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Abstract
We consider neural network training, in applica-
tions in which there are many possible classes, but
at test-time, the task is a binary classification task
of determining whether the given example belongs
to a specific class. We define the Single Logit Clas-
sification (SLC) task: training the network so that
at test-time, it would be possible to accurately iden-
tify whether the example belongs to a given class in
a computationally efficient manner, based only on
the output logit for this class. We propose a natu-
ral principle, the Principle of Logit Separation, as
a guideline for choosing and designing loss func-
tions that are suitable for SLC. We show that the
Principle of Logit Separation is a crucial ingredient
for success in the SLC task, and that SLC results in
considerable speedups when the number of classes
is large.

1 Introduction
When using neural network classifiers over a very large num-
ber of classes, a high computational burden at test-time oc-
curs. Indeed, in standard neural networks, using a softmax
layer and the cross-entropy loss, the computation needed for
finding the logits of the classes (the pre-normalized outputs
of the top network layer) is linear in the number of classes
[Grave et al., 2017], and can be prohibitively slow for high-
load systems, such as search engines and real-time machine-
translation systems.

In some applications, the task at test-time is not full clas-
sification of each example into one of the many possible
classes. Instead, the task, each time the trained classifier is
used, is to identify whether the current example should be
classified into one of a small subset of the possible classes,
or even a single class. This class can be different ev-
ery time the classifier is used. Consider for example the
case of real-time image search [Maturana and Scherer, 2015;
Redmon et al., 2016] from a live feed from multiple cameras.

∗This work is an extended abstract based on the publication
”Fast Single-Class Classification and the Principle of Logit Sepa-
ration”, winner of the Best Student Paper Award in the IEEE Inter-
national Conference on Data Mining 2019 [Keren et al., 2018c].

When the user queries for images of object A, the classifier
has to process a large number of images, and decide whether
each image contains an instance of object A or not. The clas-
sifier is then activated for the second time, this time with a
query to find images of object B. The classifier now processes
new images, to determine which ones contain an instance of
object B. This setting has various applications, such as iden-
tifying a person of interest in a live security feed and finding
a specific road sign from a camera of an autonomous car.

In the setting that we consider, while every use of the clas-
sifier at test-time tests for a single class (or a small number
of classes), the classifier itself must support queries on any of
the classes, since it will be used again and again, each time
with a different class as a query. As the number of classes
may be large, it is not reasonable to train a separate model
for every possible class that might be queried at test time. In-
stead, our goal is to have a single model which supports all
possible class-queries.

For this type of applications, one would ideally like to have
a test-time computation that does not depend on the total
number of possible classes. A natural approach is to calcu-
late only the logit of the class of interest, and use this value
alone to infer whether this is the true class of the example.
However, the logit of a single class might only be meaningful
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Figure 1: Computation time of the logits from network inputs, using
an inception-V3 image classification architecture where the topmost
layer is replaced according to the appropriate number of classes.
When applying SLC, computation cost is fixed regardless of the
number of classes, which can lead to considerable speedups when
the number of classes is large.
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Figure 2: The Principle of Logit Separation. Left: when training with the cross-entropy loss, the logit values for the class ‘Cat’ can be the
same for two examples, one where it is the true class (blue) and one where it is not (red). Therefore, at test-time, a logit with the same value
for the class ‘Cat’ does not indicate whether the example belongs to this class. Right: With a loss function that is aligned with the Principle of
Logit Separation, all true logits are greater than all false logits at training time. Hence, at test time, a single logit can indicate the correctness
of its respective class.

in comparison to logits of other classes, in which case, unless
the other logits are also computed, it cannot be used to suc-
cessfully determine whether the test example belongs to the
class of interest. We name the goal of inferring class correct-
ness from the logit of that class alone Single Logit Classifi-
cation (SLC). Note that SLC is a binary classification task,
stressing the fact that only one logit is computed. In Figure
1 we demonstrate the speedup yielded by SLC, compared to
binary classification in the method which computes all logits
and uses them for normalization, as the number of classes in-
creases. For instance, computing only a single logit yields a
10x speedup in evaluation time when there are 400,000 possi-
ble classes. The speedup increases with the number of possi-
ble classes. See Section 6 for more details on the experimen-
tal setting and the resulting speedup.

