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Abstract

Incomplete multi-view clustering has attracted var-
ious attentions from diverse fields. Most existing
methods factorize data to learn a unified representa-
tion linearly. Their performance may degrade when
the relations between the unified representation and
data of different views are nonlinear. Moreover,
they need post-processing on the unified represen-
tations to extract the clustering indicators, which
separates the consensus learning and subsequent
clustering. To address these issues, in this paper,
we propose a Simultaneous Representation Learn-
ing and Clustering (SRLC) method. Concretely,
SRLC constructs similarity matrices to measure the
relations between pair of instances, and learns low-
dimensional representations of present instances on
each view and a common probability label matrix
simultaneously. Thus, the nonlinear information
can be reflected by these representations and the
clustering results can obtained from label matrix di-
rectly. An efficient iterative algorithm with guaran-
teed convergence is presented for optimization. Ex-
periments on several datasets demonstrate the ad-
vantages of the proposed approach.

1 Introduction

Conventional multi-view learning assumes that each exam-
ple of data appears in all views [Jing et al., 2017; Tao et al.,
2017; Nie et al., 2016a; Karasuyama and Mamitsuka, 2013;
Sun, 2013; Hou et al., 2010]. However, in real-world appli-
cations, it is often the case that every view suffers from some
data missing, which results in incomplete multi-view data.
For example, in cross-language document clustering, docu-
ments have been translated into different languages represent-
ing multiple views. However, not all documents are translated
into each language. Another example is web image retrieval.
Not all web images are associated with text descriptions and
the image itself may be inaccessible due to deletion or invalid
url. Such incompleteness makes it impossible to apply con-
ventional methods on these data directly. Therefore, how to

*Contact Author

4482

efficiently manipulate this kind of incomplete multi-view data
becomes a practical and important problem.

Since clustering is a basic and common task, a few clus-
tering methods have recently been proposed for incomplete
multi-view data. As a pioneering work, [Li et al., 2014] learns
the representations of view-specific examples and complete
examples simultaneously, thus in the learned latent subspace,
all examples are homogeneously represented. Such strategy
has also been adopted by [Yin et al., 2015; Zhao et al., 2016;
Yin et al., 2017; Cai et al., 2018; Zhao et al., 2018]. The
limitation of this strategy is that it requires each data sample
appears in all views or only one view. A more general case
for a multi-view data with more than two views is that each
data sample is present on any number of views. To deal with
this case, another strategy has been used by [Xu er al., 2015;
Hu and Chen, 2018; Tao et al., 2018]. By introducing weight
matrices which distinguish present and missing instances on
each view, these methods factorize data matrices of different
views into a common latent subspace, and then perform post-
processing on the common representation matrix to obtain the
clustering results. Their performance can be further improved
due to the following reasons: (1) Since these methods are
based on Matrix Factorization (MF), they are essentially lin-
ear, and thus cannot well disclose non-linear structure hidden
in data, which limits their learning ability. (2) The manner of
separately performing representation learning and clustering
may not be able to jointly obtain the optimal solution.

In this paper, we propose Simultaneous Representation
Learning and Clustering (SRLC) to address the aforemen-
tioned issues. Specifically, to utilize the non-linear informa-
tion, on each view, SRLC constructs a similarity matrix to
measure the relationships of present instances. And based
on these matrices, SRLC incorporates representation learn-
ing and clustering by learning low-dimensional representa-
tions of present instances and a common probability label
matrix simultaneously. To enhance the reasonability of the
model, rotation matrices are introduced to deliver clustering
information, and class coding vectors are employed to estab-
lish a weight mechanism. The mechanism characterizes the
contribution of each sample according to its clustering uncer-
tainty, which improve the robustness of SRLC. An iterative
optimization algorithm for SRLC with proved convergence
is proposed. The effectiveness of SRLC is demonstrated by
comparing with state-of-the-art methods on six datasets.
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2 Notations and Problem Setting

Throughout the paper, matrices and vectors are written as
boldface uppercase letters and boldface lowercase letters, re-
spectively. For a matrix M, its i-th row and 7j-th element
are denoted by m; and m;;, respectively. The transpose, the
trace and Frobenius norm of matrix M are denoted by MT,
tr(M) and ||M]||F, respectively. For a vector m;, the 2-norm
of m; is denoted by ||m,||.

