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Abstract

We consider a class of two-player turn-based zero-
sum games on graphs with reachability objectives,
known as reachability games, where the objective
of Player 1 (P1) is to reach a set of goal states, and
that of Player 2 (P2) is to prevent this. In particular,
we consider the case where the players have asym-
metric information about each other’s action capa-
bilities: P2 starts with an incomplete information
(misperception) about P1’s action set, and updates
the misperception when P1 uses an action previ-
ously unknown to P2. When P1 is made aware of
P2’s misperception, the key question is whether P1
can control P2’s perception so as to deceive P2 into
selecting actions to P1’s advantage? To answer
this question, we introduce a dynamic hypergame
model to capture the reachability game with evolv-
ing misperception of P2. Then, we present a fixed-
point algorithm to compute the deceptive winning
region and strategy for P1 under almost-sure win-
ning condition. Finally, we show that the synthe-
sized deceptive winning strategy is at least as pow-
erful as the (non-deceptive) winning strategy in the
game in which P1 does not account for P2’s misper-
ception. We illustrate our algorithm using a robot
motion planning in an adversarial environment.

1 Introduction
Synthesis of winning strategies in reachability games is a cen-
tral problem in reactive synthesis [Pnueli and Rosner, 1989],
control of discrete event systems [Ramadge and Wonham,
1989], and robotics [Fainekos et al., 2009]. In a two-player
reachability game, a controllable player, P1 (pronoun “she”),
plays against an uncontrollable adversarial player, P2 (pro-
noun “he”), to reach the goal states. These games have
been extensively studied in algorithmic game theory [de Al-
faro et al., 2007] and reactive synthesis [Bloem et al., 2012].
Polynomial-time algorithms are known for synthesizing sure-
winning and almost-sure winning strategies, when both play-
ers have complete and symmetric information. However, the
solution concepts for such games under asymmetric informa-
tion have not been thoroughly studied.

Information asymmetry arises when a player has some pri-
vate information that are not shared with others [Rasmusen,
1989]. We consider the case when P1 has complete infor-
mation about both players’ action capabilities, but P2 starts
with an incomplete information about P1’s action capabili-
ties. As two players interact, their information evolves. Par-
ticularly, when P1 uses an action previously unknown to P2,
P2 can update his knowledge about the other’s capabilities
using an inference mechanism. In response, P2 would update
his counter-strategy. We are interested in the following ques-
tion: if P1 is made aware of the initial information known to
P2 and his inference mechanism, can P1 find a strategy to
control P2’s information in such a way that P2’s counter-
strategy given his evolving information is advantageous to
P1? In the context of qualitative analysis of reachability
games, this could be interpreted as: from a state that is losing
for P1 in a game with symmetric information, can P1 reach
his goal from the same state when the information is asym-
metric? We note that a strategy of P1 that controls P2’s in-
formation to P1’s advantage is indeed deceptive [Ettinger and
Jehiel, 2010]. In this paper, we establish that such a deceptive
winning strategy may exist under almost-sure winning condi-
tion and propose an algorithm to synthesize it.

