Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Generalized Majorization-Minimization for Non-Convex Optimization

Hu Zhang' , Pan Zhou?, Yi Yang!3* and Jiashi Feng?

'School of Computer Science, University of Technology Sydney, Australia
“Dept. ECE, National University of Singapore, Singapore
3Baidu Research
Hu.Zhang-1@student.uts.edu.au, pzhou@u.nus.edu, Yi.Yang@uts.edu.au, elefjia@nus.edu.sg

Abstract

Majorization-Minimization (MM) algorithms opti-
mize an objective function by iteratively minimiz-
ing its majorizing surrogate and offer attractively
fast convergence rate for convex problems. How-
ever, their convergence behaviors for non-convex
problems remain unclear. In this paper, we propose
a novel MM surrogate function from strictly upper
bounding the objective to bounding the objective in
expectation. With this generalized surrogate con-
ception, we develop a new optimization algorithm,
termed SPI-MM, that leverages the recent proposed
SPIDER for more efficient non-convex optimiza-
tion. We prove that for finite-sum problems, the
SPI-MM algorithm converges to an stationary point
within deterministic and lower stochastic gradient
complexity. To our best knowledge, this work
gives the first non-asymptotic convergence analy-
sis for MM-alike algorithms in general non-convex
optimization. Extensive empirical studies on non-
convex logistic regression and sparse PCA demon-
strate the advantageous efficiency of the proposed
algorithm and validate our theoretical results.

1 Introduction

In this paper, let us consider the following finite-sum opti-
mization problem:

mn 0023 A0 +h0) )

where each component f; : RP — R is a continuous, non-
convex but smooth function, associated with one sample. The
second term A (0) could be non-smooth and non-convex. n
is the number of samples. Such a formulation encapsulates
many statistical learning tasks, e.g. principle component anal-
ysis [Feng et al., 20131, regression [Draper and Smith, 2014]
and training neural networks [LeCun et al., 2015].
Majorization-Minimization (MM) [Lange ez al., 2000] is
an optimization framework for designing well-behaved op-

*Part of this work was done when Yi Yang was visiting Baidu
Research during his Professional Experience Program.
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timization algorithms for non-convex functions. MM algo-
rithms solve problem (1) via two steps. The first step is to
construct a proper surrogate g that upper bounds the objective
function ®(0) tightly, i.e., g(8) > ®(0). The second step is
to optimize the surrogate whose optimum is much easier to
obtain. Since the surrogate constructed at the current estima-
tor is majorant to the objective function, each minimization
step over the surrogate will decrease the objective function
monotonically. MM is attractive in practice as one can de-
compose the original complex problem to a series of much
simpler sub-problems that are easier and faster to optimize.

Previous works show that the convergence rate of MM
algorithms is nearly optimal when the objective is con-
vex [Mairal, 2013b]. Specifically, they are shown to converge
at a rate of O(1/+/%) in a finite-sum setting and O(1/t) in
a stochastic setting for strongly convex objective functions.
However, when the component f; in (1) is non-convex, an ex-
act global optimum is unreachable and the theoretical conver-
gence guarantee is hard to obtain by nature. Though previous
studies have provided analysis of the convergence for asymp-
totic stationary points [Borwein and Lewis, 2010], their re-
sults are rather limited, and little work has revealed the spe-
cific convergence rate.

In this work, we aim to conquer this challenge and give
concrete convergence rate analysis of MM-alike algorithms
for solving non-convex problems. Inspired by the recently
proposed SPIDER (Stochastic Path Integrated Differential
EstimatoR) [Fang et al., 2018] method, we propose a general-
ized surrogate which fully exploits the historical gradient in-
formation and develop a new MM algorithm, called SPI-MM.
The proposed SPI-MM algorithm significantly relaxes the re-
quirement on the surrogate from classic MM algorithms. In-
stead of tightly bounding the objective for all the samples, it
only requires the surrogate to bound the objective in expecta-
tion. The SPI-MM is general and can instantiate existing MM
methods. Figure 1 illustrates such generalization over the sur-
rogate construction by SPI-MM. The red line is the classic
surrogate which strictly upper bounds the objective function
at the solution 6;. Our proposed surrogate can lie in the space
between two dotted lines and the requirement is much milder.