In the next sections, we introduce the Principle of Logit
Separation as a guideline for choosing and designing loss
functions that are appropriate for the SLC task. The extended
version of the work [Keren et al., 2018c] contains full proofs
for alignment of each of the seven considered loss functions
with the Principle of Logit Separation as well as full experi-
ment details and extended results.

2 The Principle of Logit Separation
In the SLC task, the only information about an example is
the output logit of the model for the single class of interest.
Therefore, a natural approach to classifying whether the class
matches the example is to set a threshold: if the logit is above
the threshold, classify the example as belonging to this class,
otherwise, classify it as not belonging to the class. We re-
fer to logits that belong to the true classes of their respective
training examples as true logits and to other logits as false
logits. For the threshold approach to work well, the values
of all true logits should be larger than the value of all false
logits across the training sample (in fact, it is enough to sep-
arate true and false logits on a class level, but we stick to the
stronger assumption in this work). This is illustrated in Fig-
ure 2. The Principle of Logit Separation (PoLS) captures this
requirement. We formalize this principle below.

Let [k] := {1, . . . , k} be the possible class labels. Assume
that the training sample is S = ((x1, y1), . . . , (xn, yn)),
where xi ∈ Rd are the training examples, and yi ∈ [k] are
the labels of these examples. For a neural network model
parametrized by θ, we denote by zθy(x) the value of the logit
assigned by the model to example x for class y. The Principle
of Logit Separation (PoLS) can be formally stated as follows:

Definition 1 (The Principle of Logit Separation). The Prin-
ciple of Logit Separation holds for a labeled set S and a
model θ, if for any (x, y), (x′, y′) ∈ S (including the case
x = x′, y = y′) and any y′′ 6= y′, we have zθy(x) > zθy′′(x

′).

The definition assures that every true logit zθy(x) is larger
than every false logit zθy′′(x

′). If this simple principle holds
for all train and test examples, it guarantees perfect accuracy
in the SLC task, since all true logits are larger than all false
logits. Thus, a good approach for a training objective for SLC
is to attempt to optimize for this principle on the training set.
A loss ` is aligned with the Principle of Logit Separation if
for any training sample S, minimizing ` on S ensures that the
requirement in Definition 1 holds for the resulting model θ.

3 Standard Objectives in View of the PoLS
The Cross-Entropy Loss The cross-entropy loss, which is
the standard loss function for neural network classifiers (e.g.,
[Krizhevsky et al., 2012]), is defined on a single example as

`(z, y) = − log(py), (1)

where

py :=
ezy∑k
j=1 e

zj
=
( k∑
j=1

ezj−zy
)−1

.

It can be shown that the cross-entropy loss does not satisfy
the PoLS. Indeed, as the loss depends only on the difference
between logits for every example separately, minimizing it
guarantees a certain difference between the true and false log-
its for every example separately, but does not guarantee that
all true logits are larger than all false logits in the training set.
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Dataset Method 1-AUPRC 1-Precision@0.9 1-Precision@0.99

MNIST
Mean non-PoLS 0.010 0.011 0.232
Mean PoLS 0.002 0.001 0.027
Relative improvement 80.0% 90.9% 88.4%

SVHN
Mean non-PoLS 0.022 0.026 0.538
Mean PoLS 0.017 0.016 0.319
Relative improvement 23.6% 39.6% 40.8%

CIFAR-10
Mean non-PoLS 0.101 0.305 0.704
Mean PoLS 0.074 0.211 0.608
Relative improvement 26.9% 30.9% 13.7%

CIFAR-100
Mean non-PoLS 0.487 0.879 0.975
Mean PoLS 0.405 0.834 0.971
Relative improvement 16.8% 5.2% 0.4%

Imagenet
(1000 classes)

(6 · 106 iterations)

CE 0.366 0.739 0.932
batch CE 0.245 0.563 0.865
Relative improvement 33.1% 23.8% 7.2%

Table 1: Results on Single Logit classification (SLC), averaged according to alignment with the PoLS.