We approach the question by modeling the interaction
between P1 and P2 as a hypergame [Bennett, 1977]. A
hypergame allows players to play different games in their
minds and further allows them to model the games that
others might be playing. In literature, hypergames and
Bayesian games [Harsanyi, 1967] are common models to
capture game-theoretic interactions with asymmetric, incom-
plete information. In Bayesian games, each player uses his
incomplete information to define a probability distribution
over the possible types of the opponent. The distributions
over types are assumed to be common knowledge. In hy-
pergames, no such probabilistic characterizations of incom-
plete information is used or assumed. For action decep-
tion, P2 has incomplete information about P1’s capabilities
but does not have a prior knowledge about the set of pos-
sible types of P1. Thus, we adopt the hypergame model to
understand action deception. In the past, hypergame model
has been used to study deception [Gutierrez et al., 2015;
Kovach, 2016]. These papers mainly focus on extending
the notion of Nash equilibrium to level-k normal form hy-
pergames. [Gharesifard and Cortés, 2014] use the notion of
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H-digraph to establish necessary and sufficient conditions for
deceivability. An H-digraph models a hypergame as a graph
with nodes representing different outcomes in a normal-form
game. However, our game model is not a normal-form game,
but instead a game on graph. A hypergame model based on a
game on graph has been defined in [Kulkarni and Fu, 2019]
where one player has incomplete information about the op-
ponent’s task specification. However, their model assumes
the perception of P2 to remain constant, whereas in our case,
the information available to both players’ may evolve as the
game progresses. Given this background, we state the two
key contributions of the paper.
Dynamic Hypergame Model for Action Misperception.
We introduce a dynamic hypergame on graph model that cap-
tures (i) the evolving information of P2, and (ii) the P1’s
information regarding current perception of P2, in a single
graphical model.
Deceptive Almost-sure Winning Synthesis Algorithm.
Given a dynamic hypergame model, we propose an algo-
rithm to compute deceptive almost-sure winning region, and
thereby a deceptive almost-sure winning strategy for P1 that
effectively exploits P2’s misperception. We prove that the
deceptive winning region is a superset of the (non-deceptive)
winning region in the symmetric information game where P1
does not account for P2’s misperception. This in turn implies
that the deceptive winning strategy is at least as powerful as
the (non-deceptive) winning strategy.

2 Preliminaries
Let Σ be a finite alphabet. A sequence of symbols w =
w0w1 . . . wn with wi ∈ Σ, i = 0, 1, . . . , n is called a finite
word and Σ∗ is the set of finite words that can be generated
with alphabet Σ. We denote by Σω , the set of ω-regular words
obtained by concatenating the elements in Σ infinitely many
times. Given a set X , let Dist(X) be the set of probability
distributions over X . Given a distribution δ ∈ Dist(X), the
set Supp(δ) = {x ∈ X | δ(x) > 0} is called the support of
the distribution.

2.1 Games on Graph
Consider an interaction between two players; P1 with a reach-
ability objective and P2 with an objective of preventing P1
from completing her task.
Definition 1 (Game on Graph). Let the action sets of P1 and
P2 be A1 and A2, respectively. Then, a turn-based game on
graph is the tuple

G = 〈S,Act, T, F 〉,

where

• S = S1 ∪ S2 is the set of states partitioned into P1’s
states, S1, and P2’s states, S2. P1 chooses an action
when s ∈ S1 and P2 chooses an action when s ∈ S2.
• Act = A1 ∪A2 is set of actions for P1 and P2.
• T : S × Act → S is a deterministic transition function

that maps a state and an action to a successor state.
• F ⊆ S is a set of final states.

Algorithm 1 Almost-Sure Winning Region [Mazala, 2002]

Inputs: G, F
1: Z0 = F
2: repeat
3: Pre1(Zk) = {s ∈ S1 | ∃a ∈ A1 s.t. T (s, a) ∈ Zk}
4: Pre2(Zk) = {s ∈ S2 | ∀b ∈ A2 : T (s, b) ∈ Zk}
5: Zk+1 = Zk ∪ Pre1(Zk) ∪ Pre2(Zk)
6: until Zk+1 = Zk
7: return Win1 = Zk

A trace in the game G is an infinite, ordered sequence
of state-action pairs τ = (s0, a0), (s1, a1), (s2, a2), . . .. We
write τ [n] = (sn, an) to denote n-th state-action pair. A run
ρ is the projection of trace onto the state space. We denote it
as the sequence ρ = τ �S= s0s1s2 . . .. Similarly, the action-
history is the projection of trace onto the action space, de-
noted by α = τ �Act= a0a1a2 . . .. The k-th element in a run
(resp. action-history) is denoted by ρk (resp. αk).

In this paper, we consider reachability objectives for P1.
The set of states that occur in a run is given by Occ(ρ) =
{s ∈ S | ∃k ∈ N · s = ρk}. A run ρ is said to be winning for
P1 in the reachability objective if it satisfies Occ(ρ)∩F 6= ∅.
If a run is not winning for P1, then it is winning for P2.