In particular, when we adopt a first-order generalized
surrogate, we prove that the proposed SPI-MM algorithm
decreases the objective value in expectation. In addi-
tion, we prove that the SPI-MM algorithm terminates af-
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ter O(g + n) gradient computations when searching
for an e-approximation first-order stationary point 8 with
E|[V®(0)|| < e. These results are obtained by our devel-
oped novel proof techniques that we will detail in the method
section, on top of the techniques from SPIDER.

The main contributions of our paper are as follows:

e We propose a generalized surrogate for non-convex opti-
mization problems. Instead of requiring the surrogate to
exactly upper bound the objective, we only require that
the surrogate upper bound the objective in expectation.
With such generalization, we put forward a new MM al-
gorithm, named SPI-MM.

e We give the first non-asymptotic convergence rate and
IFO complexity result for MM-alike algorithms, by non-
trivially extending the techniques introduced in SPI-
DER. For the first time, we prove that MM algorithms

can achieve O(Q + n) in gradient computation com-
plexity, for non-convex optimization.

e We conduct extensive experiments on logistic regression
with a non-convex regularizer and sparse PCA to show
the superior effectiveness of our proposed SPI-MM al-
gorithm over well-established baseline algorithms in-
cluding MM, MISO, MISO1 and SMM.

2 Related Work

The Majorization-Minimization (MM) framework was first
proposed in [Lange et al., 2000]. It generalizes methods like
EM by “transferring” the optimization to a sequence of sur-
rogate functions which upper bound the original objective
function. [Mairal, 2013a] proposed a stochastic majorization-
minimization scheme, extending the MM principle to large-
scale or possibly infinite datasets. [Mairal, 2015] proposed
an incremental MM algorithm where a single function is ob-
tained in each iteration, based on which the approximate sur-
rogate function is updated. [Parizi er al., 2015] provided a
general MM scheme that is less sensitive to initialization in
Concave-Convex Procedure (CCCP) problems. [Xu et al.,
2016] presented a relaxed version of the MM algorithm to
solve the robust matrix factorization (RMF) problems, which
only requires a locally majorant surrogate. More recently,
[Bietti and Mairal, 2017] proposed variance reduced MISO
for data augmentation problems.

Regarding convergence analysis of MM algorithms,
[Vaida, 2005] revealed the global convergence of EM al-
gorithms, extended the result of EM to that of MM algo-
rithms under some conditions. However, they could only
solve cases where the objective function is differentiable and
convex, whereas we consider a non-convex problem here.
[Mairal, 2013b] only studied the asymptotic stationary point
conditions with first-order surrogate functions for non-convex
problems, although this work gave concrete convergence re-
sults for convex and strongly-convex problems. [Kang et
al., 2015] established sublinear convergence results for non-
covex problems by applying the theory of the Kurdyka-
Lojasiewicz inequality. They only considered the regularizer
h(8) to be non-convex rather than a general non-convex prob-

E[g:(0)] = g:(6)

f(©)

f(6r)
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Figure 1: Illustration of classical MM and SPI-MM. A globally ma-
jorant surrogate g¢(0) in classic MM algorithms is shown in red;
our proposed surrogate g:(6) possibly lies in the region between
two dotted lines.

lem. [Xu er al., 2016] gave a statement on asymptotic station-
ary point conditions with the relaxed MM algorithm.