The Max-Margin Loss Max-margin training objectives,
most widely known for their role in training Support Vector
Machines, are used in some cases for training neural networks
[Socher et al., 2011; Janocha and Czarnecki, 2017]. Here we
consider the multiclass max-margin loss suggested by [Cram-
mer and Singer, 2001], defined as

`(z, y) = max(0, γ − zy +max
j 6=y

zj), (2)

where γ > 0 is a hyperparameter that controls the separa-
tion margin between the true logit and the false logits of the
example. It can be shown that this loss too does not satisfy
the PoLS, since minimizing it again guarantees only a certain
difference between the true and false logits for every example
separately, and not across the entire training sample.

4 Objectives that Satisfy the PoLS

In this section we discuss training objectives that have been
previously proposed in the literature, and we show that these
objectives indeed satisfy the PoLS.

We consider the binary cross-entropy loss, that is often
used in multilabel classification settings. In multilabel set-
tings, each example can belong to several classes, and the
goal is to identify the set of classes an example belongs to.
A common approach [Wang et al., 2016; Huang et al., 2013]
is to try to solve k binary classification problems of the form
“Does x belong to class j?” using a single neural network
model, by minimizing the sum of the cross-entropy losses that
correspond to these binary problems. In this setting, the label
of each example is a binary vector (r1, . . . , rk), where rj = 1
if x belongs to class j and 0 otherwise. The loss for a single

training example with logits z and label-vector r is

`(z, (r1, . . . , rk)) =

−
n∑
j=1

rj log(σ(zj)) + (1− rj) log(1− σ(zj)),

where σ(z) = (1 + e−z)−1 is the sigmoid function. This
loss can also be used for our setting of multiclass problems,
by defining rj := 1j=y for an example (x, y). This gives the
multiclass loss

`(z, y) = − log(σ(zy)) +
∑
j 6=y

log(1− σ(zj)).

The binary cross-entropy is also aligned with the PoLS.
Indeed, similarly to case of the NCE loss, it is easy to see that
when the term above is minimized for one example, the value
of true logit zy converges to infinity, and the values of all false
logits converge to negative infinity. When the above term is
minimized for the entire training set, all true logits are larger
than all false logits across the training set.

In the extended version of this work [Keren et al., 2018c],
we consider two additional existing loss function, namely the
Self-normalization loss [Devlin et al., 2014] and the Noise
Contrastive Estimation (NCE) loss [Gutmann and Hyvärinen,
2010; Mnih and Teh, 2012]. Both loss function were previ-
ously considered in the context of natural language learning,
and we show that they are aligned with the PoLS.

5 New Training Objectives for the SLC Task
We propose new training objectives for the SLC task, de-
signed to satisfy the PoLS1. We define a batch version of the

1Tensorflow code for optimizing the new batch losses is pub-
licly available at https://github.com/cruvadom/Logit Separation.
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cross-entropy loss, using the KL-divergence between distri-
butions over batches. Note that the standard cross-entropy
loss can be defined using the KL-divergence between the
model posterior probability distribution and the one-hot tar-
get distribution. Recall that the i’th example in a batch B is
denoted (xi, yi). Let PB be the distribution over [m] × [k]
defined by

PB(i, j) :=

{
1
m j = yi,

0 otherwise.

LetQB be the distribution defined by the softmax normalized
logits over the entire batch B. Formally, denote Z(B) :=
m∑
i=1

k∑
j=1

ezj(xi). Then QB(i, j) := ezj(xi)/Z(B). We then

define the batch cross-entropy loss as follows.

Definition 2 (The batch cross-entropy loss). Let m > 1 be
an integer, and let B be a uniformly random batch of size m
from S. The batch cross-entropy loss of a training sample S
is

`(S) := EB [Lc(B)], where Lc(B) := KL(PB ||QB).

This batch version of the cross-entropy loss is aligned with
the PoLS. Indeed, when this loss is minimized for one train-
ing batch, all true logits converge to some positive value (as a
normalized exponentiated true logit converges to 1/m), while
all false logits converge to negative infinity (as a normalized
exponentiated false logit converges to zero). Therefore, when
minimizing this loss across the whole training set, all true log-
its are larger than all false logits in the training set. Similarly,
we introduce the batch version of the max-margin loss, which
is described in the extended version of this work [Keren et al.,
2018c].