The memoryless stochastic or randomized strategies for P1
and P2 are defined as π : S1 → Dist(A1) and σ : S2 →
Dist(A2), respectively. As the model in Def. 1 is a deter-
ministic turn-based game model, it is sufficient to consider
memoryless strategies [Mazala, 2002]. Let Ωπ,σs be the ex-
haustive set of runs that result when P1 and P2 play strategies
π and σ in a game starting at the state s ∈ S. The randomized
strategies of P1 and P2 induce a Markov chain from G–that
is, a probability distribution over the set Ωπ,σs .

Given a state s ∈ S, a randomized strategy π is almost-
sure winning (ASW) for P1, if and only if for every possible
randomized strategy σ of P2, the probability is one for a run
that satisfies Occ(ρ) ∩ F 6= ∅, given the distribution of runs
induced by (π, σ). A state is called an almost-sure winning
(ASW) state for P1, if there exists an ASW strategy for P1
from that state. The exhaustive set of almost-sure winning
states for P1 is called her ASW region. The almost-sure win-
ning region can be computed using Alg. 1.

Let us introduce a running example that we shall use to
explain the concepts in this paper.

Example 1. Consider the game graph in Fig. 1. The circle
states, {s1, s3}, are P1 states and the square states, {s0, s2},
are P2 states. The objective of P1 is to reach to the final state
s0 from the initial state s2. P1’s action set is A1 = {a1, a2},
and P2’s action set is A2 = {b1, b2}.

The ASW region for P1 in the game is Win1 = {s0, s1}.
This can intuitively be understood as follows. P1 can win
from state s1 by choosing the action a1. However, the states
s2 and s3 are losing for P1 because P2 has a strategy to indef-
initely restrict the game within the states s2, s3 by choosing
the action b2 at the state s2.
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Figure 1: An example game on graph

2.2 Action Misperception and Information
Asymmetry

In this paper, we consider the sub-class of games with asym-
metric information in which P2 has incomplete information
about P1’s action capabilities. This is formalized in the fol-
lowing assumption.
Assumption 1. P1 has complete information about the play-
ers’ action sets, i.e. P1 knows A1 and A2. P2 only knows his
own action set A2, but (mis)perceives P1’s action set to be
a subset X ( A1. Both players have complete information
about the game state space S and the final states F .

The result of Assumption 1 is that P1 and P2, in their
minds, play different games to synthesize their respective
strategies. We refer to these games as the perceptual games
of the players. P1’s perceptual game is identical to the
ground-truth game; G(A1) = 〈S,A1 ∪ A2, T, F 〉, while P2’s
perceptual game is a game under misperception; G(X) =
〈S,X ∪ A2, T, F 〉. Let us formalize the new notation used
to distinguish between the perceptual games of P1 and P2.
Notation 1. Let X ⊆ A1 be a subset of P1’s action set. We
denote a perceptual game in which P1’s action set is X by
G(X) = 〈S,X ∪ A2, T, F 〉. The winning regions for P1 and
P2 in the game G(X) are denoted by Win1(X) and Win2(X),
respectively.

Assuming P1 and P2 to be rational players, they would
use the solution approach reviewed in Section 2.1 to compute
their winning strategies in their respective perceptual games.
That is, P1 will solve G(A1) in her mind to obtain π and P2
will solve G(X) in his mind to compute σ. However, P1 is
likely to compute a conservative strategy because she over-
estimates the information available to P2. Naturally, we want
to know whether P1 can improve her strategy if she is made
aware of P2’s current misperception X?

