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Abstract
Recently, similarity-preserving hashing methods
have been extensively studied for large-scale im-
age retrieval. Compared with unsupervised hash-
ing, supervised hashing methods for labeled data
have usually better performance by utilizing se-
mantic label information. Intuitively, for unlabeled
data, it will improve the performance of unsuper-
vised hashing methods if we can first mine some
supervised semantic ’label information’ from un-
labeled data and then incorporate the ’label infor-
mation’ into the training process. Thus, in this pa-
per, we propose a novel Object Detection based
Deep Unsupervised Hashing method (ODDUH).
Specifically, a pre-trained object detection model
is utilized to mining supervised ’label informa-
tion’, which is used to guide the learning process
to generate high-quality hash codes. Extensive ex-
periments on two public datasets demonstrate that
the proposed method outperforms the state-of-the-
art unsupervised hashing methods in the image re-
trieval task.

1 Introduction
With the rapid growth of image data, approximate near-
est neighbour (ANN) search have attracted more and more
attention from researchers in the large-scale image search
area. Among the existing ANN search techniques, similarity-
preserving hashing methods are advantageous due to their
high retrieval efficiency and low storage cost. The main idea
of hashing methods is to transform high dimensional data
points into a set of compact binary codes, meanwhile, main-
tain similarity of the original data points. Since the original
data points are represented by binary codes instead of real
valued features, the searching time and storage cost can be
dramatically reduced.

In general, data-dependent hashing can be divided into un-
supervised [Gong and Lazebnik, 2011; Huang et al., 2017;
Ghasedi Dizaji et al., 2018; Lin et al., 2016] and supervised
[Wang et al., 2018; Qiu et al., 2017] methods. The unsuper-
vised hashing methods mainly utilize the features of images
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Figure 1: High-quality similarity-preserving hashing code can be
produced by utilizing the pseudo-labels mined from images. The
block (i) is the workflow of the existing unsupervised hashing meth-
ods which do not mine the pseudo-labels from images, it is hard for
them to judge that the two images Ia and Ib are similar. However, in
block (ii), we use pseudo-labels mined from images to train hashing
models which can easily judge the two image are similar.

to generate similarity-preserving binary codes without any
supervised information. Compared with unsupervised hash-
ing, supervised hashing methods incorporate semantic labels
of training data into training process, thus they can perform
more remarkably in generating similarity-preserving binary
code. However, in many real applications, there are no se-
mantic labels for images, and supervised hashing methods
cannot be used in these cases

Intuitively, if we can detect the objects in images and use
their corresponding classes as the pseudo-labels of the im-
ages, then we can use the pseudo-labels as ’supervised in-
formation’ to guide hash codes learning to obtain better per-
formance. An illustrative example is shown in Figure 1, the
block (i) is the procedure of existing unsupervised hashing
methods. They use the hand-crafted or learnt features as in-
puts, and then they directly use the Euclidean distance be-
tween images or the similarity between one image and its ro-
tated image to guide the hash training, which will make the
existing unsupervised hashing models to judge that the im-
ages Ia and Ib are dissimilar with high possibility. Actually,
the images Ia and Ib are similar, because the two images be-
long to the class ’car’. On the contrary, in the block (ii),
if we first use an object detection model to get the pseudo-
labels ’car’of the two images by detecting objects inside an
image. By utilizing the pseudo-labels, we can construct pair-
wise similarity to guide hashing learning and make the hash-
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ing models to judge that the two images Ia and Ib are similar
with high possibility.

Inspired by this idea, we propose a novel Object Detection
based Deep Unsupervised Hashing model, called ODDUH.
In particular, an object detection model is first pre-trained on
a large database. Then, we utilize the object detection model
to mine latent semantic ’label information’ ( i.e., pseudo-
labels) from images. Note that some of the pseudo-labels
obtained by object detection are wrong because the preci-
sion of object detection is not 100%, and the noisy label will
damage the final hashing performance. In order to decrease
the harm of noisy pseudo-labels, we define a novel similar-
ity criterion called pair-wise percentage similarity. Further-
more, a shared CNN is introduced to capture the feature rep-
resentations of images. Finally, the pair-wise percentage sim-
ilarity and the learnt feature representations of images are
used to learn hash functions which can generate high-quality
similarity-preserving hash codes. Extensive experiments on
two real-world public datasets illustrate that our method out-
performs the state-of-the-art unsupervised hash methods in
image retrieval task.

