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Abstract

Aspect extraction relies on identifying aspects by
discovering coherence among words, which is chal-
lenging when word meanings are diversified and
processing on short texts. To enhance the perfor-
mance on aspect extraction, leveraging lexical se-
mantic resources is a possible solution to such chal-
lenge. In this paper, we present an unsupervised
neural framework that leverages sememes to en-
hance lexical semantics. The overall framework is
analogous to an autoenoder which reconstructs sen-
tence representations and learns aspects by latent
variables. Two models that form sentence repre-
sentations are proposed by exploiting sememes via
(1) a hierarchical attention; (2) a context-enhanced
attention. Experiments on two real-world datasets
demonstrate the validity and the effectiveness of
our models, which significantly outperforms exist-
ing baselines.

1 Introduction

Aspect extraction is an essential component for aspect level
sentiment analysis which is an important natural language
processing task to identify peoples’ opinions towards aspects
of entities [Liu, 2012]. In general, there are two sub-tasks
in aspect extraction, extracting aspect terms from an opinion
corpus, e.g. identifying “seaweed” from “The seaweed was
chewy like gum”, and grouping subtle aspect terms into cate-
gories where each category denotes an individual aspect, e.g.
cluster “steak” and “seaweed” into aspect “food”.
Unsupervised approaches are one of the mainstream solu-
tions. Among them, the common choices are latent Dirichlet
allocation (LDA) based methods [Titov and McDonald, 2008;
Brody and Elhadad, 2010; Zhao et al., 2010; Mukherjee and
Liu, 2012]. However, their performance is limited for two
reasons. First, by exploiting word co-occurrences, it is hard
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Figure 1: Statistics on aspect term frequency.

to predict aspects from word topic (aspect) distributions be-
cause they are not highly differentiated. Second, the inac-
curate topic distribution estimations from LDA-based models
limit the performance on concise reviews.

To this end, deep learning based models [Wang ef al., 2015;
He et al., 2017] were proposed. Yet they are still restrained
from the following issues. First, a word in different contexts
may have various senses, e.g., “roll” in two reviews “This roll
of Kodak film is of good quality” and “California rolls are
awesome” is different while it should be extracted as an as-
pect term in the latter review. Existing models do not explic-
itly distinguish different meanings of a word mainly because
each word is equipped with a fixed embedding that is usu-
ally built upon word co-occurrences without considering its
semantic information. Second, aspects might be represented
in implicit manners. For example, “my cellphone really fits
my hand” describes a positive sentiment on the “size” as-
pect, where the word “fif”” is more indicative to “size”. How-
ever, previous models are more likely to focus on words like
“cellphone” because it is a domain-specific word while “fir”
is more general. Third, most aspect terms are infrequent.
Figure 1 exhibits the frequencies of the aspect terms on the
dataset from SemEval Challenge 2014 task 4! and we ob-
serve an obvious long-tailed distribution on aspect terms’ fre-
quencies. However, existing neural models favor extracting
frequent aspect terms instead of long-tailed ones.

Considering the manual process on aspect extraction, hu-
man being is skilled at solving these issues with exter-

"This dataset, a benchmark for aspect-based sentiment classifi-
cation task, includes the reviews from restaurant and laptop domain
with 1, 288 and 1, 042 different annotated aspect terms, respectively.
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Figure 2: The Overall Framework.

nal semantic knowledge. To present such knowledge, se-
memes [Bloomfield, 1926] are minimum semantic units of
word meanings and usually annotated in lexical semantic re-
sources. It could be effective to find the real aspect terms es-
pecially infrequent ones by utilizing such semantic resources
to obtain latent semantic information and get the meaning of
the context behind the obscure and various expressions.