Before we answer the above question, recall from Section 1
that we allow P2’s misperception to evolve during the game.
For instance, what would happen when P2 observes P1 play-
ing an action a ∈ A1, which P2 did not believe to be in P1’s
action set? We might argue that P2 will at least add a new
action a to his perceived action set, X , of P1. Thus, the new
perception would be X ∪ {a}. Also, P2 might be capable of
complex inference. That is, on observing that P1 can perform
an action a, P2 might infer that P1 must be capable of actions
b and c, thus, updating his perception set to X ∪ {a, b, c}. To
capture such inference capabilities, we introduce a generic
perception update function for P2 as follows,
Definition 2 (Inference Mechanism). A deterministic infer-
ence mechanism is a function η : 2A1 ×A1 → 2A1 that maps

s0

s1 s2

start

s3>

a2

b1

b2 a2

Figure 2: Perceptual game of P2

a subset of actions X ⊆ A1 and an action a ∈ A1 to an
updated subset of actions Y = η(X, a) such that a ∈ Y .

Given the formalism of inference mechanism to capture the
evolving misperception of P2 during the game, we now state
our problem statement.

2.3 Problem Statement

When P2’s misperception evolves during the game, P1 should
also strategize to reveal an action that is not currently known
to P2. By doing so, P1 may control the evolution of P2’s
misperception to her advantage. Let us revisit Example 1 to
develop an intuition of how P1 might control P2’s perception.

Example 2 (Example 1 contd.). Suppose that, in Example 1,
P2 starts with a misperception about P1’s action capabilities
as X0 = {a2}. In this setup, let us understand the perceptual
games of the players. P1’s perceptual game; G1 = G(A1), is
the same as the ground-truth game as shown in Fig. 1. P2’s
perceptual game, initially, is the game G2 = G(X0) that does
not include edges labeled with action a1 as shown in Fig. 2.
Clearly, as the final state s0 is not reachable in G2, P2 mis-
perceives both actions b1 and b2 to be safe to play at state s2,
when only the action b2 is safe in the ground-truth game.

When P1 is aware of P2’s misperception, X0, a deceptive
strategy should, intuitively, not use a1 unless the game state
is s1. Assuming P2 uses a randomized strategy with support
A2, it is easy to compute that the probability of reaching the
state s1 from the initial state s2 is one. At s1, P1 can win the
game by choosing a1 in one step. We note that if P1 uses a1
in state s3, then P2 will update his perception to X1 = A1,
and mark the action b1 to be unsafe in state s2. Thus, P1 will
never be able to win the game.

We call such a strategy of P1, where she intentionally con-
trols P2’s misperception, as an action-deceptive strategy or
simply a deceptive strategy (see Def. 6 for a formal defini-
tion). We formalize our problem statement.

Problem 1. Consider a reachability game under information
asymmetry in which Assumption 1 holds. If P1 is informed of
the initial misperception of P2, X0, and his inference mecha-
nism η, then determine a deceptive almost-sure winning strat-
egy for P1 to satisfy her reachability objective.

In particular, we want to investigate whether the use of de-
ception is advantageous for P1 or not. We say P1 gets ad-
vantage with deception if at least one game state that is not
almost-sure winning for P1 in the game without deception
becomes winning for her with use of deception.
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3 Dynamic Hypergame for Action Deception
When two players play different games in their minds, their
interaction is better modeled as a hypergame [Bennett, 1977].

Definition 3 (First-level Hypergame). A first-level hyper-
game is defined as a tuple of the perceptual games being
played by the players,

H1 = 〈G1,G2〉,

where the P1 (resp. P2) solves the game G1 (resp. G2) to
compute the winning strategy.

When one of the players is aware of the other player’s per-
ception, but the other player is not, we say that a second-level
hypergame is being played. In line with Problem 1, we as-
sume that P1 is aware of the P2’s misperception, i.e. P1 knows
the action set X ⊆ A1 as perceived by P2. If P1 knows X ,
then P1 can construct the perceptual game of P2, G(X), and
therefore P1 knows the first-level hypergameH1.

However, P2’s perception evolves when he observes P1 us-
ing actions that are not included in X . This means that the
game G(X) changes when P2’s perception changes, and so
does the hypergameH1. We now define a graph to model the
hypergame representing the evolving misperception of P2,
called as a dynamic hypergame on graph.