6 Experiments
We tested the SLC tasks on neural networks trained with
each of the seven loss functions we considered above, five of
which are aligned with the PoLS. To evaluate the success of a
learned model in the SLC task, we measured, for each class j
and each threshold T , the precision and recall in identifying
examples from class j using the test zj > T , and calculated
the Area Under the Precision-Recall curve (AUPRC) defined
by the entire range of possible thresholds. We also measured
the precision at fixed recall values (with dictate the thresh-
old T to use) 0.9 (Precision@0.9) and 0.99 (Precision@0.99).
We report the averages of these values over all the classes in
the dataset.

We used five benchmark datasets for our evaluations. For
the MNIST dataset [LeCun et al., 1998], we used a neural net-
work with two fully-connected layers. For the SVHN [Net-
zer et al., 2011], CIFAR-10 and CIFAR-100 [Krizhevsky and
Hinton, 2009] datasets, a neural network with six convolu-
tional layers and one fully-connected layer was used. For
the Imagenet dataset, we used the Inception-V3 architecture
[Szegedy et al., 2016]. Experiment results are reported in Ta-
ble 1, and contain averaged results according to PoLS align-
ment. It can be seen that the mean relative improvement of
training objectives that are aligned with the PoLS compared

Architecture Classes Time [s] SLC Speedup

Alexnet

1 (SLC) 3.6 · 10−3 —
214 4.0 · 10−3 x1.14
218 20.2 · 10−3 x5.68
218.5 76.0 · 10−3 x21.38

VGG-16

1 (SLC) 9.4 · 10−3 —
214 9.9 · 10−3 x1.05
218 26.4 · 10−3 x2.79
218.5 80.5 · 10−3 x8.52

Inception-v3

1 (SLC) 6.0 · 10−3 —
214 6.5 · 10−3 x1.09
218 18.7 · 10−3 x3.11
218.5 76.6 · 10−3 x12.75

Resnet-50

1 (SLC) 6.1 · 10−3 —
214 6.6 · 10−3 x1.08
218 19.1 · 10−3 x3.11
218.5 78.0 · 10−3 x12.69

Resnet-101

1 (SLC) 8.0 · 10−3 —
214 8.3 · 10−3 x1.04
218 23.5 · 10−3 x2.95
218.5 80.4 · 10−3 x10.10

Table 2: Speedup experiment results. When the number of examples
is large, SLC results in a considerable speedup.

to non-aligned objectives is usually at least 20%, and in many
cases considerably more.

In addition, we estimated the speedups gained by perform-
ing SLC, compared to methods in which all logits are com-
puted, using five prominent image classification architectures.
Since we are interested in test-time performance, we report
the time required for computing the forward-pass of a given
network. To measure SLC computation time, we replace the
top layer by a layer with a single unit and measure the time
to compute the single logit given an input to the network. To
measure the computation time when computing the logits of
k classes, we replace the top layer with a layer containing
k units, and again measure the time it takes to compute all
logits, given an input to the network.

The timing results are given in Table 2. The results in the
table show that for networks with up to 214 = 16384 classes,
the speedup is relatively small, since computation of the net-
work layers other than the logit layer dominates the forward-
pass computation time. In contrast, when there are many
classes, the computation of logits dominates the forward-pass
computation time. Hence, SLC obtains a speedup as high as
x20, which grows when the number of classes is larger.

7 Conclusion
We consider the Single Logit Classification (SLC) task,
which is important in various applications. We formu-
late the Principle of Logit Separation (PoLS), and study its
alignment with seven loss functions, including the standard
cross-entropy loss and two novel loss functions. We estab-
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lished, and corroborated in experiments, that PoLS-aligned
loss functions yield class logits that are more useful for bi-
nary classification. We further demonstrated that training
with a PoLS-aligned loss function and applying SLC leads to
considerable speedups when there are many classes. Recent
years have seen a constant increase in the number of classes
in datasets from various domains, thus we expect SLC and the
PoLS to play a key role in various applications. Future work
plans include extending the scope of the Principle of Logit
Separation by applying it to other training mechanisms that
do not involve loss functions [Keren et al., 2017] and to neu-
ral network regressors designed as classifiers [Keren et al.,
2018a; Keren et al., 2018b].
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