SGD as well as its variants [Nesterov, 1998; Cappé and
Moulines, 2009; Kingma and Ba, 2014] is another line
of approaches for solving problem (1). Based on SGD,
various variance reduction methods have been proposed,
like SAGA [Defazio et al., 2014], SDCA[Shalev-Shwartz
and Zhang, 20131, SVRG [Johnson and Zhang, 2013] and
SARAH [Nguyen et al., 2017]. SPIDER was proposed in
[Fang er al., 2018], which has been proved to be the most effi-
cient algorithm for non-convex problems so far w.r.t. gradient

complexity. It achieved O(g + n) IFO complexity, which

2
outperforms the results in previous methods, e.g. O(%’ +n)
in SVRG.

Despite the considerable previous research, the conver-
gence analysis of existing MM algorithms for non-convex
problems is still not limited. When one considers a first-order
surrogate, either a specific convergence result is absent or the
gradient complexity has never been considered in MM algo-
rithms. We apply the idea of SPIDER in extended MM defi-
nition and propose a generalized SPI-MM algorithm. We also
give a concrete convergence rate and a clear /FO complexity
analysis.

3 Proposed Algorithm

In this section, we first introduce useful assumptions and def-
initions in Section 3.1. Then we revisit the classic MM al-
gorithms by examining some surrogate examples in details in
Section 3.2. After that, we introduce our proposed SPI-MM
algorithm in Section 3.3 and provide convergence analysis re-
sults in Section 3.4 and 3.5.

3.1 Preliminaries

We consider problem (1) with the objective function ®(8)
satisfying the following usual assumptions.

Assumption 1. The objective function in problem (1) satisfies
1. ®(0) is bounded below, i.e., ®* = infgcrr P(0) >

—0oQ0,
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Algorithm 1 Classic MM Algorithm

Algorithm 2 SPI-MM Algorithm

Input: initial estimator 6, iteration number K;
1: fort=0,...,7 —1do
2:  Compute a surrogate function g; of ®(0) near 6,
3:  Update the solution: 8; € argming;(0;8,);
0

4: end for
Output: 6.

2. For every i = 1,...,n, the gradient V f; is L-Lipschitz
continuous, i.e.,

|vs0) - Vs <r]o-o

b

and f; is also said to be L-smooth.

MM algorithms heavily rely on constructing a proper sur-
rogate function for the objective ®(8). Typically, the surro-
gate function should have the following properties.

Definition 1 (Classic surrogate). A function g : R? — R is
a first-order surrogate function of ® in problem (1) near 0,
when

1. g(0;0) is a global majorant surrogate if the general
condition g(0;0,) > ®(0) holds for all 6;

2. g(0:;6:) = ®(0:); Vg(0y;0,) = VP(0;) when O(0) is
smooth.

The incremental first-order oracle (IFO) is usually used to
measure the computation complexity of evaluating stochastic
optimization algorithms[Agarwal and Bottou, 2014; Wang et
al.,2018].

Definition 2 (IFO complexity). For ®(0) in problem (1), an
IFO means selecting an index i and a datum x; and returning
the pair (®(0; x;), V®(0;x;)).

3.2 The MM Algorithms

We here briefly review the classic MM algorithm [Lange et
al., 2000; Razaviyayn et al., 2016]. In each iteration, it re-
quires the surrogate function g to tightly upper bound the ob-
jective at estimator obtained in last iteration, i.e., 6;, as ex-
plained in Definition 1.

One popular choice for the surrogate g is the proximal
gradient surrogates. Given the gradient V f(6;) and another
sufficiently large parameter L, the surrogate of ®(6) is con-
structed as follows:

5(0) = F(0.)+F(0,)(0-8,) 1+ [0 - 0, +h(6). @)

Surrogates like the above one are strongly convex thus are
much easier to optimize. MM sets the new 8, from

0;11 = argmin g;(0)

as the starting point for the next iteration.

