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Abstract
Visual dialog is a challenging task, which involves
multi-round semantic transformations between vi-
sion and language. This paper aims to address
cross-modal semantic correlation for visual dialog.
Motivated by that Vg (global vision), Vl (local vi-
sion), Q (question) and H (history) have insep-
arable relevances, the paper proposes a novel D-
ual Visual Attention Network (DVAN) to realize
(Vg, Vl, Q,H)⇒A. DVAN is a three-stage query-
adaptive attention model. In order to acquire accu-
rate A (answer), it first explores the textual atten-
tion, which imposes the question on history to pick
out related contextH ′. Then, based onQ andH ′, it
implements respective visual attentions to discov-
er related global image visual hints V ′g and local
object-based visual hints V ′l . Next, a dual crossing
visual attention is proposed. V ′g and V ′l are mutual-
ly embedded to learn the complementary of visual
semantics. Finally, the attended textual and visual
features are combined to infer the answer. Experi-
mental results on the VisDial v0.9 and v1.0 datasets
validate the effectiveness of the proposed approach.

1 Introduction
In recent years, the cross-modal semantic understanding be-
tween vision and language has gained more and more in-
terest and attention in the computer vision and natural lan-
guage processing fields. Great progresses have been achieved
in a variety of multi-modal applications including image
captioning [Karpathy and Fei-Fei, 2015; Xu et al., 2015;
Lu et al., 2017b], referring expressions [Hu et al., 2016;
Zhang et al., 2018], visual question answering (VQA) [An-
tol et al., 2015; Patro and Namboodiri, 2018; Anderson et
al., 2018], and visual dialog [Das et al., 2017]. In this pa-
per, we focus on the visual dialog, which can be regarded as
originating from VQA. Based on a single question, VQA re-
quires the agent to identify the interest area in the image and
infer an answer. As an extension of VQA, visual dialog [Das
et al., 2017] is in the style of multi-round question-answer
(QA) pairs in a GuessWhat game. Semantic co-reference a-
mong question, history and visual cues is a crucial problem
in the visual dialog task. Based on textual and visual features,

Global image-based 
attention map 

A2: Yes. 
Q1: Is it outdoors ? 

GT: Yes. 

Local object-based 
attention map 

Image I 

A2: Gray. GT: Gray-brown. 
Q2: What color is the elephant ? 

Figure 1: An example in the VisDial v0.9 dataset. Given an image
I , there are two types of visual attention maps obtained by the pro-
posed model. If these two maps both focus on the same regions,
the model has high confidence with the visual reasoning; otherwise,
these visual cues are complementary. Utilizing both global and local
visions is beneficial to enhance accurate semantic inference.

early studies focused on semantic fusion [Das et al., 2017].
In addition, to acquire the multi-modal semantic correlation,
state-of-the-art visual dialog approaches [Lu et al., 2017a;
Wu et al., 2018] applied various attention mechanisms on
feature representations of vision and language, which yield
a lot of promising results. However, these approaches only
refer to one type of visual feature, i.e., global image-based
feature [Lu et al., 2017a; Kottur et al., 2018; Wu et al., 2018]
or local object-based feature [Niu et al., 2018].

As illustrated in Figure 1, visual dialog requires the agent
to understand the image content comprehensively. Given an
image I , question 1 (Q1: “Is it outdoors?”) requires the agent
to understand the global visual context, while question 2 (Q2:
“What color is the elephant?”) focuses on specific objects in
the image to infer the answer. Accurate visual grounding re-
gions perform crucial impacts on semantic reasoning. For
different questions, local and global attention maps reflect d-
ifferent visual responses related to the rich textual semantics
(question and history). Therefore, effectively utilizing the vi-
sual complementarity is beneficial to address the cross-modal
semantic correlation for visual dialog.
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In this paper, we propose a novel Dual Visual Attention
Network (DVAN), which explores visual cues from differen-
t views related to the current question. It utilizes the merits
of both global image-based and local object-based visual fea-
tures. As shown in Figure 2, DVAN first imposes the current
question on history to acquire the attended history feature.
Here it is sentence-level textual attention. Next, the attend-
ed history and question features are used to refer the related
image regions and detected bounding boxes. This process
consists of two visual reasoning steps. In the first visual rea-
soning step, the proposed DVAN model imposes textual se-
mantic features on global and local visual features respective-
ly. Essentially, this step is a intra-visual reasoning. For the
second step, the model explores mutual correlation through a
dual crossing attention between global and local visions, i.e.,
inter-visual reasoning. Up to now, the sentence-level textual
semantics have already instructed the respective independent
and mutual crossing correlation learning between local and
global visions. We further consider a fine-grained represen-
tation of question Q at word-level, which enhances the key-
words’ semantics. Finally, an answer is inferred by a multi-
model semantic fusion scheme.