2 Related Work
Generally, existing hashing methods can be divided into two
categories: data-independent hashing and data-dependent
hashing. For data-independent hashing methods, the hashing
functions depend on random projection without any training
data. The representative data-independent methods include
Locality Sensitivity Hashing (LSH) [Gionis et al., 1999] and
its variants [Datar et al., 2004; Kulis et al., 2009]. For data-
dependent hashing methods, they can achieve better accuracy
with shorter codes by learning hash functions from training
data. Furthermore, data-dependent methods can be mainly
classified into two categories: supervised [Wang et al., 2018;
Qiu et al., 2017] and unsupervised [Gionis et al., 1999;
Jin et al., 2014; Ghasedi Dizaji et al., 2018] methods.

The supervised data-dependent methods can achieve re-
markable performance by utilizing labeled data to learn hash-
ing functions. The representative methods in this category
include Deep Supervised Hashing with Pairwise (DPSH) [Li
et al., 2015], HashNet [Cao et al., 2017] and Deep Seman-
tic Hashing with GANs (DSH-GANs) [Qiu et al., 2017], etc.
DPSH utilizes pair-wise similarity to guide hash functions
learning in an end-to-end deep network. HashNet allevi-
ates data imbalance that the number of similar pairs is much
smaller than the number of dissimilar pairs by adjusting the
weights of semantic similarity matrix to learn discriminative
hashing codes. DSH-GANs introduces generative adversar-
ial network (GAN) to generative fake images and construct
triplet with the fake images and real images to supervise hash
functions learning process.

The unsupervised data-dependent methods can be divided
as traditional unsupervised hashing methods and deep un-
supervised hashing methods. The traditional unsupervised
hashing methods use hand-crafted features and shallow hash
functions to obtain binary hash code. Lots of algorithms in
this category have been proposed, including Spectral Hashing
(SH) [Weiss et al., 2009], and Iterative Quantization (ITQ)

[Gong and Lazebnik, 2011]. However, limited by the hand-
crafted features and shallow hash functions, it is hard for
them to deal with complex and high dimensional real-world
data and keep the semantic similarity between original data
in the binary hash codes. The deep unsupervised hashing
methods utilize deep architecture to extract image features
to learn hash code. For example, Deepbit [Lin et al., 2016]
get rotation invariant and balanced binary hash codes by de-
fined a quantization loss. Unsupervised triplet hashing (UTH)
[Huang et al., 2017] employs an unsupervised triplet loss to
get balanced hash codes. HashGAN [Ghasedi Dizaji et al.,
2018] generate compact hash codes by a generative adversar-
ial hashing network.

However, few existing unsupervised hashing methods try
to mine the latent semantic ’label information’ in the images.
Thus, in this paper, we propose a novel deep unsupervised
hashing model based on object detection to generate high-
quality hash codes by incorporating the latent semantic ’label
information’ mined by object detection into the training pro-
cess.

3 Object Detection based Deep Unsupervised
Hashing Method

In this section, we will present the proposed Object Detection
based Deep Unsupervised Hashing Network (ODDUH) in de-
tail. We first give a description of model notation in section
3.1. The whole architecture of ODDUH will be introduced in
section 3.2. Then we discuss the detail of similarity definition
and the object function in section 3.3 and section 3.4, respec-
tively. Finally, we will introduce the learning of parameters
in section 3.5.

3.1 Notation
Suppose a dataset has n images X = {xi}ni=1, and the ith
image is xi. The goal of similarity-preserving hashing is to
learn a mapping H : xi → bi ∈ {−1, 1}k, where k is the
length of hashing codes, such that an input image xi will be
encoded into a k-bit binary code bi.

3.2 The Architecture of ODDUH
As shown in Figure 2, our architecture consists of three parts:
latent semantic ’label information’ mining, feature learning
and hash function learning.

In the latent semantic ’label information’ mining part, the
ODDUH uses a pre-trained object detection model named
YOLOv2 [Redmon and Farhadi, 2017] to mining the latent
semantic ’label information’ in images. Note that other state-
of-the-art object detection models can also be used here, such
as SSD [Liu et al., 2016] and Mask R-CNN [He et al., 2017].