Given a dataset {x;|i = 1,...,n} with n samples sampled
from V views, where x; is the i-th sample. Each sample has

V representations, i.e., x; = [xgl), e ng)] € R4 where
x") e R4 s the i-th example on the v-th view and
d= Z:}/:l d). The dataset can be denoted in a matrix form
= [X!,..,X"] € R"*4, where X = [x{");..;xY] €
R4 collects the instances of the V-th view.
In the incomplete multi-view setting, each xgv can be

missing. For each view, a diagonal indicator matrix O(*) ¢
{0, 1}™*™ is defined as:

ey

NONED RN xl(.v) appears in the v-th view
Gii 0, otherwise

Incomplete multi-view clustering aims to cluster the n sam-
ples into C clusters by integrating all incomplete views.

3 Proposed Approach

In this section, we first present the motivation of this paper.
Next, we introduce our model in two aspects and then give
an unified objective function. Finally, an efficient iterative
algorithm is presented for optimization.

3.1 Motivation

Most existing incomplete multi-view clustering methods are
based on matrix factorization. There are mainly two separate
steps of these methods:

Step 1. Factorizing each X(*) into a common latent fea-
ture matrix V. € R"*C and a basis matrix U®) € ROxd"”
simultaneously by solving the following problem:

min Z{HO V(X

— VU2 + B(V, UM}
V,U®

2
st. Vec,UWecl v=1,.,V

where ¥(V, U®) is the regularization term on V and U®),

and C; and Cév) are constraint sets. These methods distin-
guish each other by employing different constraints or regu-
larization terms on V and U®),

Step 2. Applying a post-processing algorithm such as K-
means on V to obtain the clustering indicators.

Although the incomplete multi-view data can be clustered
by applying these two steps, the performance of these meth-
ods can be further improved due to the following reasons: (1)
the learned unified representation matrix V may be of low
quality if the relations between V and {X(*)}_, are nonlin-

ear; (2) successively and independently performing two steps
are not guaranteed to yield globally optimal solution.
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3.2 Partial Spectral Embedding

To disclose the non-linear structure and utilize the comple-
mentary information of different views, we construct an undi-
rected weighted graph S(*) € R"™*™ on each view according

to pairwise similarity of {x )} ' ;. Since some instances can

be missing, s ( ") is calculated by
o LX), ol 1
55 = 3)
o, 0therw1se
where f(x\", g/u)) is a similarity calculation method such

as [Zelnik- Manor and Perona, 2004; Nie et al., 2016b], and
O denotes the information of s(v) is missing. According to
Eq. (3), s( v) can be estimated only if both x( ) and x'" ar

present. To eliminate the influence of © in subsequent calcu—
lating, for convenience, we define©® -0 =0-0© = 0.

Based on S(*), we aim to learn a low-dimensional repre-
sentation matrix F®) = [£{"); _:£{")] € R"*C which con-
tains the clustering information of X(*). Since the informa-
tion of S(*) can be partial, the i-th row fi(v) of F(*) can be
computed only if x* is present, i.c., 0"’
the optimization problem can be written as

min Z 0;; ” | £V _ f;v)”2

1,j=1 “4)
s.t. (FPHTOWFW® =1,

= 1. As aresult,

where I € RY*Y is the identity matrix.

Eq. (4), if o;; () — 0, the elements of fi(v) can be assigned
with arbltrary Values.

According to

3.3 Probability Spectral Rotation

To incorporate clustering into representation learning and fa-
cilitate consensus, we learn a common probability label ma-
trix Y = [y1;...; ¥n] € R™*C together with {F(")}V_,

To establish reasonable interactions between Y and
{F (W)}V_,, for each F(*), a rotation matrix R(*) € R¢*¢
is employed to extract the clustering information, and C' cod-
ing vectors {t . }<_, are introduced to identify the C' classes.
For the c-th coding vector te) € RIxC, only its c-th element
is equal to 1 and the other ones are 0 (¢ = 1,...,C). The
probability spectral rotation term is formulated as:

n C
min 353 01" 3ol — KR “
v=1

i=1 c=1

5t.Y >0,Yl, =1, (RTRY =1,

where v > 1 is an adaptive parameter. From Eq. (5), it can be
observed that £ affects Y and R(®) only if o{") = 1. Dif-
ferent from the classical procrustes average technique [Hastie
et al., 2010] which rotates fixed {F(*)}V_, to form a uni-
fied binary indicator matrix, Eq. (5) generates a probabil-

ity matrix Y according to the rotation loss of {fi(v)}m, to
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{t(e)}&_;. Thus, each sample can be weighted by Eq. (5) au-
tomatically according to the degree of clustering uncertainty

ZS 1(yic)?, which enables clearly clustered samples to play
more important roles in the learning stage.