The main contributions are summarized as follows:

• The paper proposes a Dual Visual Attention Network
(DVAN) to enhance the question-related cues on histo-
ry, global and local visions progressively. Experimental
results on VisDial v0.9 and v1.0 show that the proposed
approach achieves state-of-the-art performances.

• It tackles visual co-reference using both independent and
mutual visual attention mechanisms. Image-based glob-
al feaure and object-based local visual feature are intro-
duced to the DVAN model.

• DVAN is a question-adaptive attention model, which
considers both sentence-level and word-level textual at-
tentions. Both of them perform well for visual dialog.

2 Related Work
2.1 Visual Dialog
As an extension of the vision-language task, visual dialog was
introduced by [de Vries et al., 2017; Das et al., 2017]. Specif-
ically, De Vries et al. [de Vries et al., 2017] collected a Guess-
What dataset by a two-player guessing game, where one a-
gent asks questions guessing which object has been selected
in the image, and the second agent answers in yes/no/NA. Das
et al. [Das et al., 2017] proposed a large visual dialog dataset
VisDial, which pairs two annotators on Amazon Mechanical
Turk to collect free-form questions and answers about an im-
age. The questioner asked questions to help himself better
imagine the unseen image.

Das et al. [Das et al., 2017] introduced three baseline
models, i.e., late fusion (LF), hierarchical recurrent network
(HRE), and memory network (MN). LF encoded the question,
dialog history, and image separately and then concatenated
them to a joint representation for answer inferring. HRE used
a hierarchical recurrent encoder for history encoding. MN s-
tored each question-answer pair as a ‘fact’ and answered the
current question based on the facts. In addition, to improve

performance, attention mechanisms have been widely used
in VisDial task. In [Lu et al., 2017a], a history-conditioned
image attention model (HCIAE) was proposed, which dis-
criminatively attended on image features spatially according
to the dialogue context. In order to capture more accurate
visual regions, Wu et al. [Wu et al., 2018] introduced a se-
quential co-attention model (CoAtt), which applied multi-
step co-attentions over question, history, and VGG visual fea-
ture maps. Seo et al. [Seo et al., 2017] proposed an attention
memory network (AMEM), which addressed the co-reference
of the question and history. Niu et al. [Niu et al., 2018] pro-
posed a recursive visual attention model which selectively re-
viewed the dialog history and recursively refined the visual
attention for visual grounding. Kottur et al. [Kottur et al.,
2018] applied neural module network [Andreas et al., 2016]
to solve this visual reference problem at word-level.

2.2 Dual Visual Representation
For visual correlation learning, the point of dual visual rep-
resentation has been explored in VQA [Lu et al., 2018;
Farazi and Khan, 2018]. Lu et al. [Lu et al., 2018] employed
a multiplicative embedding scheme to realize co-attention a-
mong question, global and local visions. Similarly, in [Faraz-
i and Khan, 2018], a hierarchical co-attention scheme us-
ing global and local visions was proposed, which focused on
multi-modal semantic fusion. The method most related to this
paper is [Lu et al., 2018]. Lu et al. applied a crossing visual
attention performing on original global and local visual fea-
tures at once time for VQA. In contrast, we adopt a progres-
sive attention mechanism. Based on global and local visual
features, the proposed DVAN model first explores respective
independent visual attention to learn intra-visual correlation
and then implements mutual crossing visual attention to mod-
el the inter-visual correlation. Moreover, in the fusion stage,
Lu et al. directly fused the question and visual representa-
tions, while we use a self-attended question at word-level to
further enhance related visual semantics, and then jointly fuse
the multi-modal features to infer the answer.

3 Proposed Method
A visual dialog is defined as that at current round t, giv-
en an image I and previous history H including the im-
age caption c and t-1 question-answer pairs (i.e., H =
(c, (q1, a1) , ..., (qt−1, at−1))), the dialog agent has to answer
the follow-up question Q. The agent is divided into two type-
s, i.e., discriminative and generative models. Discriminative
models select the answer with the maximum score from a list
of 100 candidate answers At = {a(1)t , ..., a

(100)
t }, while gen-

erative models decode an answer by sequential learning mod-
els. Generative models are optimized by maximizing the log-
likelihood of the ground truth answer agtt ∈ At.