The feature learning part includes a convolutional neural
network (CNN) component and two fully-connected layers.
The CNN component contains five convolutional layers. Par-
ticularly, the first convolutional layer filters the input images
with 96 kernels of size 11 × 11 with a stride of four pixels.
The output of the first convolutional layer will be response-
normalized and maxpooled (size 2× 2) to be the input of the
second convolutional layer. The second layer has 256 ker-
nels of size 5 × 5 with a stride of one pixel and a pad of size
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Figure 2: The ODDUH learning framework. The Mining Latent Semantic ’Label Information’ is a pre-trained object detection model. It is
used to get the pseudo-labels. A shared CNN is implemented for learning image feature representations in the Feature Learning part. In Hash
Function Learning part, a pair-wise loss function with Percentage Similarity Matrix is minimized to get the optimal hash function.

2 pixels. Its output will be response-normalized and max-
pooled (size 2 × 2) to be the input of the third convolutional
layer. The third, fourth and fifth layers have 384 kernels of
size 3 × 3 with a stride of one pixel and a pad of size one
pixel. The fifth layer has a max-pooling layer with filter of
size 2× 2. After the CNN component, the architecture holds
two fully-connected layers which have 4,096 hidden units.
The activation function used in this part is Rectified Linear
Units (ReLu) [Krizhevsky et al., 2012].

The hash function learning part is a hashing layer which
has k units. Furthermore, k is the length of hash code, and the
hashing functions are learnt by the hashing layer. Eventually,
we use element-wise sign function sgn(·), which returns 1 if
the element is positive and returns −1 otherwise, to process
the outputs of the hashing layer and get the binary code b.

3.3 Pair-wise Percentage Similarity
In ODDUH, we use an object detection model to mine the
objects in images and get their classes (i.e., pseudo-labels).
Note that some of the pseudo-labels obtained by object de-
tection are wrong because the precision of object detection
is not 100%. If two images share at least one pseudo-label,
then we let the similarity of them equal to 1, and equal to 0
otherwise(i.e., two-value similarity). It will easily make two
dissimilar images as a similar pair which will damage the fi-
nal hashing performance. Thus, in order to decrease the harm
of noisy pseudo-labels, a novel pair-wise percentage similar-
ity is defined as:

sij =
〈li, lj〉

‖li‖1 + ‖lj‖1 − 〈li, lj〉
(1)

where 〈li, lj〉 calculate the inner product and li ∈ {0, 1}c is
the pseudo-label vector of xi, where c is the total number of
classes that pseudo-labels belong to. If ith image xi has the

jth pseudo-label, then lij = 1, else lij = 0. And ‖ · ‖1 is the
L1-norm.

By incorporating the pair-wise percentage similarity into
the training process, the learnt binary codes B = {bi}ni=1 can
preserve the similarity in S = {sij |i, j ∈ {1, 2, . . . , n}, sij ∈
[0, 1]}. More specifically, if sij = 0, the binary codes bi and
bj should have large Hamming distance; If sij = 1, the bi-
nary codes bi and bj should have a small Hamming distance;
Otherwise, the binary codes bi and bj should have a suitable
Hamming distance complying with the similarity sij .

3.4 Objective Function
Given the binary codes B = {bi}ni=1 for all the images, we
can define the likelihood of the pair-wise percentage similar-
ity sij as:

p(sij |B) =

{
σ(tijΨij), sij = 1 or 0,
1− |sij − σ(Ψij)|, otherwise.

(2)

where tij = 2sij − 1, Ψij = 1
2 bT

i bj , and σ(x) = 1
1+e−x .

When sij = 0 or 1, we take the negative log-likelihood of
the observed pair-wise labels in S to measure the pair-wise
similarity loss; When 0 < sij < 1, we take mean square error
to measure the pair-wise similarity loss. Thus, the pair-wise
similarity loss function can be defined as:

L1 =
∑
sij∈S

[−α · Iij log(σ(tijΨij))

+ (1− Iij)(sij − σ(Ψij))
2]

(3)

where α is a hyper-parameter. Iij is used to denote two con-
ditions, which is defined as:

Iij =

{
1, sij = 1 or 0,
0, otherwise.

(4)
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By minimizing Eq. (3), we can make the hamming distance
between two completely similar points as small as possible,
and simultaneously make the hamming distance between two
dissimilar points as large as possible. Meanwhile, we can
make the partly similar images xi and xj have the suitable
hamming distance complying with the similarity sij .