3.4 Unified Objective Function
By combining Eq. (4) and Eq. (5), we propose our SRLC
model as follows:

minJ ({R, F(”)}V LY)

1% n
> “”Z (¥ie) |1ty — £VRM?
v=1 =1 =
+ A Z ogf)sgy)og-;)Hfi(v) —

ij=1
st. RV)TRM =1¢, (F)TOWF® =1,
Y >0Y1l.=1,

where A > 0 is a balanced-parameter that controls the trade-
off between the aforementioned two objectives. With the in-
crease of \, SRLC learns {F(")}Y_ more based on Y to uti-
lize more consensus information. With the decrease A\, SRLC
learns {F(")}Y_, more based on {S(}"_, to utilize more
complementarity information.

) (6)
£17]2}

3.5 Optimization
The problem (6) is not convex over all three groups of vari-
ables {R(™}V_, {F(1V_ Y, simultaneously. To solve
this problem, we adopt alternating minimization strategy.
Update R("), With Y and {F(")}V_ fixed, for each R(*),
we need to solve the following problem
n C

min E (v)
(0))TR(v) = Qi
(RENTRM=Ic (= =1

(ie)[I6(e) — £RO|Z (D)

To update R("), we introduce the following propositions.
Proposition 1. The minimum problem (7) is equivalent to

(WNT (T o(v)
(R(v))f;lfag&):lctr((R )Y FOHYTOMG) @)

where G € R™*C and its i-th row g; = Ecczl(yic)’yt(c).

The detailed proofs of all propositions of this paper can be
found in the supplementary material.

Proposition 2. Denote (F("))TO®) G as M), Suppose the
SVD of M) is M) = UMSO)/(VENT | then the optimal
solution R™) to the problem (7) is

R® — U(U)(v(’v))T )

Update F(*), With {R(")}Y_, and Y fixed, for each R("),
we need to solve the following problem

ie) It — £ RM)|2
(F(u))T(r)r(l}I)lF(u) Ic {ZO“ CZ; Yi || () = % H

+AZo“> o I — €711
4,j=1
(10)
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(v)

By analyzing Eq. (10), it can be observed that f needs to

be optimized only if 0{”) = 1. Suppose 3", ol = p®
data points appears on the v-th view, the corresponding rows
of F(*) and G are collected by Fg) e R""”*C and Gg) €
R %C | respectively. S(U c R xnt
ments f(x!",x!")) of S(” To optimize F\, according to
Proposmon 1, tﬂe problem (10) can be transformed into the
following matrix form

collects the ele-

tr(FY)TOLGFS — GY (RM)T))
(11)

min
(Fg’))Tng):IC

where Lg ) is the Laplacian matrix of S gj ). Since the problem
(11) is difficult to solve directly, we consider the following
relaxed problem:

max  tr((FG)T(AVEG +BM)) (g

()T 1
where A(") = )T — Lg) and B(") = ngv) (RU)T/N.
o) is an arbitrary constant which ensures that A (") is a posi-

tive definite matrix. Motivated by [Nie et al., 2017], the prob-
lem (12) can be solved by the following iteration strategy:

1. Update C) = A(”)ng) +BW.

2. Update Fg’ ) with fixed C®). According to Proposition
2, suppose the SVD of C(*) is C(*) = U(U)E(U)( (U))
then Fg} ) is updated by

Fg) _ ﬁ(v)(v(v))T (13)

After obtaining the Fg), F®) can be updated accordingly.
The solution procedure of (12) is listed in Algorithm 1.

Algorithm 1 Algorithm to solve the problem (12)

Input: The matrices Fg}), Lg), Gg) and R™, the pa-
rameters \ and a(”), the maximum number of iteration 77 .
Output: Fg ).

Initialization:

1. Calculate A = o1 — Lg).

2. Compute B(") = Gg) (RM)T/ .

while not converged and number of iteration< Ty do
1: Update C¥) = AMFY) 4 B()

2: Caleulate the SVD of ) = TS (V)T

3: Update F\Y) = ﬁ(”)(vm)T.

end while

Update Y. With {F("}Y_, and {R("}"_, fixed, each
row y; can be updated by solving the following problem:

C \%4

min 3 ()Y
yi20,yil.=1
c=1 v=1

ol [ty — EORM|Z (14
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Denote gic = S0, ogf)Ht(c) — £)R®)||2, which is the
(i, c)-th element of matrix Q € R"*“. When v = 1, the
optimal solution of (14) is

yij =< j = arg min gic > 15)

where < - > is 1 if the argument is true or 0 otherwise.