In doing so, in this paper, we leverage sememes from ex-
ternal lexical semantic resources and introduce an unsuper-
vised neural framework to incorporate neural models and
unlabeled data effectively. The overall framework is anal-
ogous to an autoencoder, which takes a sentence represen-
tation as input. The sentence representation is then recon-
structed by a linear combination of aspect embeddings and
a latent variable sampling from a learnt distribution. Based
on the framework, we propose two models which leverage
sememes to form the input sentence representations in dif-
ferent ways. The first model, namely, Aspect Extraction
with Sememe Attentions (AE-SA), has a hierarchical se-
meme attention layer that obtains a sentence representation
by emphasizing correlated word senses on the lexical level.
The second model, namely, Aspect Extraction via Context-
enhanced Sememe Attentions (AE-CSA) adopts an RNN to
perform global encoding of sentences and concatenates with
the sememe attention layer to effectively explore related word
senses. Experiments on two large public review datasets have
verified the effectiveness of our models. and also show that
sememes can greatly help discover infrequent aspects, where
AE-SA and AE-CSA outperform the previous state-of-the-art
models. The contributions can be summarized as follows,

e Our models utilize lexical semantics to discover latent se-
mantic information behind implicit and various expres-
sions for aspect extraction.

e We propose a sememe attention structure to represent word
meanings and such structure is proved to be useful in aspect
extraction, especially for extracting infrequent aspects.

e We add an RNN structure to the sememe attention, which
learns the sequential information of the contexts and help
the explorations of real aspect terms.

2 The Proposed Model

In this section, we describe our models incorporating se-
memes for unsupervised aspect extraction. First, we detail the
overall framework. Then, we present our two models AE-SA
and AE-CSA, which consist of different network structures to
get sentence representations.

2.1 The Overall Framework

The overall framework illustrated in Figure 2 consists of an
encoding and a decoding process. In the encoding process,
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Figure 3: The structure of sememes.
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the input sentence representation S; is firstly reduced to a
compressed latent variable h € RX, where K is the num-
ber of pre-defined aspects®. During decoding, the output sen-
tence representation S, is constructed by a linear combina-
tion of the latent variable ~ and an aspect embedding ma-
trix A € RE*4 where d is the embedding size. The aspect
embedding is aligned with the word embeddings so as to be
inferred by performing the nearest neighbor search in the em-
bedding space.

Encoder. S, is encoded to a latent variable » € R¥ and h
can be seen as a probability vector over K aspects. We sam-
ple h from a continuous latent distribution, which is assumed
as a Gaussian A (h|u, 0?) in our models where p = 11(S;)
and logo = 15(.5;). l1, lo can be any type of neural network
and we simply use Multi-Layer Perceptrons (MLP) in our im-
plementation. h ~ A (u,o?) is sampled as the output of the
encoder (c.f. Eq. 1) where ¢ is a random value from a normal
distribution.

h=p+o0e €))
Decoder. A reconstructed sentence representation S, is de-
rived by a linear combination of the aspect embedding ma-
trix A € RX*? with the latent variable h (c.f. Eq. 2) in the
decoding process. A is learned during the training process
with each row representing an aspect embedding. As shown
in Figure 2, the semantic meaning of each aspect can be in-
ferred by its nearest words from the embedding space since
the aspect embedding is aligned with the word embeddings.

S, = AT - h, 2

Training and test. The loss function L of our models con-
sists of a training objective function J and a regularization
term U. J is designed to minimize the reconstruction error
of S; and S, and differ S, from g randomly selected negative
samples {Ny,..., N,}. We compute the sum of fixed word
embeddings as the j-th negative sample representation IV;.
We utilize contrastive max-margin for J [Rush et al., 2015],
meanwhile U is aimed to enhance the diversity and avoid re-
dundancy of aspect embeddings. In detail,

L=J+M, 3)
q
J = Z Zmax (0,1 = 85"S" + 5" N;™), )
meD j=1
U=| A, AL — T, ®)

where D represents the training dataset and A is a hyper-
parameter. A,, represents the normalization on each row of

"Here the aspect indicates topical aspect category, which is dis-
tinct from aspect term. For example, “seaweed” is an aspect term in
“The seaweed was chewy like gum”, and “Food” could be its topical
aspect category. We will continue to use the notion of “aspect” as
topical aspect category hereafter unless other specified.
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A, while [ is the identity matrix. During the test, a sentence
S!is encoded to h’, then we perform topical aspect inference
by analyzing the weights in A’ since it indicates the probabil-
ity over the pre-defined topical aspects.

2.2 Aspect Extraction with Sememe
Attentions (AE-SA)

Sememes [Bloomfield, 1926] annotated on lexical semantic
resources are minimum semantic units of word meanings.
In detail, a word may have multiple senses and a senses
consists of several sememes. See Figure 3 for an exam-
ple. The word “published” has more than one senses (“pub-
lish”,“print”, etc.), and the sense “publish” is composed of
some sememes (“bring_out”,“put_out”,“release”).