However, Eq. (3) is a discrete optimization problem, which
is difficult to solve. Following the idea of previous work [Li
et al., 2015], we relax b from discrete to continuous, and then
reformulate Eq. (3) as:

L2 =
∑
sij∈S

[α · Iij log(1 + e−tijΘij )

+ (1− Iij)(sij − σ(Θij))
2]

(5)

where Θij = 1
2 uT

i uj . ui ∈ Rk is the outputs of hashing layer:
ui = WTF(xi;θ) + v, where the mapping F : Rd → R4096

is parameterized by θ, and θ represents the parameters of the
seven layers of network in the feature learning part. W ∈
R4096×k is the weight matrix to be learnt at the hashing layer,
v ∈ Rk is the bias. Due to the ui is not the binary codes,
we used a quantization loss to make ui to be close to binary
codes. The quantization loss is defined as:

Lq =

n∑
i

||bi − ui||22 (6)

Then, by connecting the pseudo-label pair-wise similarity
loss and quantization loss, the final objective function can be
defined as:

L = L2 + βLq (7)
where β is a hyper-parameter.

3.5 Learning
In our method, there are four types of parameters B,W,θ, v
need to be learnt, during the training phase. A mini-batch
gradient descent method is used as optimization algorithm.
Moreover, we use an alternating method to learn the parame-
ters. More specifically, we optimize one parameter with other
parameters fixed.

With parameters W,θ, v fixed, the bi can be directly opti-
mized as follows:

bi = sgn(ui) = sgn(WTF(xi;θ) + v) (8)

With bi fixed, the other parameters W,θ, v are learned by
standard back-propagation algorithm. Especially, we are able
to compute the derivatives of the loss function about ui as
follows:
∂L

∂ui
=
∑

j:sij∈S
[−1

2
α · tijIij(1− σ(tijΘij))

+ (1− Iij)σ(Θij)(1− σ(Θij))(sij − σ(Θij))]uj

+
∑

j:sji∈S
[−1

2
α · tjiIji(1− σ(tjiΘji))

+ (1− Iji)σ(Θji)(1− σ(Θji))(sji − σ(Θji))]uj

+ 2β(ui − bi)
(9)

Then, we can use the standard back-propagation algorithm to
update W,θ and v with Eq. (9):

∂L

∂W
= F(xi;θ)(

∂L

∂ui
)T (10)

∂L

∂F(xi;θ)
= W

∂L

∂ui
(11)

∂L

∂v
=
∂L

∂ui
(12)

4 Experiments
4.1 Datasets and Baselines
We conduct experiments on two public benchmark datasets:
Pascal VOC 2007 1 [Everingham et al., 2010] and BMVC
2009 2 [Allan and Verbeek, 2009]. Pascal VOC 2007 consists
of 9,963 multi-label images. There are 20 object classes in
this dataset. On average, each image is annotated with 1.5
labels. BMVC 2009 contains 96,378 images collected from
Flickr. Each image in the dataset is associated with one or
multiple labels in 20 semantic concepts.

Our proposed method is an unsupervised method, thus we
compare our method with eight classical and state-of-the-art
unsupervised hashing methods including: LSH [Gionis et al.,
1999], ITQ [Gong and Lazebnik, 2011], SH [Weiss et al.,
2009], PCAH [Wang et al., 2010], SGH [Jiang and Li, 2015],
UH BDNN [Do et al., 2016], UTH [Huang et al., 2017], and
HashGAN [Ghasedi Dizaji et al., 2018], where LSH, SH,
ITQ, PCAH and SGH are traditional unsupervised methods
and the other three are deep unsupervised methods. Note that
the five traditional unsupervised hashing methods use hand-
crafted features as inputs, i.e., each image in Pascal VOC
2007 and BMVC 2009 is represented by a 512-dimensional
GIST vector. For the deep unsupervised hashing method
UH BDNN, it use the outputs of the fc7 layer in AlexNet
as image representation. For the other two deep unsupervised
hashing methods and our proposed method, we resize all the
images to be 224 × 224 pixels and then directly use the raw
image pixels as input. When carrying out experiments on the
two datasets respectively, we randomly select 2,000 images
as test set and the left images as training dataset. Moreover,
in order to proves that the learnt representations by deep net-
work from raw images are more superior than hand-crafted
features in hash learning procedure, we also conduct the ex-
periments by using the outputs of the fc7 layer in AlexNet
[Krizhevsky et al., 2012] as image representation in the five
hand-crafted feature based hashing approaches and denote
them as LSH+CNN, SH+CNN, ITQ+CNN and PCAH+CNN,
respectively.