As illustrated in Figure 2, our model consists of three mod-
ules. (1) Feature Embedding Learning (Section 3.1). To bet-
ter learn the correlation among multi-modal features, we em-
bed each feature to the same feature dimension. (2) Question-
adaptive Dual Visual Attention (Section 3.2). A multi-stage
attention mechanism is proposed to progressively enhance the
question-adaptive cues on history, global and local vision-
s. The whole process is question-driven. It first tackles the
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Figure 2: The overall framework of Dual Visual Attention Network (DVAN) for visual dialog.

textual inferring, and then attends the textual cues on global
and local visual features individually. Finally, this part imple-
ments co-reference by mutual global and local visual correla-
tion. (3) Multi-modal Semantics Fusion (Section 3.3). In this
module, the attended textual and visual features are fused to-
gether to infer the answer. In the following, we discuss each
module in detail.

3.1 Feature Embedding Learning
For visual embedding learning, we first adopt a pre-trained
VGG19 [Simonyan and Zisserman, 2014] as feature extrac-
tor. The output of the last pooling layer of VGG19 is taken
as global visual feature V (0)

g ∈ Rdg×M , where M = 7× 7 is
spatial size and dg = 512 is the channel number of the feature
maps. Then, we use the Faster R-CNN [Ren et al., 2015] pre-
trained on Visual Genome dataset [Krishna et al., 2017] to
obtain local visual feature V (0)

l ∈ Rdl×K , where K = 36 is
the number of detected objects for per image and dl = 2048
is the feature dimension. In order to better calculate the corre-
lation between these two types of visual features, we employ
the fully connected (FC) layer to map original V (0)

g and V (0)
l

into the same dimension d respectively:{
Vg = tanh(WgV

(0)
g ) ∈ Rd×M

Vl = tanh(WlV
(0)
l ) ∈ Rd×K (1)

where Wg ∈ Rd×dg and Wl ∈ Rd×dl are learnable parame-
ters of respective FC layer. All bias terms of FC layers in this
paper are omitted for simplicity.

For textual embedding learning, at the t-th dialogue round,
we first assign each word xi (in the current question Q) into
a one-hot vector. Next, word xi is embedded into a vector wi

through a learnable word embedding matrix We. We obtain
the textual features of question Q as follows:

wi =Wexi, Q = [w1, w2, ..., wN ] (2)

where N is the word number of question Q.
To learn the temporal correlation of words in question Q,

LSTM [Hochreiter and Schmidhuber, 1997], a basic RNN u-
nit, is used to get the embedding representation of Q. We im-
plement Q′ = LSTM (Q), where Q′ ∈ Rd×N , and d is the

same dimension as the embedded visual features. We take the
last hidden state LSTM(wN ) as the embedding feature of Q
and denote it as qt. Similarly, we adopt another LSTM to ob-
tain the history embedding features H . Each previous round
of history is encoded. Here isH = [h0, h1, ..., ht−1] ∈ Rd×t,
where h0 denotes the textual embedding feature of image cap-
tion c (i.e., h0 = LSTM(c)).

3.2 Question-adaptive Dual Visual Attention
In order to achieve effective cross-modality semantic under-
standing on Vg (global vision), Vl (local vision), Q and H
for inferring answer A, a novel Dual Visual Attention Net-
work (DVAN) is proposed. It is a three-stage query-adaptive
attention model. The details are presented as follows.

The 1st-stage Attention: Question Attending to History
Visual dialog has a multi-round conversation about an im-
age. The questions in the dialog usually contain at least one
pronoun (e.g., “he”, “she”, “it”, “this”). This textual co-
reference in dialog context has a great impact on the final
answer inference. In other words, the agent has to find the
targeted subjects in the previous history snippets. In the pro-
posed DVAN framework, we propose a question-conditioned
attention mechanism, which focuses on identifying the relat-
ed history snippet semantics. It realizes a sentence-level tex-
tual feature representation by imposing question qt on history
H . The first stage attention is formulated as follows:

zht = tanh((Wqqt)1
T +WhH)

αh
t = softmax(PT zht )

ut = αh
tH

(3)

where Wq ∈ Rd×d,Wh ∈ Rd×d, and P ∈ Rd×1 are to-
be-learned attention parameters, 1 ∈ Rt is a vector with all
elements set to 1, αh

t ∈ Rt is the attention weight vector
for history H , and ut ∈ Rd is the outputted attended histo-
ry representation. Then, qt and ut are jointly used to attend
different visual features in the following sections.