AE-SA adopts a hierarchical sememe attention layer to
form a better word and sentence representations by de-
emphasizing irrelevant sememes and focusing on more cor-
relative ones. Figure 4 details its sememe attention layers.

Given a sentence s = {wy, ..., wy,}, we compute the av-
erage of word embeddings as E,,, and construct an initial
sentence representation .S by,

S = Z softmax(tanh(eiT - Eavg))e€, (6)

i=1

where e; € R? is the word embedding of w;. The following
is a hierarchical sememe attention mechanism driven by S.
Through this, we derive a new sentence representation .S; by,

L

T = Z softmax(tanh(m;jT - S))wi @)
j=1

e = Z softmax(tanh(Z; ; - S))Zs,i, (8)
i=1

Si = Z softmax(tanh(e;T M - S))es. )

t=1

The representation of the i-th sense in the ¢-th word is a
weighted sum of its sememes {x},,...,x;, } (c.f. Eq. 7).
Then, the new embedding of the ¢-th word in sentence s
is computed by aggregating different senses {X; 1,...,X¢n}
with an attention mechanism (c.f. Eq. 8). Such hierarchi-
cal sememe attention attempts to expand senses of each word
and capture its meaning within specific contexts. Next, we
construct a new sentence representation S; by strengthening
relevant words with another attention mechanism (c.f. Eq. 9)
where M € R%*? is a trainable transformation matrix and d
is the dimension of word and sentence vector.

2.3 Aspect Extraction via Context-enhanced
Sememe Attentions (AE-CSA)

So far, with the sememe attention layer, AE-SA tends to ob-
tain lexical semantic information and explores possible mean-
ings of each word, which can extract real aspects behind the
obscure and various expressions. Nevertheless, exploration
on lexical level without considering the overall meaning of
certain contexts might bring noises. To help the sememe
attention explore reasonable lexical semantic information of
words, we add an RNN-based structure to AE-SA and get the
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Figure 4: The structure of sememe attention.

upgraded model, AE-CSA. Compared with AE-SA, AE-CSA
utilize lexical semantic information to construct the input sen-
tence with the help of words’ sequential relations.

In particular, apart from getting a sentence representation
S, via the sememe attention layer (c.f. Eq. 9), the original
sentence s = {w1, ..., Wy, }is also fed into an RNN to gener-
ate the hidden representation h,.,,,,. Then h,.,,,, and S; jointly
generate a new sentence S, via an MLP (c.f. Eq. 10). 5]
can be regarded as a kind of distorted sentence representation
represented via the sememe attention, which is guided by the
sequential and semantic constraints of the sentence. The new
input sentence is then reconstructed in AE-CSA.

S! = tanh(W7 - (Si ® hynn) + b) (10)

where W € R(@+4)%d and b are parameters to be learned.
@ stands for vector concatenation, f,,, € Rd/, SIS € R4,
where d’ and d are dimension of the hidden vector of RNN
and the sentence vector, respectively. Intuitively, A, may
suggest the sememe attention layer which words are more
important and should be determined as the appropriate word
senses by influencing the training of the transformation ma-
trix M (c.f. Eq. 9). S} is the derived sentence representation
which is fed to the auto-encoder as Section 2.1.

3 Experiment Setup

3.1 Datasets

We conduct extensive experiments on two real-world datasets
to evaluate our model. The statistics are shown in Table 1.

Citysearch corpus. It contains over 50,000 restaurant re-
views from Citysearch New York. An annotated subset with
3,400 sentences are used for evaluation [Ganu et al., 2009]
with six manually defined aspect labels: Food, Staff, Am-
bience, Price, Anecdotes and Miscellaneous. We name this
corpus Restaurant dataset hereafter.

BeerAdvocate. This is a beer review corpus provided
in [McAuley er al., 2012] containing more than 1.5 million
reviews. A subset of 1,000 reviews consisting of 9, 245 sen-
tences, are annotated as five aspect labels Feel, Look, Smell,
Taste, and Others. We name this dataset Beer hereafter.