When « > 1, the Lagrangian function of the problem (14)
. e} e} .
is £, = > 1 Wie) qic — (D o—y Yic — 1), where pu is the
Lagrange multiplier. Setting the derivative of £,, with respect
to y;. to zero and combining the constraint ZCCZI Yice = 1, we
arrive at the closed-form solution of the problem (14):

1
. 1—v
(gic) 1 16)
C T—
ZC:]. (q“')

Since the proposed (6) is solved in an alternative way, we
initialize F(*) and Y such that (F()TO®F®) = I, and
Y € Ind, where Ind is a set of binary clustering indica-
tor matrices. Additionally, a(*) can be calculated by power

method [Nie et al., 2017]. At last, we resort to a decision
function to assign the single class label for each y;,

Yic =

In summary, the procedure of SRLC is listed in Algorithm 2.

Algorithm 2 Optimization of SRLC

Input: The data matrices {X(*)}"_, | the indicator matri-
ces {O™1V_ | hyper-parameters A and +y, the maximum
number of iteration 75.

Output: The discrete indicator matrix 'Y with Eq. (17).
Initialization:

1. Construct similarity matrices {S(")}Y_, with Eq. (3).
2. Initialize F(*) such that (F("))TOMF®) = 1.

3. Initialize Y € Ind.

4. Compute o(*) such that (V)T — Lg) is positive definite.
while not converged and number of iteration< To do
1: Update R(") with Eq. (9), Vv € [1,V].

2: Update Fg)) of F() according to Alg. 1, Vv € [1,V].
3: Update Y with Eq. (15) or (16).

end while

4 Theoretical Analysis

In this section, we provide the convergence guarantee and
computational complexity analysis of Algorithm 2.

4.1 Convergence Guarantee

In this subsection, we first present the convergence proof of
Algorithm 1 based on [Nie er al., 2017]. Next, we prove that
Algorithm 2 converges to a stationary point of Eq. (6).

Proposition 3. The objective function (12) is monotonically
increased with Algorithm 1.

Proposition 4. Algorithm 2 decreases the objective value of
(6) in each iteration monotonically until it converges to a sta-
tionary point.
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Dataset samples views classes
MSRC 210 6 7
Caltech7 441 6 7
Dights 2000 6 10
ORL 400 3 40
Yale 165 2 15
WebKB 1051 2 2

Table 1: Statistic of Six Real-word Datasets.

4.2 Computational Complexity

In the following, we analyze the computational complex-
ity of SRLC. In the initialization, the construction of

{Sg)}v‘/:1 costs O(3", (n(*))2d™)). In each iteration, SRLC
has three alternating steps. To update {R(")}Y_,, since
(FHTOMG = (FY)TGLY), we need O(3, n(*)C?2) for
matrix multiplication and O(C3V') for SVD. To update Y,
we pay O(Y", n(*)C?) to compute Q and O(nC) to calculate
Y. To update {Fg})}q‘)/:1 of {F(")}Y_ | the computational
complexity of the proposed Algorithm 1is O(3>, n(") C?t; +
3, (n")2Ct,), where t; is the number of iteration of Algo-
rithm 1. Overall, since V < n(*) and C' < n(¥), the compu-
tational complexity of SRLCis O(>_, (n(")2(dV) +1£,C)),
where ¢ is the number of iteration of Algorithm 2.

S Experiment

In this section, we conduct experiments to verify the proposed
SRLC. Firstly, we compare SRLC with five state-of-the-art
methods on partial multi-view clustering task. Then we study
the impact of hyper-parameters and finally present the results
about convergence behavior.

5.1 Experiments Setup

The experiments are conducted on six real-world datasets:
Microsoft Research Cambridge Volume 1 (MSRC)!, Cal-
tech72, Handwritten digits (Dights)3, ORL*, Yale’, WebKB®.
A detailed summarization of these datasets is in Table 1.

Since all these datasets are originally complete, to mimic
the incomplete multi-view setting, we randomly remove some
examples from each sample. Concretely, for each xz(-v), there
is a probability to remove it. In the experiments, the probabil-
ity is tuned form 10% to 50% with a step 10%. And for each
sample x;, we ensure that it has at least one xgv) remaining.
The probability can also be regarded as the partial example
ratio (PER) of the dataset.