The 2nd-stage Attention: Independent Visual Attention
Here we focus on addressing the visual reference problem.
The question and attended history are jointly used to localize
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the related visual regions in the image. In order to capture
the correlation between different data modalities (vision and
language), a multi-modal attention mechanism is designed to
acquire attended visual features including both global image-
based and local object-based representations. To effectively
capture the context-aware visual semantics, here we explore
the intra-visual relation under the guidance ofQ andH , while
the inter-visual relation is discussed in next subsection.

In this second-stage attention step, the proposed model im-
plements the inference Q+H+V→V ′. It jointly combines
question qt, attended history ut, and original visual features
V to rethink V itself and obtain more discriminative represen-
tation V ′. Global and local visual features are independently
updated by formulae 4 and 5.

zg1t = tanh((Wq1qt+Wh1ut)1
T
g +Wg1Vg)

αg1
t =softmax(PT

g1z
g1
t )

V
′

g =α
g1
t V

T
g

(4)


zl1t = tanh((W

′

q1qt+W
′

h1ut)1
T
l +Wl1Vl)

αl1
t =softmax(PT

l1z
l1
t )

V
′

l =α
l1
t V

T
l

(5)

where αg1
t ∈ RM and αl1

t ∈ RK are respective attention
weights over global and local visual features. V

′

g and V
′

l just
consider respective intra-visual relation in each own feature
space.

The 3rd-stage Attention: Dual Crossing Visual Attention
Through the second-stage attention, the proposed model has
obtained attended intra-visual embeddings V ′g and V ′l under
the guidance of textual features. However, the visual com-
plementarity between global and local visions are not consid-
ered. As shown in Figure 1, if both global and local visu-
al attention maps focus on the same regions in image I , the
model has confidence in both sides of visual reasoning. Oth-
erwise, with different visual response regions, V ′g and V ′l can
complement each other. This can help repair neglected or un-
corrected visual cues. Therefore, we design the third-stage
attention to capture the correlation between global and local
visions (i.e., inter-visual reasoning).

As shown in Figure 2, this attention step implements the
dual visual crossing attention for visual reference, which
also belongs to the multi-modal attention under the guid-
ance of the question and the attended history. We imple-
ment a mutual visual correlation calculation to obtain a new
global visual semantic, i.e., Q+H+Vg+V ′l→V ′′g . Similarly,
Q+H+Vl+V ′g→V ′′l is conducted. The visual semantics V ′′l
and V ′′g are mutually updated by the formulae 6 and 7.

zg2t = tanh((Wq2qt+Wh2ut+Wl2V
′

l )1
T
g +Wg2Vg)

αg2
t =softmax(PT

g2z
g2
t )

V
′′

g =αg2
t V

T
g

(6)


zl2t = tanh((W

′

q2qt+W
′

h2ut+W
′

g2V
′

g )1
T
l +W

′

l2Vl)

αl2
t =softmax(PT

l2z
l2
t )

V
′′

l =αl2
t V

T
l

(7)

where αg2
t ∈ RM and αl2

t ∈ RK are respective attention
weights over global and local visual features.

3.3 Multi-modal Semantics Fusion
Up to now, the sentence-level textual semantics (qt and ut)
have already instructed the respective independent and mu-
tual crossing correlation learning between local and global
visions. Here, we consider a fine-grained representation of
question Q at word-level. As illustrated in Figure 1, words
“outdoors”, “color”, and “elephant” are most related to the
answer. Enhancing these keywords’ semantics in Q can help
infer the final answer. To this end, we apply a self-attention
mechanism on question Q to focus on the keywords:{

αq
t = softmax(PT

q tanh(WsqQ
′))

qst = αq
tQ

(8)

where αq
t ∈ RN , qst ∈ Rdm , dm is the dimension of word em-

bedding, and qst is the self-attended question representation.
Then, we use the self-attended qst to further impose its im-

pact on both local and global visual contents. The refined vi-
sual features are obtained by Hadamard (element-wise) prod-
uct (denoted as symbol ‘�’), which is similar to the gate op-
eration within LSTM and GRU. This process is expressed as
follows: {

Ṽg = V
′′

g � tanh(Wsq
s
t )

Ṽl = V
′′

l � tanh(Wsq
s
t )

(9)

where Ws ∈ Rd×dm is a to-be-learned attention parameter.
Ṽg and Ṽl are the final visual embedding representations.