A surrogate constructed as above satisfies the strict ma-
jorization condition in Definition 1 and will result in
non-increasing loss function on the sequential estimate
{60, ...,0;}. Namely, ®(0;11) < g(0;11) < g(0;) = 2(6,).
With such a property, previous works derive convergence rate
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Input: Initial 8y € O, iteration number 7', iteration interval
p, mini-batch size S;. Choose a surrogate g, of f; near
0, for all i;

1. fort=0,....,T —1do

2:  if mod(¢, p)==0 then

3: Draw all samples and choose some surrogates g; for
alli € [n], 3:(0;0;) = 157 Xies, 9is

4:  else

5: Randomly draw mini-batch S, and choose base sur-

rogate g; for all i € Sa,
9s(0;6;) = @ > iest Yis
6: 9:(0:6:) = gs51(0;0;) + (—Vgs;(0¢—150:—1) +
V1) (6 -6+ 50— 6
7:  endif
8:  Update the solution: ;11 € arg ming;(0; 6;);
6

9: end for
Output: ¢ that is uniformly chosen at random from

{6:3 "

for convex and strongly convex problems. Several previous
algorithms like SMM [Mairal, 2013b] and MISO [Mairal,
2015] adopt different combinations of surrogates constructed
in different iterations, but it is always required that the final
surrogates at the current iteration upper bound the original
objective function. A classic procedure of MM algorithms is
summarized in Algorithm 1.

The globally majorant requirement can conveniently facil-
itate the convergence proof for convex problems. As above
mentioned, one can directly establish the relation between
the values of an objective function in two adjacent iterations.
However, under this strict requirement, it is hard to fully uti-
lize the historical gradient information though the construc-
tion of the surrogate relies on gradients in the past itera-
tions. Moreover, the strictly selected surrogates may lead to
a very small step size under a non-convex setting, resulting
in a slower convergence rate in practice. In this work, we
substantially relax such a requirement and surprisingly ob-
tain convergence guarantees by leveraging recent non-convex
optimization techniques.

3.3 The SPI-MM Algorithm

We first describe our generalized MM idea and then elabo-
rate on the surrogate construction process. In our generalized
MM definition, we measure progress per iteration over the
objective function using expectation. It allows us to relax the
surrogate constraint in classic MM.

Generalized Surrogate
Under our generalized MM framework, we only require the
surrogate to satisfy below conditions.

Definition 3 (Generalized surrogate). A function ggey, is said
to be a surrogate function in generalized MM if

1. ggen(0t§ Ot) = (b(at)y
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2. EVggen(0y;0:) = VO (0y), if D(0) is smooth,

3. Eggen(0§ et) > @(G)for all 6.

The conditions above are closely related to those in clas-
sic MM. For the 2nd condition in Definition 3, we expect
the value of a new surrogate to equal the objective function
at 8;_1. The expectation of the new surrogate’s gradient at
0;_, is also required to equal that of the objective function.
However, instead of ensuring the surrogate to be globally ma-
jorant, we only require its expectation to be globally majo-
rant. When we construct the surrogate on a single datum x;,
we also just require Eg’, (6;6;) > ®'(8) for all 6. This
relaxed condition ensures that our surrogate be valid but of
sufficient flexibility in exploring the solution space. Such
milder constraints in generalized MM do not directly imply
®(0;) < P(0;_1), but they ensure Vi, ED(6;) < D(6y).
This implies guarantees for the objective function value to
be non-increased in expectation.

Note that the above surrogate is valid in the classic sense.
The first condition requires that the surrogate concentrate
around a classic surrogate. However, with slight uncertainty,
the choice over the surrogates becomes more flexible. For
example, we can make slight compromise in accuracy to ob-
tain a larger step size, giving faster convergence in practice.
Also, by generalizing the surrogate, we are able to use the
techniques for proving the objective decrease in expectation.
This is key for obtaining our following convergence guaran-
tees.

With the generalized surrogate definition, we propose a
method to construct the surrogate and develop the SPI-MM
algorithm for solving problem (1). Overall, this method con-
siders the combination of past and current gradient informa-
tion, and an arbitrary valid surrogate obtained in the classic
MM setting. Some surrogates proposed in [Mairal, 2013a]
and [Xu et al., 2016] also apply here. We show that the
constructed surrogate is not necessarily restricted to the tradi-
tional MM setting.