In the experiments, we compare the proposed SRLC with
several state-of-the-art methods: Partial multi-View Clus-
tering (PVC) [Li et al., 2014], Incomplete Multi-modality

"https://www.microsoft.com/en-us/research/project/.
Zhttp://www.vision.caltech.edu/Image Datasets/Caltech101/.
*http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
“http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
Shttp://vision.ucsd.edu/content/yale-face-database.
®http://www.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb.
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Figure 1: Mean AdjRI comparison on six datasets with different PERs.

Grouping (IMG) [Zhao et al, 2016], Multiple Incom-
plete views Clustering (MIC) [Shao er al., 2015], Multi-
view Learning with Incomplete Views (MLIV) [Xu et al.,
20151, and Doubly Aligned Incomplete Multi-view Cluster-
ing (DAIMC) [Hu and Chen, 2018]. Since the original PVC
and IMG can only deal with two incomplete views, we ex-
tend them according to Eq. (2), so that the extended versions
can be applied on multi-view data with any number of incom-
plete views. All hyper-parameters of the compared methods
are determined by grid-search.

Since all the compared methods except SRLC need post-
processing to extract the clustering indicators, we apply K-
means [Ding ef al., 2005] on the unified representation ma-
trices of these methods to obtain the clustering the results.
To make fair comparison, K-means and our proposed SRLC
share the same stable initialization clustering indicator matrix
which is calculated according to [Xu er al., 2016].

The clustering results are evaluated by two metrics, the ad-
justed rand index (AdjRI) and the normalized mutual infor-
mation (NMI). On each dataset, we repeat 10 independent
times to create incomplete multi-view data for each PER, and
the average performance is reported.

5.2 Clustering Results

Figure 1 and Table 2 report the AdjRI and NMI results on six
data sets with different partial example ratios, respectively.
From these figures and table, we have the following obser-
vations. (1) With the increase of PER, in terms of both Ad-
jRI and NMI, the performance of all the compared methods
becomes worse in most cases, which is consistent with in-
tuition. (2) On datasets MSRC, Caltech7 and Dights, as the
PER increases, the performance of MIC is degenerated fast
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than the performance of other methods. The possible rea-
son is that MIC simply fills the missing instances with the
global feature average, which may lead to a deviation when
PER is large. (3) Each of the MF-based methods achieves
good performance on certain datasets, but performs worse on
other datasets. The possible reason is that they adopt different
regularization terms or constraints, which makes them good
at grouping certain kind of data and poor at clustering the
others. (4) The proposed SRLC consistently outperforms the
other compared methods over all datasets as the PER varies
from 10% to 50%. This may be because SRLC incorporates
representation learning and clustering, and is capable to ex-
plore the non-linear information hidden in the data.

5.3 Hyper-parameter Study

The proposed SRLC has two hyper-parameters {\,~v}. A is
tuned in the range of {10!, 105,102, 10%?,10%} while v is
tuned in the range of {1.1,1.3,1.5,1.7,1.9}. The experi-
ments are conducted on datasets MSRC-v1 and Caltech7 with
PER=30%. As shown in Figure 2(a) and Figure 2(b), SRLC
achieves acceptable with different combinations of {\,~}.
However, how to identify the optimal parameters is data de-
pendent. Two datasets have different optimal parameters be-
cause their data characteristics are different.

