distributed random integer
from the set of {+1,−1}. As for S, we set S(i,j) with 1 if
the edge (i, j) exists in at least one geometric sparse graph
and 0 in other cases. When the optimization begins, the ob-
jective function Eq. (9) is computed in iterative manner. The
stopping criterion works when the difference of the objective
function value between two nearest iterations is less than a
preset threshold, and the latest value of Wg , Z, S and B
is our optimal result when the stopping condition is met. It
should be noted that the objective function value is set to in-
finity at the beginning of the iteration. The whole iterative
optimization process is summarized in Alg. 1.

2.5 Out-of-Sample Code Computation
For those samples which are outside the training set, their
binary codes in image domain (BI ) or text domain (BT ) can
be computed using following formulation.

Bg = sign(W ∗
g Xg), (18)

where g ∈ {V, T}. Therefore, hashing codes of those data
from test set or the whole retrieval set can be calculated with
optimal projection matrix W ∗

g .
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Methods(Task) Wiki MIRFlickr-25k MSCOCO NUS-WIDE
16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit

CVH(I2T) [Kumar and Udupa, 2011] 0.1596 0.1440 0.1317 0.5792 0.5652 0.5652 0.4987 0.4712 0.4434 0.4006 0.3818 0.3702
CMFH(I2T) [Ding et al., 2014] 0.1734 0.1688 0.1844 0.5804 0.5729 0.5545 0.4424 0.4230 0.4922 0.3817 0.4298 0.4168
PDH(I2T) [Rastegari et al., 2013] 0.1964 0.1679 0.1504 0.5441 0.5443 0.5458 0.4373 0.4389 0.4392 0.3686 0.3686 0.3685
ACQ(I2T) [Irie et al., 2015] 0.1259 0.1200 0.1148 0.6174 0.5942 0.5756 0.5589 0.5529 0.5147 0.4400 0.4160 0.3958
IMH(I2T) [Song et al., 2013] 0.1512 0.1447 0.1331 0.5578 0.5659 0.5595 0.4163 0.4353 0.4428 0.3496 0.3567 0.3707
QCH(I2T) [Wu et al., 2015] 0.1595 0.1439 0.1318 0.5797 0.5659 0.5549 0.4959 0.4694 0.4419 0.4015 0.3824 0.3707
UGACH(I2T) [Jian et al., 2018] 0.3593 0.3759 0.3852 0.6430 0.6787 0.6801 0.5498 0.5837 0.5991 0.5408 0.5345 0.5537
UCH*(I2T) [Chao et al., 2019] — — — 0.6540 0.6690 0.6790 0.4470 0.4710 0.4850 — — —
SCM(I2T) [Zhang and Li, 2014] 0.1689 0.1483 0.1364 0.6757 0.6900 0.6903 0.5931 0.6025 0.6209 0.5314 0.5551 0.5563
Our SRCH(I2T) 0.3739 0.3800 0.3914 0.6808 0.6916 0.6997 0.5978 0.6052 0.6226 0.5441 0.5565 0.5671
CVH(T2I) [Kumar and Udupa, 2011] 0.3416 0.2891 0.2454 0.5840 0.5667 0.5667 0.5072 0.4788 0.4457 0.4051 0.3846 0.3721
CMFH(T2I) [Ding et al., 2014] 0.1758 0.1698 0.1793 0.5834 0.5669 0.5561 0.4532 0.4351 0.4993 0.3940 0.4515 0.4477
PDH(T2I) [Rastegari et al., 2013] 0.3448 0.2926 0.2512 0.5443 0.5441 0.5461 0.4370 0.4399 0.4402 0.3664 0.3667 0.3670
ACQ(T2I) [Irie et al., 2015] 0.3435 0.2912 0.2471 0.6281 0.6015 0.5806 0.5650 0.5606 0.5197 0.4452 0.4198 0.3988
IMH(T2I) [Song et al., 2013] 0.2363 0.2366 0.2183 0.5608 0.5693 0.5632 0.4130 0.4349 0.4426 0.3503 0.3562 0.3717
QCH(T2I) [Wu et al., 2015] 0.3414 0.2894 0.2455 0.5850 0.5672 0.5567 0.5054 0.4778 0.4450 0.4057 0.3851 0.3725
UGACH(T2I) [Jian et al., 2018] 0.3374 0.3673 0.3805 0.6564 0.6918 0.6990 0.5661 0.5948 0.6069 0.5449 0.5540 0.5654
UCH*(T2I) [Chao et al., 2019] — — — 0.6610 0.6670 0.6680 0.4460 0.4690 0.4880 — — —
SCM(T2I) [Zhang and Li, 2014] 0.2949 0.2545 0.2197 0.6275 0.6446 0.6787 0.5236 0.5161 0.5337 0.5233 0.5669 0.5569
Our SRCH(T2I) 0.3766 0.4006 0.4061 0.6971 0.7081 0.7146 0.6003 0.6060 0.6228 0.5533 0.5670 0.5754