Definition 4 (Dynamic Hypergame on Graph). Let Γ = 2A1 .
We define the dynamic hypergame on graph with action mis-
perception as

H = 〈V,Act,∆,F〉,
where

• V = S × Γ is the set of hypergame states,

• Act = A1 ∪A2 is the set of actions of P1 and P2,

• ∆ : V × Act → V is the transition function such that
(s,X)

a−→ (s′, X ′) if and only if s′ = T (s, a) and X ′ =
η(X, a),

• F = F × Γ is the set of final states.

For convenience, we shall refer to the dynamic hypergame
on graph as simply hypergame in the remainder of the pa-
per. Analogous to game on graph, a trace in a hypergame
is an infinite, ordered sequence of state-action pairs given
by τ = (v0, a0)(v1, a1) . . . and the action-history is de-
fined as α = τ �Act= a0a1a2 . . .. In contrast with the
game on graphs, we distinguish between a hypergame-run
(h-run) as a projection of trace onto the hypergame state
space ν = τ �V = v0v1v2 . . . and a game-run as a projec-
tion of trace onto game state space ρ = τ �S= s0s1s2 . . .,
where sk is the game state corresponding to hypergame state
vk = (sk, ·). A reachability objective is said to be satisfied
over the hypergame if and only if Occ(ν) ∩ F 6= ∅, i.e. the
hypergame-run ν visits a winning state in F . By definition,
the following statement is always true; Occ(ρ)∩F 6= ∅ if and
only if Occ(ν) ∩ F 6= ∅.
Example 3 (Example 1 contd.). The hypergame mod-
eling the asymmetric information from Example 2 is
shown in Fig. 3 (the figure only shows the reachable
states). Every state is represented as a tuple of a
game state and the current misperception of P2 at that

(s0, X2)

(s1, X1) (s2, X1)

start

(s3, X1) (s1, X2)

(s2, X2) (s3, X2)

>

a1

a2

b1

b2 a1a2

a1

a2 b1

b2

a1

a2

Figure 3: The dynamic hypergame on graph

state. Letting X1 = {a2} and X2 = {a1, a2},
the traces τ1 = ((s2, X1), b1) , ((s1, X1), a1) , (s0, X2),
and τ2 = ((s2, X1), b2) , ((s3, X1), a1) , ((s2, X2), b1) ,
((s1, X2), a1) , (s0, X2) are the examples of winning traces
for P1 in the hypergame. However, in the next section, we
will see that (a) τ2 will never be observed when both players
act rationally, whereas τ1 might be observed, and (b) how to
identify all rationally possible winning traces for P1.

4 Synthesis of Deceptive Almost-Sure
Winning Strategy

In this section, we present an algorithm to synthesize decep-
tive almost-sure winning (DASW) strategies that are ratio-
nally possible in the hypergame. To do so, we must reason
about P2’s perception and his subjectively rational actions. To
understand this, we revisit the concept of permissive strate-
gies in a game on graph.

Recall that an action is permissive for a player at a given
state if the player can stay within the winning region by per-
forming that action [Bernet et al., 2002]. In a game under
information asymmetry, whether a state is winning or not de-
pends on the player’s perception. Hence, we define the notion
of perceptually permissive actions, which extends the defini-
tion of permissive actions to model evolving perception.

Definition 5 (Perceptually Permissive Actions of P2). Let
u = (s,X) ∈ V2 and v = (s′, X) be two hypergame states
such that v = ∆(u, b) for some b ∈ A2. Then, the set
M(u) = {a ∈ A2 | s′ ∈Win2(X)} is the set of P2’s percep-
tually permissive actions at u.

In words, the perceptually permissive actions for a given
state u = (s,X) is the set of permissive actions for P2 in the
perceptual game with action set X .

Remark 1. By Def. 2, P2’s action does not have any effect on
P2’s perception. Hence, the P2’s perception at v is the same
as her perception at u, i.e. X .

Assumption 2. At a state v ∈ V2, P2 plays a randomized
strategy, σ, defined over the perceptually permissive actions
M(v) such that Supp (σ(v)) = M(v).