3.2 Baselines

The baselines include representative unsupervised models.
SAS [Mukherjee and Liu, 2012] and BTM [Yan et al., 2013]
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Dataset Reviews # Labeled Sentences #
Restaurant 52,574 3,400
Beer 1,586,259 9,245

Table 1: Statistics of the two datasets.

are variants of LDA-based models. Deep neural models are
SERBM [Wang et al., 2015] and ABAE [He et al., 2017].
For a fair comparison, we extend ABAE and derive ABAE-
SEM by averaging sememes embeddings to initialize the cor-
responding word embeddings. We also degrade our model by
removing the attentions on sememes for ablation test. We de-
note it as AE-S, where the sentence embedding is an average
of word embeddings, every word embedding is the mean of
its sense embeddings and each sense is the mean of corre-
sponding sememes.

3.3 Implementation

In the preprocessing, punctuations, stop words and words ap-
pearing less than 10 times in the corpus are removed. The
NLTK pos-tagger? is used to annotate part-of-speech infor-
mation for each word within specific contexts. We initial-
ize the word embedding matrix by word2vec [Mikolov er al.,
2013] trained on the experimental datasets, and the embed-
ding size is set to 200. The word vocabulary size is set to
9,000 for Restaurant and 11, 000 for Beer, which can cover
96.64% and 98.84% contents on these two datasets, respec-
tively. We utilize WordNet [Miller, 1995] to obtain word se-
memes. Specifically, each word is aggregated by 2 senses
consisting of 5 sememes. Each sememe is represented by a
set of words in their lemma forms, and its embedding is com-
puted by averaging the corresponding word vectors in our ex-
periments. The words in the two vocabularies can be fully
covered by WordNet, hence every word can be expanded with
ten sememes. 66.81% and 68.07% words representing se-
memes can be found in our vocabularies, respectively, and
the rest OOV sememe words are padded with the original
word itself. Following [He et al., 2017], we set the num-
ber of aspects for both datasets to 14 and utilize the centroids
of k-means clusters to initialize aspect embedding matrix A.
Word embeddings are fixed during training. Adam [Kingma
and Ba, 2014] is employed as the optimizer with learning
rate of 0.001. Orthogonality penalty weight A is set to 2 on
Restaurant and 2.5 on Beer, respectively. For both datasets,
the number of negative samples ¢ is 20, the dimensions of
S, S;, S! are 200 and the hidden size of RNN structure h.p,y,
is 500 . LSTM is adopted as the RNN structure for AE-CSA
and our models use the same set of parameters.

4 Experimental Results

As aspect embeddings are aligned with the word embedding
space, we can infer the label of each aspect from its neigh-
bor words in the embedding space and then manually build
a mapping from the inferred aspects to the gold-standard la-
bels following [Zhao et al., 2010; Brody and Elhadad, 2010;
Wang et al., 2015; He er al., 2017]. Remember that 14 dis-
tinct aspect embeddings are learnt on each dataset. Hence we
infer these 14 aspects on the two datasets and map them to

*https://www.nltk.org/_modules/nltk/tag html

5126

Aspect Model Precision Recall F1
SAS 0.867 0.772 0.817
BTM 0.933 0.745 0.816
SERBM 0.891 0.854 0.872
ABAE 0.953 0.741 0.828
ABAE-SEM 0.870 0.914 0.892
Food "TAESS (Ours) T 0846 " 0914 7] 0.879
AE-SA (Ours) 0.883 0.923 0.902
AE-CSA (Ours) 0.903 0.926 0.914
SAS 0.774 0.556 0.647
BTM 0.828 0.579 0.677
SERBM 0.819 0.582 0.680
ABAE 0.802 0.728 0.757
ABAE-SEM 0.793 0.730 0.760
Staff "TAESS (Ours) T 0757 0:653 7] 0.701
AE-SA (Ours) 0.844 0.705 0.768
AE-CSA (Ours) 0.804 0.756 0.779
SAS 0.780 0.542 0.640
BTM 0.813 0.599 0.685
SERBM 0.805 0.592 0.682
ABAE 0.815 0.698 0.740
ABAE-SEM 0.769 0.713 0.740
Ambience |~ ABE-S(Ours) "] 0759 " 0677 "] 0.716 ™
AE-SA (Ours) 0.771 0.715 0.742
AE-CSA (Ours) 0.768 0.773 0.770

Table 2: Aspect inference results on the Restaurant dataset.