SPI-MM Algorithm
Here, we propose a concrete algorithm, named SPI-MM that
employs a specific generalized surrogate construction.

Our proposed SPI-MM algorithm fully leverages the gra-
dient of past surrogates as follows. Suppose each epoch in-
cludes p iterations and totally we need 7' iterations. At the
first step ¢ in each epoch, we use all the samples n to con-
struct a strict surrogate as in classic MM. For each datum,
we choose a surrogate g; of ®; near 6,. When i (0) in ®(0)
is non-smooth, we choose a surrogate g; of f; near 8,. We
define |S;| = n. Then we have

S S | > g 3)

Go(0;6o) =
1€S

We minimize Eqn.(3) to get 6;. For the next step, we only
sample Sz samples. Relying on 6, 81 respectively, we con-
struct a base surrogate gs, (0; 1) of ®; € Sy near 6, and an
auxiliary surrogate gs,(0; 8y) near 8y. These two surrogates
here at least satisfy the 2nd condition in Definition 1.

We use the base surrogate gs,(0;60;) as the first term of
the new surrogate in this step. We compute the gradient
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of the auxiliary surrogate gs,(6;600) and go(0;6y) at 6o,
ie. Vgs,(00;600),Vgo(0o;6p) to construct a linear term
(—Vys,(00;00) +Vgo(60;00)) " (6 — 6;), and take it as the
second term in the new surrogate. We add a second-order
term £ (|0 — 0, [|* to complement for the relaxing in the base
surrogate. We minimize the sum of these three terms to get
65. The following optimization iterations repeat the above
surrogate construction, summarized as

9:(60:6;) = g5:(0:6;) + {—Vgs;(61-1:6;-1)
t—1

+> [Vsy(0::0:) — Vgsi (0;-1:0i1)] (4

i=1

+ Vg0(60.80)} 7 (6~ 6,) + 5116 ~ 6]

We rewrite the gradient part in the linear term as
—Vgs1(01-1;0:-1) + Vi1 for simplicity:

t—1

Vier £ ) [Vgs; (655 0:)~Vs; (8i-1; 0;-1)1+V 5o (6o, 60).

i=1

Samples {Si™!, 8172, ..., S4} in different iterations are equal
in number. The idea for constructing this surrogate is bor-
rowed from SPIDER [Fang er al., 2018], where current gradi-
ent is estimated by utilizing the gradient in the past to reduce
the variance, leading to smaller sampling numbers.

‘We demonstrate below that the surrogate in SPI-MM satis-
fies conditions in our Definition 3. For the first condition, we
have

G:(61:6:) = gsy (013 0¢) ®)
from Eqn. 4. On the other side,
9s:(01;6;) = (6,) (6)

as we require the base surrogate gs; (0; 6,) to satisfy the 2nd
condition in Definition 1, leading to g.(6;;80,) = ®(6;) veri-
fying the first condition.

For V§:(0; 6;) at 0, the gradient is computed as

VGi(01;6:) =Vgs: (01;60:)— Vst (0r—1;0,—1)+ V1. (7)

It is easy to obtain the expectation of —Vgs; (0:—1;0:—1) +
Vi—1 is zero by iteratively unfolding this term and i.i.d.
sampling condition.  Thus, we have EVg;(0:;6;) =
EVgs: (01;8;) = V&(8;), which satisfies the 2nd condition.

Finally, for the 3rd condition in Definition 3, we have
Eg:(8,0:) = Egs: (6 —6;)+ 5116 —6:[|*. Suppose the objec-
tive function ®(8) is L-smooth, V*Egs; (8 —6;) = ji;. Then
we just need to tune y large enough to make i = u+ iy larger
than L to satisfy the 3rd condition in Definition 3. We argue
that puy here is reasonable, since the base surrogate gs; (6;6,)
is selected by ourselves. For simplicity, we can even directly
select a strongly convex function here.