Now, we formalize the notion of Deceptive Almost-Sure
Winning (DASW) strategy.

Definition 6 (Deceptive Almost-Sure Winning (DASW)
Strategy). Given a hypergame state v ∈ V , a strategy π is
said to be deceptive almost-sure winning (DASW) strategy for
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P1 if and only if for every P2’s strategy σ satisfying Assump-
tion 2, the probability of an h-run ν induced fromH by (π, σ)
satisfying Occ(ν) ∩ F 6= ∅ is one.

The states at which P1 has a DASW strategy are called as
DASW states. The exhaustive set of all DASW states is called
DASW region.

Now, we discuss Alg. 2 that computes the DASW region
for P1. Our algorithm is inspired by the algorithm presented
in [de Alfaro et al., 2007] to compute the almost-sure win-
ning (ASW) region in the concurrent ω-regular games. The
idea behind Alg. 2 is to identify the states where P2 perceives
some unsafe actions as safe due to misperception. This is
achieved by modifying the definitions of SAFE-1 and SAFE-
2 in [de Alfaro et al., 2007] using the following definitions:

DAPre11(U) = {v ∈ V1 | ∃a ∈ A s.t. ∆(v, a) ∈ U},
DAPre21(U) = {v ∈ V2 | ∀b ∈M(v) s.t. ∆(v, b) ∈ U},
DAPre12(U) = {v ∈ V1 | ∀a ∈ A s.t. ∆(v, a) ∈ U},
DAPre22(U) = {v ∈ V2 | ∀b ∈M(v) s.t. ∆(v, b) ∈ U}.

The Alg. 2 works as follows. It starts with Z0 =
Win1(A1) × Γ from where P1 has an ASW strategy to win
the game no matter of P2’s perception. Then it iteratively ex-
pands the set by invoking SAFE-2 followed by SAFE-1 until
a fixed-point is reached. The SAFE-1 sub-routine computes
the largest subset Y of the input set U , such that P1 has a
strategy to restrict the game indefinitely within Y . SAFE-2
sub-routine computes the largest subset Y of the input set U ,
such that given his current (mis)perception, P2 can restrict the
game indefinitely within Y . Here, it is important to note that
P2 chooses his actions based on his perceptual game G(X),
and not the hypergame. Only P1 knows the hypergame be-
cause she is aware of P2’s misperception. As a consequence,
before reaching the fixed-point, SAFE-2 might include states
from which P2 may not have a strategy to indefinitely restrict
P1 from reaching Z0, i.e. P1 may have a DASW strategy from
these states. However, after reaching the fixed-point, say in
the iteration k, we observe that all DASW states are included
in Zk. A DASW strategy can then be computed based on the
proof of Thm. 1. Let us now revisit the Example 3 to under-
stand Alg. 2.

Example 4 (Example 3 contd.). Consider the hypergame
graph as shown in Fig. 3. Recall from Example 1 that
Almost-Sure Winning (ASW) region is Win1(A1) = {s0, s1},
therefore, we have Z0 = {(s0, X2), (s1, X2), (s1, X1)} (we
omit (s0, X1) as it is unreachable). The perceptually per-
missive actions for P2 are M((s2, X1)) = {b1, b2} and
M((s2, X2)) = {b2}.
Iteration 1 of DASW. The first step is to compute C0,
i.e. the subset of V \ Z0 which P2 perceives to be safe for
himself. The SAFE-2 sub-routine takes 3 iterations to reach
a fixed-point, at the end of which C0 = {(s2, X2), (s3, X2)}.
The next step is to compute Z1, which the largest subset of
V \ C0 in which P1 can stay indefinitely. The SAFE-1 sub-
routine takes 2 iterations to reach a fixed point. In its first
iteration, DAPre11 adds a state (s3, X1) and DAPre21 adds a
state (s2, X1) to Z1. The interesting observation here is that