6 and 5 gold-standard labels, respectively. For example, if
an aspect embedding’s nearest surrounding words in the em-
bedding space are “espresso”, “martini’, “sangria”, we can
infer it as “Drinks” and then generalize it to “Food” in the
Restaurant dataset. The results of SAS and SERBM are taken
from [Wang er al., 2015], and the results of BTM and ABAE
are taken from [He et al., 2017].

4.1 Quantitative Analysis on Aspect Inference

We first conduct on a quantitative analysis to evaluate the per-
formance on sentence-level aspect inference. With the anno-
tated sentences in both datasets, we can compute how well the
predictions match the true labels. To perform the prediction,
we first assign an inferred aspect label according to the high-
est weight in h. Then, we generalize this inferred aspect to a
gold-standard label according to a manually created mapping.

Table 2 exhibits the results on Restaurant. Following [He
et al., 2017], we only evaluate on aspects {Food, Staff, Ambi-
ence} out of {Food, Staff, Ambience, Price, Anecdotes, Mis-
cellaneous} and use sentences with single label to avoid am-
biguity. AE-SA as well as AE-CSA significantly outperform
the compared models on the Recall and F; measures. It
proves the effectiveness of the proposed models structured
with sememes on sentence-level aspect inference.

Table 3 displays the results on Beer dataset. In addition to
the 5 gold-standard aspect labels {Feel, Taste, Smell, Look,
Others}, we follow [He et al., 2017] to form a combined as-
pect “Taste+Smell” for a fair comparison. In Table 3, we ob-
serve that AE-CSA outperforms the previous models on 5 out
of the 6 aspects on F} scores. Though AE-CSA cannot sur-
pass the compared methods on every aspect, we still find the
following interesting observations. As “Taste” and “Smell”
are very similar and many words can be used interchangeably
to describe both aspects, e.g., “bitter”, “spicy” “sweet”, etc.
can describe either “Taste” or “Smell” of beer. So previous
studies perform not very well on “Taste” and “Smell”, and no
one can exceed 0.6 on Fj scores. While for our AE-CSA,
since it perceives the fine-grained semantics with the context-
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Aspect Model Precision Recall F1
SAS 0.783 0.695 0.730
BTM 0.892 0.687 0.772
ABAE 0.806 0.824 0.816
Feel  |..ABAE-SEM | 0885 | 0830 | 0818
AE-S (Ours) 0.813 0.772 0.792
AE-SA (Ours) 0.904 0.753 0.821
AE-CSA (Ours) 0.909 0.757 0.826
SAS 0.543 0.496 0.505
BTM 0.616 0.467 0.527
ABAE 0.637 0.358 0.456
Tase  |..ABAE-SEM | 0596 | 0621 | 0608
AE-S (Ours) 0.589 0.577 0.583
AE-SA (Ours) 0.589 0.629 0.609
AE-CSA (Ours) 0.566 0.741 0.641
SAS 0.336 0.673 0.404
BTM 0.541 0.549 0.527
ABAE 0.483 0.744 0.575
smell | ABAESEM | 0434 | 0750 | 0550
AE-S (Ours) 0.617 0.482 0.499
AE-SA (Ours) 0.599 0.518 0.555
AE-CSA (Ours) 0.608 0.541 0.572
SAS 0.804 0.759 0.769
BTM 0.885 0.760 0.815
ABAE 0.897 0.853 0.866
TastesSmell |.. ABAE-SEM | 0882 | 0854 | 0868
AE-S (Ours) 0.839 0.830 0.834
AE-SA (Ours) 0.887 0.860 0.874
AE-CSA (Ours) 0.889 0.875 0.882
SAS 0.958 0.705 0.806
BTM 0.953 0.854 0.872
ABAE 0.969 0.882 0.905
Look |..ABAE-SEM | 0930 | 0925 | 0928
AE-S (Ours) 0.903 0.912 0.908
AE-SA (Ours) 0.938 0.922 0.930
AE-CSA (Ours) 0.945 0.918 0.932
SAS 0.618 0.664 0.619
BTM 0.699 0.715 0.700
ABAE 0.654 0.828 0.725
Others | .. ABAESEM | 0620 | 0771 | 0.687
AE-S (Ours) 0.572 0.833 0.678
AE-SA (Ours) 0.623 0.836 0.714
AE-CSA (Ours) 0.647 0.838 0.730

Table 3: Aspect inference results on the Beer dataset.

enhanced sememe attentions, it achieves 0.641 on F} on the
“Taste” aspect. By looking closer to the top representative
words from the results of AE-CSA on “Taste” and “Smell”,
we observe “smell, aroma” in “Smell” and “mouthfeel, well-
carbonated” in “Taste”, which are clearly different.