Our way of constructing the new surrogate accords with
the basic idea in SPIDER. Based on the base surrogate, we
use the gradient of past surrogates to construct a linear term,
which is able to reduce the variance of the base surrogate.
Such a composition also facilitates the convergence analysis,
which is explained in next subsection. The overall algorithm
is summarized in Algorithm 2.
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3.4 Convergence Guarantees

We here analyze the convergence properties of the proposed
scheme under the generalized MM setting. We focus on
the non-convex problem and searching for a stationary point
E||V®(0)| < e. We first show our loss function is decreasing
every epoch in expectation and then give the concrete conver-
gence results and corresponding IFO complexity.

Lemma 1. Suppose Assumption 3.1 holds, and a sequence
{0n,p} is produced by Algorithm 2 after every p iterations.
The base surrogate g+(0; 0y) is L z-smooth, o = 1 Ly

2p 2pp?
L L? - .o
3T~ Wﬁsﬂ’ V; = Vg;(0;;0;). Then the objective func-

tion ©(0) after every p iterations is guaranteed to decrease
in expectation:

ngp—1
E®(0,,p) — E®(O(n,—1)p) <— > aRE[[Vi]*. (8)
i=(n;—1)p
By Lemma 1, if each epoch contains p iterations, we

guarantee that the objective function be almost certain to
be decreasing in expectation It is also very easy to derive
E®(0r) — ©(6) < — ZZ o ' o ||V;]|?, meaning the objec-
tive function value is driven to be shrmkmg. Theorem 1 gives
the final convergence rate and I F'O complexity by applying
Lemma 1. It shows that the objective function converges to
a stationary point at a rate of O(1/+/%) and the total gradient
computation is O(y/ne~2 + n).

Theorem 1. Suppose Assumptions 3.1 holds and apply SPI-
MM in Algorithm 2. Let p = \/n, So = /n and p be large
enough. Then we have final output satisfying E||V®(0;)| <
€ as long as the total number of iterations T satisfies

TZO(W) ©))

€

And the total resulting IFO complexity is O(y/ne 2
3.5 Proof Roadmap

Due to space limit, we omit details of the proof and provide a
proof roadmap here to illustrate the basic idea.

We aim to bound the iteration steps and gradient
computations for attaining the first-order stationary point
E|[V®(0¢)|| < € in non-convex problems. To this end, we
leverage the structure in SPI-MM and rewrite E||V®(0;)| <
¢ as follows:

E[|Vo(6;)|

+n).

=E[VP(6e) - Ve + Ve*
< 2E[VP(6g) — Vel + 2E[| Vel|*.
Then we bound the above two last terms by establishing fol-
lowing two lemmas respectively.
Lemma 2. Under Assumption 1, let n; = [t/p] such that
(ng—1)p <t < mgp—1, (ny — 1)pis the beginning of epoch
n;. Then the estimator V), satisfies
¢
L2
Z |S |||91+1 0i||2
i=(n:—1)p
: L?
< Y gEE

i=(ny—1)p

(10)

E[Ve = V(0] <

an
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The above lemma bounds the first term. Now we proceed
to bound the second term E||V;]| as follows. We have

0,1 = argemingt(ﬂ; 0,)

= argmin{gs; (6 0,) + 510 — 0.+

(—Vgss(0r-1:60;1) +Vi1) T (0 — 6,)},

1
011 — 0, = _;(Vt + Vs (011:0:) — Vgs: (045 01)).

By substituting 8,11 — 6; into the following formulation

D(0141) < D(0:) +(VP(6;),0:11 — ;) + *H0t+1 — 6.

we get Lemma 3.

Lemma 3. Under Assumption 1, our new surrogate is fi-
strongly convex and the base surrogate is L s-smooth. If the
parameters (i, ji, L ¢, p and So are chosen satisfying

1 L L L?
aéi_%_?_ﬂip>0,
20 2up® 202 202plS:|
we have
T-1
1 D(6,) — O
E|Vell? = 7 D EIViP < = —.  (12)
=1

By applying Lemma 2 and Lemma 3, we can prove
E[[V®(6)|* < (1+ =& )( (6)) — ®*), and with

proper parameters selected we get the convergence rate and
IFO complexity results in Theorem 2.