Algorithm 2 Deceptive Almost-Sure Winning Region for P1

1: function DASW(H)
2: Z0 = Win1(A1)× Γ
3: repeat
4: Ck = SAFE-2(V \ Zk)
5: Zk+1 = SAFE-1(V \ Ck)
6: until Zk+1 = Zk
7: return DASWin1 = Zk
8: end function
1: function SAFE-i(U )
2: Y0 = U
3: repeat
4: W1 = DAPre1i (Yk)
5: W2 = DAPre2i (Yk)
6: Yk+1 = Yk ∩ (W1 ∪W2)
7: until Yk+1 = Yk
8: return Yk
9: end function

(s2, X1) is added because the actions b1 and b2 are percep-
tually permissive actions for P2, both of which lead to a state
in V \ C0.
Iteration 2 of DASW. The fixed-point of DASW algo-
rithm is reached in this iteration with Z2 = {(s0, X2),
(s1, X2), (s1, X1), (s2, X1), (s3, X1)}. The states (s2, X1)
and (s3, X1) are idenitifed as the DASW states for P1.

Using intuition from Example 4 with the observation that
Win1(A1) ⊆ DASWin1 �S holds for every hypergame H by
definition, we formalize our first key result. It establishes that
using action deception could be advantageous to P1.
Proposition 1. There exists a hypergame H for which
Win1(A1) ( DASWin1 �S .

Next, we proceed to prove the correctness of Alg. 2 by
showing that from every state in DASWin1, we can construct
a DASW strategy for P1 to ensure a visit to final states with
probability one. We first prove two lemmas.
Lemma 1. In the i-th iteration of Alg. 2, P1 has a strategy to
restrict the game indefinitely within Zi, for all states in Zi.

Proof. (v ∈ V2). For a P2’s state in Zi, every state v′ =
∆(v, b) for a perceptually permissive action b ∈ µ(v) of P2
is in Zi, by definition of DAPre21. Hence, no action of P2 at
any state v ∈ Zi can lead the game state outside Zi.

(v ∈ V1). For every P1’s state in Zi, there exists an ac-
tion a ∈ A such that the successor v′ = ∆(v, a) is in Zi,
by definition of DAPre11. Hence, P1 always has an action,
consequently a strategy, to stay within Zi.
Lemma 2. For every state v ∈ Zi+1 \ Zi added in the i-th
iteration of Alg. 2, there exists an action that leads into Zi.

Proof. Given any state v ∈ V at the beginning of the i-th
iteration, observe that it would belong to either Ci−1, Zi or
V \(Ci−1∪Zi). We will prove the statement by showing that
the every new state added to Zi+1 has at least one transition
into Zi.

Consider i-th iteration of Alg. 2. The sub-routine SAFE-2
will add a P1 state v ∈ V1 \ Zi to Ci if all the actions of P1
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stay within V \ Zi. Similarly, SAFE-2 will include a P2 state
v ∈ V2 \ Zi in Ci if all perceptually permissive actions of P2
lead to a state within V \ Zi. Therefore, a state that is not
included in Ci must have at least one action leading outside
V \ Zi, i.e. entering Zi. In the next step, the sub-routine
SAFE-1 may add new states to Zi+1 from the set V \Ci. But,
all states in V \Ci have an action entering Zi. Hence, all new
states added to Zi+1 satisfy the statement.

Lma. 2 shows that P1 has a strategy to reach Zi from a state
added to Zi+1 in one-step. However, this is not true for P2.
From a P2 state in Zi+1, there exists a positive probability to
reach Zi because of Assumption 2. In the next theorem, we
prove a stronger statement that from every state in Zi+1, P1
can reach not only Zi but also Z0 with probability one.
Theorem 1. From every state v ∈ DASWin1, P1 has a
DASW strategy to satisfy ϕ.

Proof. For any v ∈ Zi, i > 1, P1 has a strategy to stay within
Zi indefinitely, by Lma. 1. Furthermore, by Lma. 2, the prob-
ability of reaching to a state v′ ∈ Zi−1 from v is strictly
positive. Thus, given a run of infinite length, the probability
of reaching Zi−1 from Zi is one. By repeatedly applying this
argument, the probability of reaching Z0 from Zi is one.