Moreover, ABAE-SEM performs slightly better than orig-
inal ABAE with the help of sememes. Without the attention
layers, AE-S exhibits imperfects compared with our proposed
models. It runs even worse than ABAE on some aspects.
These observations could also give insights on the effective-
ness of the proposed sememe attentions.

4.2 Qualitative Analysis on Aspect Embeddings

As AE-CSA generally achieves the best performance on as-
pect inference among all the compared methods in the quanti-
tative analysis, next we conduct a qualitative analysis to look
closer to its aspect embeddings. In particular, we demon-
strate all the 14 inferred aspects from the results of AE-CSA
on Restaurant with their representative words, and the corre-
sponding gold-standard aspect labels in Table 4. We observe
the inferred aspects are fine-grained and their representative
words are coherent and coupled. For example, it can discover
the aspect terms like “brooklyn”, “houston” and “manhattan”
which are “Location” names and distinguish them from the

9% ¢

words describing conceptual “Place’ such as “balcony”, “sta-
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Inf. Aspects Rep. Words Gd. Aspects
Ingredient gravy, cilantro, sesame
Main Dishes antipasti, seafood, risotto
N . Food

Drinks espresso, champagne, martini
Mental Feeling agree, overrated, disappointing
Staff doorman, waitress, cashier

. . . Staff
Service courteous, overbearing, attentive
Adjectives terrific, incredible, fabulous .

. [ e Ambience
Physical lighting, banquette, ceiling
Price cheaper, pricy, charging Price
Anecdotes thanksgiving, valentine, easter Anecdotes
Actions plan, return, suggest
Location brooklyn, houston, manhattan Misc

Place balcony, station, entrance
Others artisinal, congrats, marcus

Table 4: Example aspects inferred by AE-CSA on the Restaurant
dataset, with their representative words and the corresponding gold-
standard aspect labels. The left column shows 14 manually labeled
inferred aspects. The middle column shows the representative words
selected from top 5 nearest words of each aspect embedding. The
right column presents the gold-standard aspects.

—— AE-CSA —& AE-SA

Restaurant Dataset Beer Dataset
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Figure 5: The F1 score of different frequency intervals of aspect
terms on both datasets.

tion” and “entrance”. Meanwhile, concrete and infrequent
representative words can be retrieved, e.g. “risotto”™*. We
conjecture it is because the context-enhanced sememe atten-
tions that can discover fine-grained and latent information
which contribute to better exploring aspect terms.

Next we design another experiment to testify the effective-
ness of sememe attentions w.r.t different term frequencies.
Specifically, we extract the highest attended word as the as-
pect term from each sentence in the test set. Then we get
the inferred aspect for that sentence by querying the nearest
aspect with the extracted word in the embedding space, and
map them to the gold-standard labels. Finally, these aspect
terms are divided into several intervals by their frequencies.

We measure the average [ score of 3 aspects on Restau-
rant and 6 aspects on Beer for each interval, and investi-
gate the performances of some compared models. Figure 5
displays the results. First, AE-CSA performs better than
the compared models on either frequent or infrequent aspect
terms on both datasets. Meanwhile, the performance gap be-
tween AE-CSA and ABAE is getting smaller with aspect term
frequency increasing. It exactly reflects the benefits of lexi-
cal semantic resources because frequent words usually have
enough samples to learn effective representations while the
low-frequent ones need external supports. As frequency in-
creases, the effect of this support becomes insubstantial. Sec-
ond, AS-SA performs worse than ABAE as frequency grows.
It might be that though the exploitation of sememes atten-
tion is helpful for discovering the infrequent aspect terms, the
performance may decrease without the constraint of the se-

“Rice cooked usually in meat or seafood stock and seasoned.
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Figure 6: Visualization of weight allocations.

quential encoding of the original sentence.

4.3 Case Study

Finally we visualize the weight allocations of AE-SA vs
ABAE, AE-CSA vs AE-SA and attentions in sense layer.