4 Experiments

We conduct two groups of experiments on non-convex prob-
lems to evaluate our proposed results. The first group is
to optimize a logistic regression loss with a non-convex
regularizer[Gasso er al., 2009]. Specifically, we optimize the
following problem:

N
1
(0) = - > log(1+ e 0) +

i=1

;;bg(wm re),

where 6[j] is the j-th element in 6. The function /(@) here
is not differentiable. We write it as a composition of h(u) =
log(u + €) and uw = |0[j]|. We construct the following surro-
gate for h(8) through linear approximation:

Z 1605 |— 1G] = 1021151
10:—1[j]| + €
By choosing a second-order approximation of the first
logistic  term fsz—l(Gt,l) + VfS;_l(Ot,l)T(H -

0:,_1) + Lf |6 — 6,1 2 we can establish the linear

term (~ a1 (Br2) + X2V f (6:) — Ty (611)] +
Vf(60))(0—6;_1) and the second-order term £ (|0 — 0, _+ ||*

—Zlog 0:—1 ]| +¢) +
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Figure 2: Comparison of algorithms on non-convex logistic regres-
sion problem.

according to SPI-MM. We then have the final surrogate func-
tion with omitted constants:

t—1
9:0) =>_[V/s(6:) = Vs (8:-1)]) T (6 — 6, 1)

i=1

A 10l |—\9t 1]
+2; |9t1 +e

+ L
+ 5510 -0l

We choose four algorithms as baselines, i.e. classic MM in
Algorithm 1, MISO [Mairal, 2015], MISO1 [Mairal, 2015]
and SMM [Mairal, 2013b], for performance comparison with
ours on four datasets including ijcnn, splice, covtype, phish-
ing'[Chang and Lin, 2011] and two larger datasets including
alpha and gamma®. MISOL1 is a modification of vanilla MISO
by tuning the Lipschitz parameter of the surrogate on 5% of
the samples.

Figure 2 shows the curves of different algorithms on IFO
vs. objective function value. One can observe that our pro-
posed SPI-MM algorithm outperforms all compared algo-
rithms on all the six datasets. It is obvious that SPI-MM
has sharper convergence behavior w.r.t. the IFO complexity.
SPI-MM also gives a lower objective function value. In con-
trast, the compared algorithms are more likely to get stuck in
a poorer local minimum.

"https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
>ftp://largescale.ml.tu-berlin.de/largescale/
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Figure 3: Comparison of selected algorithms on sparse-PCA prob-
lem.

In the second group of experiments, we compare our SPI-
MM algorithm with the same four baselines as above on four
datasets including duke, satimage, sensorless and letter 1 on
the sparse-PCA problem that is formulated as below [Zou et
al., 2006]:

argmln { 0'36 + )\|6]? } with 2 £ X T X.
where ¥ = XTX X € R*¥P, n is the number of sam-
ples and p is the d1rnens10n. Our algorithm SPI-MM exhibits
faster convergence rate w.r.t. [FO as shown in Figure 3. SPI-
MM decreases the objective function value much faster than
others. We observe that the loss curves of SMM and MM are
less stable here. Our assumed explanation is that they lack
past gradient information as supervision.

Both groups of experiments clearly demonstrate the advan-
tage of the proposed SPI-MM over well-developed baseline
algorithms.

5 Conclusions

In this work, we propose a generalized concept of surrogate
that is core to MM algorithms, which requires milder con-
ditions for bounding the objective functions. This general-
ized conception facilitates the convergence analysis for non-
convex problems. We then develop a specific algorithm SPI-
MM based on the generalized surrogate and prove its non-
asymptotic convergence rate and /FO complexity. Numeri-
cal results confirm the computational superiority of SPI-MM
over other popular algorithms.
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