Finally, with self-attended question feature qst , question-
conditioned history feature ut, and refined visual features
(Ṽg, Ṽl), we fuse them to obtain the final embedding et.

et = tanh
(
We[q

s
t , ut, Ṽg, Ṽl]

)
(10)

where [, ] is the concatenation operation. In the generative
model, the feature et is fed into a single LSTM decoder to
infer the answer â. For the discriminative model, et is fed into
a softmax decoder to sort the candidate answers in At. The
details of the training setting of generative and discriminative
models are explained in Section 4.2.

4 Experiments
4.1 Datasets and Evaluation Metrics
We evaluate the proposed model on the VisDial v0.9 and
v1.0 [Das et al., 2017] datasets. VisDial v0.9 contains 83k
dialogs on COCO-train images and 40k dialogs on COCO-
val images (totally 1.2M QA pairs). The dialog of each im-
age has 10-round question-answer pairs, which were collect-
ed by a two-player image guessing chat game. Specifically,
the “questioner” attempted to imagine the unseen image bet-
ter by sequentially asking questions, while the “answerer” an-
swered questions based on the observed picture. VisDial v1.0
is an updated version of the VisDial v0.9, in which VisDial
v0.9 is set to be the train split. And the new val and test s-
plits of VisDial v1.0 contains 2k and 8k dialogs collected on
COCO-like Flickr images, respectively. It is worth noting that
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Model MRR R@1 R@5 R@10 Mean
LF 0.5199 41.83 61.78 67.59 17.07
HRE 0.5237 42.29 62.18 67.92 17.07
HREA 0.5242 42.28 62.33 68.17 16.79
MN 0.5259 42.29 62.85 68.88 17.06
HCIAE 0.5386 44.06 63.55 69.24 16.01
CoAtt 0.5411 44.32 63.82 69.75 16.47
DVAN w/o OF 0.5443 44.58 64.30 70.11 15.27
DVAN w/o GF 0.5538 46.01 65.06 70.68 15.11
DVAN w/o Att3 0.5573 46.32 65.28 70.92 14.91
DVAN w/o SQ 0.5579 46.40 65.33 71.02 14.95
DVAN 0.5594 46.58 65.50 71.25 14.79

Table 1: Generative model comparison on VisDial v0.9 val.

in the new test split, each dialog has flexible n rounds of QA
pairs, where n is in the range of 1 to 10.

Following the evaluation protocol in [Das et al., 2017],
the experimental performance is evaluated by retrieving the
ground-truth answer from a list of 100 optional answers. The
retrieval metrics include (1) Mean: mean rank of the ground
truth answer option, (2) Recall@K: existence of the ground
truth answer option in top-k ranked responses, and (3) MR-
R: mean reciprocal rank of the ground truth answer option.
For VisDial v1.0, NDCG (normalized discounted cumulative
gain) was introduced, which penalizes the lower rank of an-
swers with high relevance.

4.2 Implementation Details
We tokenize all text inputs by Python NLTK toolkit and con-
struct a vocabulary of words that appear at least 4 times in the
training split. The captions, questions, and answers are trun-
cated to 24/16/8 words for generative models, and 40/20/20
words for discriminative models, respectively. Next, each
word is embedded into a 300-dim vector initialized by the
GloVe embedding [Pennington et al., 2014]. All the LSTMs
in our model are 1-layered with 512 hidden states. The Adam
optimizer [Kingma and Ba, 2014] is adopted with initialized
learning rate 4×10−4, multiplied by 0.5 after each 20 epochs.
We also apply Dropout [Srivastava et al., 2014] with radio 0.5
for LSTM, attention modules, and the output of encoder. Fi-
nally, generative models are trained with a MLE loss (maxi-
mum likelihood estimation), while discriminative models are
trained with a multi-class N-pair loss [Lu et al., 2017a].