Table 1: MAP results for various code lengths of text retrieval performance by image query (I2T) and image retrieval performance by text
query (T2I). In this table ’*’ on the right of methods’ names represents the values are according to results in their original paper, and ’—’
means not reported.

Dataset Wiki & MSCOCO MIRFlickr-25k & NUS-WIDE
Setting Reference [Irie et al., 2015] [Jian et al., 2018]

Table 2: Experimental settings on four datasets.

Methods (Task) Wiki MSCOCO
16bit 32bit 64bit 16bit 32bit 64bit

SRCH (I2T) 0.3739 0.3800 0.3914 0.5978 0.6052 0.6226
SRCH w/o QL (I2T) 0.3134 0.3585 0.3800 0.5916 0.6033 0.6184
SRCH w/o RL (I2T) 0.3016 0.3308 0.3592 0.5688 0.5924 0.6162
SRCH w/o SL (I2T) 0.2135 0.2576 0.2601 0.4815 0.5181 0.5201
SRCH (T2I) 0.3766 0.4006 0.4061 0.6003 0.6060 0.6228
SRCH w/o QL (T2I) 0.3304 0.3826 0.4019 0.5917 0.6029 0.6198
SRCH w/o RL (T2I) 0.3159 0.3362 0.3778 0.5659 0.5930 0.6204
SRCH w/o SL (T2I) 0.1741 0.2208 0.2427 0.4961 0.5074 0.5086

Table 3: MAP of ablation study on Wiki and MSCOCO.

3 Experiments
3.1 Experimental Settings
Datasets. We conduct our experiments on four typical
datasets, including Wiki [Rasiwasia et al., 2010], MIRFlickr-
25K [Huiskes and Lew, 2008], MSCOCO [Lin et al., 2014]
and NUS-WIDE [Chua et al., 2009]. Detailed experimental
settings are listed as Tab. 2.
Implementation details. For all of our experiments, we
follow the recent convention to use the VGG-16 fc7 fea-
tures as the image-side input with the dimension of 4096 and
the universal sentence encoder feature [Cer et al., 2018] for
text representation whose dimension is 512. α, β, and λ are
all hyper parameters of our experiment, and their values are
set to 0.0001, 0.001 and 10 respectively in our model. And
parameter k in the m-kNN algorithm is set to 10.

3.2 Comparison with Existing Methods
Baselines. As unsupervised cross-modal hashing algo-
rithms are limited till now, especially in recent years, we
compare our SRCH with six non-deep methods in this pa-
per, including CVH [Kumar and Udupa, 2011], CMFH [Ding
et al., 2014], PDH [Rastegari et al., 2013], ACQ [Irie et al.,

2015], IMH [Song et al., 2013] and QCH [Wu et al., 2015].
Besides, we also make comparisons with one supervised non-
deep model SCM [Zhang and Li, 2014] and two deep unsu-
pervised models UGACH [Jian et al., 2018] and UCH [Chao
et al., 2019] to prove our improvement. It is noticeable that
these methods except SCM are all unsupervised cross-modal
hashing techniques. All of these methods use identical fea-
tures to ours as inputs and we reproduce all results using the
codes provided by the original authors.