5.4 Convergence Study

To verify the convergence property of the proposed SRLC, we
conduct experiments on datasets MSRC and Caltech7 with
PER=30% and set the hyper-parameters {\, v} as {10, 1.1}
respectively. In Figure 2(c) and Figure 2(d), the blue curves
show the objective function value of (6) and the red dashed
lines presents the NMI of SRLC in each iteration. It can be
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Data set | PER PVC MG MIC MLIV DAIMC SRLC
10% | .5837(.0525) | .6299(.0292) | .6565(.0416) | .6668(.0689) | .6332(.0597) | .7839(.0136)
20% | .5506(.0478) | .5800(.0382) | .4401(.0561) | .6573(.0692) | .5956(.0238) | .7731(.0258)
MSRC | 30% | .5024(.0430) | .5564(.0309) | .2859(.0337) | .6470(.0314) | .5639(.0433) | .7289(.0161)
40% | .4502(.0641) | .5009(.0390) | .2006(.0327) | .6009(.0665) | .5011(.0514) | .6918(.0395)
50% | .3491(.0451) | .4676(.0352) | .1288(.0260) | .5226(.0516) | .4361(.0824) | .6197(.0379)
10% | .6362(.0243) | .6016(.0099) | .4540(.0514) | .5234(.0568) | .6667(.0375) | .7442(.0119)
20% | .6329(.0246) | .5996(.0191) | .3054(.0148) | .5140(.0531) | .6532(.0311) | .7274(.0174)
Caltech7 | 30% | .5800(.0289) | .5766(.0212) | .1924(.0209) | .5105(.0437) | .6203(.0172) | .6936(.0261)
40% | .5255(.0289) | .5416(.0199) | .1182(.0222) | .4727(.0454) | .5547(.0267) | .6399(.0232)
50% | .3987(.0529) | .5185(.0298) | .0776(.0121) | .4382(.0472) | .5065(.0428) | .5772(.0341)
10% | .6450(.0177) | .7281(.0157) | .6466(.0169) | .7084(.0396) | .7348(.0249) | .9124(.0076)
20% | .6730(.0203) | .7088(.0095) | .5831(.0141) | .6929(.0223) | .7258(.0385) | .9017(.0062)
Dights | 30% | .6470(.0320) | .7015(.0245) | .5214(.0125) | .6907(.0322) | .6902(.0216) | .8839(.0094)
40% | .6224(.0394) | .6601(.0318) | .4447(.0144) | 6571(.0162) | .6220(.0481) | .8564(.0047)
50% | .6085(.0229) | .6134(.0209) | .3480(.0101) | .6402(.0466) | .5437(.0669) | .8175(.0082)
10% | .5819(.0323) | .6763(.0046) | .6374(.0120) | .6069(.0182) | .6051(.0258) | .7443(.0044)
20% | .5370(.0368) | .6409(.0127) | .5980(.0157) | .5971(.0215) | .5435(.0391) | .7142(.0121)
ORL | 30% | .4989(.0165) | .5883(.0222) | .5642(.0145) | .5584(.0148) | .4040(.0431) | .6888(.0132)
40% | .4908(.0240) | .5680(.0204) | .5358(.0094) | .5346(.0120) | .3724(.0521) | .6527(.0093)
50% | .4710(.0108) | .5292(.0143) | .5075(.0100) | .5073(.0156) | .3361(.0378) | .6160(.0096)
10% | .4425(.0170) | .4641(.0073) | .4127(.0116) | .4465(.0055) | .4618(.0087) | .5538(.0050)
20% | .3912(.0174) | .4391(.0208) | .3816(.0133) | .4280(.0354) | .4247(.0254) | .5322(.0235)
Yale | 30% | .3775(.0174) | .4171(.0200) | .3697(.0230) | .4101(.0290) | .4015(.0212) | .5046(.0115)
40% | 3635(.0286) | .4081(.0282) | .3760(.0295) | .3929(.0222) | .4022(.0261) | .4913(.0177)
50% | .3847(.0315) | .4093(.0240) | .3635(.0255) | .3842(.0238) | .3849(.0196) | .4706(.0265)
10% | .0977(.0305) | .0644(.0152) | .1106(.0117) | .2291(.1743) | .1770(.0518) | .3898(.0849)
20% | .1207(.0408) | .0629(.0272) | .1116(.0241) | .1664(.1381) | .1181(.0699) | .3647(.0295)
WebKB | 30% | .0763(.0415) | .0535(.0150) | .0913(.0286) | .1332(.1278) | .0769(.0384) | .3233(.0689)
40% | .0718(.0245) | .0429(.0088) | .0770(.0181) | .0445(.0233) | .0264(.0356) | .2856(.0940)
50% | .0446(.0062) | .0353(.0044) | .0143(.0104) | .0158(.0208) | .0168(.0036) | .2736(.0418)
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Table 2: Comparison results w.r.t NMI with different PERs. (mean(std).

observed that as the iteration round increases, the objective
function value decreases fast and the performance increases

rapidly, indicating SRLC has fast convergence propety.

6 Conclusion

In this paper, we propose a spectral-based method to deal with
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Figure 2: Parameter and convergence studies of SRLC.

incomplete multi-view problem by incorporating representa-
tion learning and clustering. Based on the similarity matrices
independently constructed on each view, the proposed SRLC
algorithm learns a common probability label matrix together
with low-dimensional representations of present instances,
which enables SRLC to utilize non-linear information and fa-
cilitates the optimization procedure to meet the demand of
clustering. Experimental results on six datasets validate the
effectiveness of SRLC. In the future, we will study how to
extend SRLC to the semi-supervised classification task.
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