AE-SA vs ABAE. Given sentence shown as Fig. 6 (a),
ABAE mainly focuses on the word “kids” and incorrectly in-
fers the aspect as “Staff”. While AE-SA correctly assigns
“Ambience” to it with the highly attended word “fir”. Though
“fit” seems not to be an explicit aspect term, one group of its
sememes “‘suit, accommodate” in the WordNet may facilitate
its correlation to the correct aspect.

AE-CSA vs AE-SA. Given sentence shown as Fig. 6 (b),
it shows that AE-CSA focuses more on “minutes” while AE-
SA attends to extract “appetizer’. The sentence generally de-
scribes the service is slow, so the ground truth is supposed to
be “Service” which is mapped to the gold-standard aspect la-
bel as “Staff”’. The major reason for the difference is that the
transformation matrix M of these two approaches are differ-
ent. Note that M is trainable in our model as shown in Eq. 9.
We argue it is the RNN-based structure of AE-CSA that im-
proves the aspect inference task by influencing the training of
M to assign more weights to the appropriate words.

Attention in sense layer. Sememes can extend semantics
but bring noise as well. The balance between semantic injec-
tion and word sense disambiguation can be underpinned by
the RNN structure in AE-CSA that captures the overall sen-
tence meaning and helps the attention layers to explore exact
sememes. As shown in Figure 6 (c) and (d), the word “roll”
has various attended senses in sentence. Specifically, word
“roll” mostly consists of the “seethe” meaning in “carbona-
tion roll around mouth”, while it represents a kind of food
as a noun in sentence “tootsie roll flavor is really nice”. We
argue it is sememes constructed with RNN encoder that dis-
cover fine-grained information based on right meaning of the
context and contribute to better exploring aspect terms.

5 Related Work

Aspect extraction. Aspect Extraction is important for sen-
timent analysis [Wang et al., 2017a; Luo et al., 2018], and
existing work can be categorized into three types: rule-based,
supervised, and unsupervised approaches. Rule-based meth-
ods [Somasundaran and Wiebe, 2009; Qiu et al., 2011] ex-
ploited frequent pattern to extract product features. Super-
vised methods [Jin et al., 2009; Li et al., 2010; Choi and
Cardie, 2010; Wang et al., 2016; Wang and Pan, 2018]
were typically built based on sequence labeling methods such

as hidden Markov models (HMM) and conditional random
fields (CRF), which required large amounts of labeled data for
training. LDA-based methods [Titov and McDonald, 2008;
Brody and Elhadad, 2010; Zhao et al., 2010; Mukherjee and
Liu, 2012; Chen et al., 2014] were representative methods
of unsupervised solutions. [Wang et al., 2015] proposed Re-
stricted Boltzmann Machines based model to extract aspects
and relevant sentiments simultaneously. [Yin et al., 2016]
used dependency path embeddings and [Wang et al., 2017b]
proposed multi-layer attentions while exploiting indirect rela-
tions between terms. [Li and Lam, 2017] utilized a memory
interaction structure [He et al., 2017] adopted attention mech-
anism with word embeddings to improve aspect coherence.

Sememe representation learning. Recently, sememes
from lexical semantic resources are utilized to recognize dif-
ferent word senses in various contexts and applied in many
NLP tasks. [Niu e al., 20171, [Song et al., 2017] and [Zeng
et al., 2018] encoded it to improve Chinese word representa-
tions and lexicon expansion. [Li et al., 2018; Qi et al., 2018;
Jin et al., 2018] study the lexical sememe prediction task with
external resources. In this paper, we devise different sememe
structures and investigate their effectiveness for aspect extrac-
tion. To the best of our knowledge, we are the first to apply
sememes in unsupervised aspect extraction tasks.

6 Conclusion

In this paper, we proposed unsupervised neural models incor-
porating sememes from lexical semantic resources for aspect
extraction, where sememes are utilized by a hierarchical at-
tention mechanism and a context-enhanced attention mecha-
nism, respectively. Experiments showed that all models uti-
lizing sememes improve aspect extraction in contrast to ex-
isting models because sememes help explore latent semantic
information behind implicit and various expressions of sen-
tences. Particularly, the context-enhanced sememe attention
model performs better on identifying real aspects within the
specific contexts and raising on the long-tail aspect terms.
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