Quantitative results. Results of Mean Average Precision
(MAP) on text retrieval by image query (I2T) and image re-
trieval by text query (T2I) are listed in Tab. 1. It can be ob-
served that our method outperforms other methods on all four
datasets regardless of the cross-modal retrieval tasks and code
lengths, which demonstrates the effectiveness of this method.
Concretely, our text retrieval performance by image query
on Wiki dataset obtains at least 17% improvement on 16
bits, 32 bits and 64 bits compared with the other non-deep
algorithms while our image retrieval performance by text
query surpasses those compared methods more than 3.18%,
3.33% and 2.55% for different lengths of binary codes. On
the other three datasets, the improvements of our method are
also obvious, especially compared with those unsupervised
non-deep cross-modal hashing techniques. The correspond-
ing Precision-Recall (P-R) curves of all unsupervised non-
deep cross-modal hashing techniques are also reported in Fig.
3.

Qualitative results. Some retrieval results are selectively
reported to illustrate the empirical performance of our model.
Fig. 4 shows a randomly picked T2I query and the corre-
sponding retrieval results. Our method manages to retrieve
correct images while other methods have some failures ac-
cording to label matching results. Concretely, our top 10 re-
trieval images contain the majority of text information while
others’ correct results only match one keyword with query
sentence.
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Figure 3: Results of Precision VS Recall Curves of various non-deep
unsupervised cross-modal hashing methods on datasets MIRFlickr-
25K and NUS-WIDE with 32-bit codes.

3.3 Ablation Study
Component analysis. In this section, the structure of our
model is modified to see the significance of each compo-
nent. For simplicity, the first item of Eq. (3) is abbreviated
as QL (Quantization Loss) while the second term is called
as RL (Reconstruction Loss), and the last three terms of Eq.
(8) are simplified as SL (Similarity-preserving Loss). The re-
sults of our ablation study are listed in Tab. 3 and the symbol
‘w/o’ in table means ‘without’. Tab. 3 suggests that remov-
ing any component of our learning objective leads to retrieval
performance degradation. Among these three loss structures,
the effect of similarity preserving loss is larger than the other
two parts of losses. Specifically, this part of loss can improve
at least 8.7% on MSCOCO. The quantization loss and re-
construction loss have similar effects on cross-modal results
while the later one appears to be more important. From the
table, we can find that all these components are significant in
our method, and this experiment reflects our advantage com-
pared with other unsupervised methods.

Hyper-parameters. The hyper-parameters are also ana-
lyzed. We illustrate the influence of different loss penalties of
α, β and λ in Fig. 5 (a), (b) and (c) respectively on the Wiki
dataset [Rasiwasia et al., 2010]. It can be clearly seen that
our model is not extremely sensitive to these penalty weights,
suggesting that it can be conveniently trained and extended
on other datasets and the results are highly reproducible with
minimal training tricks. We also evaluate different values of k
for the Set operation of our training graph. Again, the model
accepts different values of k as our Rebase step can always
find the optimal graph connectivity for hashing during train-
ing. The idea of involving graph update in training is therefore
endorsed as the graph initialization is no longer dominating
the final retrieval performance.

People on the beach are surfing with a surfboard.Query text

S CH

QCH

SCM

UGACH

Figure 4: Qualitative results on MSCOCO Dataset with random
query text written on the top through 32-bit hashing codes. Returned
samples with red boxes are false-positive candidates.
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Figure 5: Hyper-parameter analysis of (a): α, (b): β, (c): λ and (d):
k for the Set step of graph with KNN on the Wiki dataset.

4 Conclusion
This paper proposed a new kind of unsupervised cross-
modal hashing method which utilized sparse graph structures
to exploit similarity information to address the degradation
problem in unsupervised algorithms. We made full use of
similarity-preserving and quantization strategies along with
reconstruction, and therefore this method can obtain more
satisfied performance than other unsupervised hashing algo-
rithms. This advantage can be found in terms of MAP values,
P-R curves and qualitative retrieving results on four popular
cross-modal retrieval datasets above. Furthermore, our abla-
tion study and hyper-parameter analysis demonstrated the ef-
fectiveness of this model in many aspects.
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