4.3 Experiment Results
The compared baseline models (LF, HRE, and MN) are pro-
posed by [Das et al., 2017]. Specifically, LF directly extract-
ed multi-modal features and fused them in the later stage.
HRE used a hierarchical recurrent encoder [Serban et al.,
2017] to encode the dialog history, and HREA applied an
attention mechanism to attend the relevant history. MN de-
signed a memory bank to store previous dialog history. In
recent works, HCIAE [Lu et al., 2017a] applied a history-
conditioned attention mechanism to attend on image and dia-
log features, and CoAtt [Wu et al., 2018] proposed a sequen-
tial co-attention mechanism over multi-modal inputs.

Ablation Study
In order to verify each attention component, we test and veri-
fy the following ablative models:

Model MRR R@1 R@5 R@10 Mean
HCIAE-DIS* 0.5467 44.35 65.28 71.55 14.23
CoAtt-RL* 0.5578 46.10 65.69 71.74 14.43
DVAN 0.5594 46.58 65.50 71.25 14.79

Table 2: Generative model comparison on VisDial v0.9 val. * indi-
cates that the models are trained with additional loss functions.

• DVAN w/o OF: DVAN with only global image-based
visual feature V (0)

g .
• DVAN w/o GF: DVAN with only local object-based vi-

sual feature V (0)
l .

• DVAN w/o Att3: DVAN without the visual cross atten-
tion scheme (the third-stage attention). It demonstrates
that there is no crossing visual attention between global
and local visual features.
• DVAN w/o SQ: DVAN without self-attention on ques-

tion Q. It means that DVAN adopts only sentence-level
attention (qt) without word-level attention (qst ) in the fi-
nal multi-modal fusion scheme.

As shown in Table 1, compared to DVAN w/o OF, the full
model DVAN improves R@1 from 44.58 to 46.58. It shows
that introducing local visual feature can capture richer visu-
al cues for the agent to infer the answer. As for DVAN w/o
GF which considers only local visual feature, R@1 drops to
46.01. It indicates that the global and local visions are com-
plementary. The combination usage of them performs much
better than only one vision type. After removing the crossing
attention module (the three-stage attention), DVAN w/o Att3
drops R@1 from 46.58 to 46.32. This shows the crossing at-
tention correlation between global and local visions can effec-
tively enhance the visual semantics. A self-attended question
is further proposed to consider the word-level textual seman-
tics. DVAN can get better performance than DVAN w/o SQ
by average 0.2% improvement.

Evaluation on Generative Models
For a fair comparison, all models in Table 1 use the MLE
loss for generative training. DVAN w/o OF already outper-
forms other compared methods. This is interpretable, as other
methods only consider the question at sentence-level repre-
sentation. In contrast, we explore a word-level representa-
tion. In addition, by integrating global and local visions, the
DVAN model obtains significant performances on all evalua-
tion metrics. Comparing to the state-of-the-art model CoAtt,
the DVAN model achieves nearly 2 points improvement on
R@K and 2.1% on MRR.

Table 2 shows another experimental comparison with oth-
er approaches. HCIAE-DIS [Lu et al., 2017a] trained a gen-
erative model with the MLE loss, and then used the knowl-
edge from a pre-trained discriminative model to fine-tune the
generative model. This strategy requires additional candidate
answers. Compared to HCIAE-DIS, the DVAN model per-
forms better on MRR, R@1 and R@5. Notably, no additional
candidate answers are needed in the end-to-end DVAN train-
ing. CoAtt-RL [Wu et al., 2018], which was pre-trained with
the MLE loss, adopted both reinforcement learning and ad-
versarial learning for further offline training. Compared to
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A1: 2 people.

GT: 2 people.

A2: Yes.

GT: Sunny but partly cloudy.

A3: 2 meals.

GT: 2 males but hard to confirm.

A4: A black sweater.

GT: A black sweater, pants.

A5: Can’t see there.

GT: No.

A1: Yes.

GT: Yes.

A2: Black.

GT: Black.

A3: White.

GT: White.

A5: Yes.

GT: No.

Q1: Is this picture in color ? Q2: What color is his hair ? Q3: What color is his shirt ?

A person jumping midair 
on a snowboard while a 

person photographs.

The man stands amongst 
a huge amount of 
packaged foods.

A4: Indian food.

GT: All kinds of Indian food.

Q4:
Can you see what type of 
food is next to him ? 

Q1: How many people are
there ?

Q2: Is it sunny ? Q3:
What gender are the 

people ?
Q5: Can you see any trees ?Q4: What is the photographer  

wearing ? 

Q5: Is it sunny ?