The DASW strategy can be constructed based on the proof
of Thm. 1. At a P1 state v ∈ V1, if i ≥ 1 is the smallest
integer such that v ∈ Zi, then π(v) = {a ∈ A1 | v′ =
∆(v, a) and v′ ∈ Zi−1} is the DASW strategy of P1 at v.
Given π(v) is a set, P1 can select any action from this set.
We also state the following two important corollaries (proofs
omitted due to space) that follow from Prop. 1 and Lma. 2.
Corollary 1.1. For every i ≥ 0, we have Zi ⊆ Zi+1.
Corollary 1.2. The projection of DASW region onto the game
states is a superset of the ASW region.

Following the approach used in [de Alfaro et al., 2007], we
note the complexity of Alg. 2 is quadratic in the size of V .

5 An Illustrative Example
We present a robot motion planning example over a 4 × 4
gridworld, shown in Fig. 4, to illustrate how a robot (P1)
may use action deception in presence of an adversary (P2).
The objective of the robot is to visit the two cells (3, 1) and
(3, 3) containing the flags, while the task of the adversary is
to prevent this. The readers familiar with Linear Temporal
Logic (LTL) may recognize the above objective as a co-safe
LTL specification ♦G1 ∧ ♦G2. The action set of the robot
is A1 = {N, E, S, W, NE, NW, SW} while that of adversary
is A2 = {N, E, S, W}, where N, E, S, W stand for north,
east, south and west. At the start of the game, the adver-
sary has incomplete information about the robot’s action set
as X0 = {N, E, S, W}. When the adversary observes the
robot performing any of the actions from {NE, NW, SW}, he
updates his perception to X1 = A1.

A game on graph representing above scenario can be con-
structed using the product operation given in [Baier and
Katoen, 2008, Def. 4.16]. Every game state is a tuple
(x1, y1, x2, y2, t, q) where xi, yi for i = 1, 2 denote the cell
that P1 and P2 occupy, t represents the player who chooses
the next move and q denotes a state of a deterministic finite

Figure 4: A game between P1 (angel) and P2 (demon).

automaton that keeps track of the progress P1 has made to-
wards completion of her objective. The resulting game has
44 × 2 × 4 = 2048 states. We mark the states where P1 or
P2 collide with an obstacle or with each other as the losing
states for both players and, therefore, any action that leads to
such states is disabled. Given the game on graph, a hyper-
game graph is constructed according to Def. 4. The hyper-
game graph has 2048×2 = 4096 states because the adversary
has two information states; X0 and X1.

When Alg. 2 is applied to the above hypergame graph,
2106 out of 4096 states are identified as DASW states. The
projection of DASW states onto game state space results in
1172 states, while the ASW region has the size of 934 states.
This means that 1172− 934 = 238 game states that were not
almost-sure winning for P1 became winning for her, when P1
uses the DASW strategy.

6 Discussion and Conclusion
In this paper, we introduce a hypergame model to represent
the interactions between two players with asymmetric infor-
mation about their action capabilities. Given this model, we
present an algorithm to synthesize action-deceptive strate-
gies in a two-player turn-based zero-sum reachability game,
where P2 starts with incomplete information about the P1’s
action capabilities. The synthesized strategy has two desir-
able properties. First, the DASW strategy is guaranteed to
satisfy the reachability objective with probability one. Sec-
ond, it is at least as powerful as the ASW strategy, because
the DASW region is a superset of the ASW region. It worth
noting that another game model of asymmetric information
is Bayesian game, in which players have a Bayesian view
of the types of others given their incomplete information.
Our choice of hypergame model over Bayesian game model
is motivated by the fact that a hypergame does not require
consistency of priors that is assumed by Bayesian games
[Halpern, 2002; Morris, 1995], and it also allows us to con-
sider non-Bayesian players. Future work will focus on inves-
tigating action deception within hypergames with temporal
logic payoffs and partial observations–that is, players have
imperfect information about the history of games.
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