Figure 3: Two examples in the VisDial v0.9 dataset. In the box at each round, the first column shows the global visual attention map, and the
second column depicts the object-based visual attention map.

Model MRR R@1 R@5 R@10 Mean
LF 0.5807 43.82 74.68 84.07 5.78
HRE 0.5846 44.67 74.50 84.22 5.72
HREA 0.5868 44.82 74.81 84.36 5.66
MN 0.5965 45.55 76.22 85.37 5.46
HCIAE 0.6222 48.48 78.75 87.59 4.81
AMEM 0.6227 48.53 78.66 87.43 4.86
CoAtt 0.6398 50.29 80.71 88.81 4.47
CorefNMN‡ 0.6410 50.92 80.18 88.81 4.45
DVAN w/o OF 0.6381 50.09 80.58 89.03 4.38
DVAN w/o GF 0.6522 51.86 81.64 89.96 4.22
DVAN w/o Att3 0.6601 52.78 82.22 90.21 4.09
DVAN w/o SQ 0.6604 52.83 82.41 90.37 4.03
DVAN 0.6667 53.62 82.85 90.72 3.93

Table 3: Discriminative model comparison on VisDial v0.9 val. ‡
indicates that the model uses ResNet-152 features.

Model MRR R@1 R@5 R@10 Mean NDCG
LF 0.5542 40.95 72.45 82.83 5.95 45.31
HRE 0.5416 39.93 70.45 81.50 6.41 45.46
MN 0.5549 40.98 72.30 83.30 5.92 47.50
CorefNMN‡ 0.6150 47.55 78.10 88.80 4.40 54.70
DVAN 0.6258 48.90 79.35 89.03 4.36 54.70

Table 4: Discriminative model comparison on VisDial v1.0 test-std.
‡ indicates that the model uses ResNet-152 features.

CoAtt-RL, the DAVN model performs better on MRR and
R@1, lifting MRR from 0.5578 to 0.5594 and R@1 from
46.10 to 46.58. With richer textual and visual semantics,
the DVAN model achieves promising results even in a sim-
ple end-to-end training mode.

Evaluation on Discriminative Models
In discriminative task, the compared methods are
AMEM [Seo et al., 2017] and CorefNMN [Kottur et
al., 2018]. These two works also focused on the visual
co-reference, which involves word referring (typically noun
phrases and pronouns) to the same entities in an image.
In contrast, the DAVN model emphasizes the semantic
enhancement by the sentence-level and the word-level
textual attentions, and the respective independent and mutual
crossing visual attentions. Table 3 shows that using the
VisDial v0.9 dataset, the proposed model outperforms the
state-of-the-art models on all metrics by average 2%. We
also evaluate on VisDial v1.0. As shown in Table 4, the

DAVN model still achieves the best performance.

4.4 Qualitative Results
As shown in Figure 3, we give two examples from VisDial
v0.9. There are some conclusions. On one side, the textu-
al attention distribution at word-level relative to each round
answering is interpretable, which captures the keywords of
each question. On the other side, we discuss the two types
of visual attention maps, i.e., global and local visual attention
maps. We denote the first row as Example 1, and the second
row as Example 2. (1) For questions Q1 and Q3 in Example
1, and Q2 and Q3 in Example 2, the proposed model attends
the consistent visual regions on both global and local vision-
s. (2) However, for questions Q2 and Q5 in Example 1, and
Q1 and Q4 in Example 2, global and local visions form the
visual complementarily to infer the correct answer. (3) For
Q4 in Example 1, the global map can effectively focus on the
target object–“photographer”, while the local map attends on
the “skier” incorrectly. In this case, global map focuses on a
part of the targets, while local map attends irrelevant regions.
Only one visual attention map attending the related region-
s can also infer the correct answer. (4) There are also some
challenging cases, e.g., Q5 in Example 2. Both of the two
attention maps focus on the same regions where the light is
bright as “sunny”, but the answer is wrong.

5 Conclusion
In this paper, we propose a Dual Visual Attention Network
(DVAN) for visual dialog. DAVN aims at learning effective
visual correlation under textual cues. DVAN first applies a
textual attention mechanism on question and history to get
related textual semantics, then imposes them on global and
local visual features to acquire accurate visual semantics. The
visual attention mechanism in DVAN tackles both respective
independent and mutual crossing visual reasoning. Experi-
ments conducted on the VisDial 0.9 and 1.0 datasets validate
the effectiveness of the proposed model.
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