4.2 Implementation Details
For the object detection component, we choose YOLOv2
[Redmon and Farhadi, 2017]. It is pre-trained in COCO 2014
dataset which contains 81 object classes. Please note that all
the object classes contained in Pascal VOC 2007 and BMVC

1http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
2http://pascal.inrialpes.fr/data2/flickr-bmvc2009/
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Methods MAP@1000 WMAP@1000 NDCG@1000 ACG@1000
12bits 24bits 36bits 48bits 12bits 24bits 36bits 48bits 12bits 24bits 36bits 48bits 12bits 24bits 36bits 48bits

LSH 0.2676 0.2875 0.2916 0.2877 0.2881 0.3115 0.3168 0.3123 0.2230 0.2379 0.2436 0.2407 0.2821 0.2998 0.3009 0.2968
SH 0.3071 0.3021 0.3028 0.3023 0.3337 0.3287 0.3299 0.3299 0.2568 0.2514 0.2527 0.2530 0.3131 0.3074 0.3071 0.3055

PCAH 0.2884 0.2802 0.2783 0.2778 0.3124 0.3039 0.3018 0.3013 0.2384 0.2320 0.2307 0.2305 0.2982 0.2883 0.2849 0.2837
ITQ 0.2879 0.3086 0.3137 0.3223 0.3110 0.3345 0.3404 0.3509 0.2366 0.2584 0.2620 0.2718 0.2924 0.3191 0.3258 0.3358
SGH 0.3028 0.3081 0.3073 0.3107 0.3288 0.3358 0.3350 0.3395 0.2559 0.2611 0.2614 0.2644 0.3052 0.3082 0.3065 0.3089

LSH+CNN 0.2924 0.3351 0.3611 0.3694 0.3226 0.3737 0.4001 0.4189 0.2502 0.2875 0.3030 0.3142 0.2993 0.3314 0.3505 0.3542
SH+CNN 0.4497 0.4454 0.4585 0.4587 0.5122 0.5033 0.5162 0.5160 0.3927 0.3757 0.3780 0.3731 0.4065 0.3837 0.3853 0.3800

PCAH+CNN 0.4892 0.4914 0.4890 0.4848 0.5515 0.5514 0.5486 0.5439 0.4337 0.4185 0.4066 0.3961 0.4454 0.4207 0.4067 0.3962
ITQ+CNN 0.5606 0.5886 0.6006 0.6070 0.6429 0.6777 0.6927 0.6996 0.5137 0.5266 0.5323 0.5368 0.5328 0.5362 0.5366 0.5391
SGH+CNN 0.2575 0.2653 0.2730 0.2839 0.2773 0.2871 0.2955 0.3083 0.2129 0.2198 0.2254 0.2339 0.2675 0.2718 0.2748 0.2789
UH BDNN 0.5572 0.5795 0.5851 0.5915 0.6388 0.6639 0.6700 0.6781 0.5080 0.5132 0.5110 0.5115 0.5188 0.5168 0.5101 0.5067

UTH 0.5389 0.5468 0.5561 0.5634 0.6192 0.6286 0.6427 0.6451 0.4856 0.4921 0.4994 0.5012 0.4961 0.4979 0.5006 0.5013
HashGAN 0.4606 0.4672 0.4711 0.4783 0.5114 0.5201 0.5263 0.5310 0.4115 0.4183 0.4214 0.4240 0.4197 0.4246 0.4293 0.4303
ODUDH 0.7030 0.7469 0.7615 0.7695 0.7511 0.7998 0.8152 0.8234 0.5975 0.6200 0.6277 0.6267 0.6252 0.6321 0.6342 0.6304

Table 1: Results on the Pascal VOC 2007. The ranking results are measured by NDCG, ACG, WMAP, and MAP@N (N=1000, i.e., the values
are calculated based on the top 1000 returned neighbors). The best results for each category are shown in boldface.

Methods MAP@5000 WMAP@5000 NDCG@5000 ACG@5000
12bits 24bits 36bits 48bits 12bits 24bits 36bits 48bits 12bits 24bits 36bits 48bits 12bits 24bits 36bits 48bits

LSH 0.1393 0.1494 0.1539 0.1494 0.1495 0.1602 0.1652 0.1604 0.1070 0.1136 0.1174 0.1143 0.1459 0.1543 0.1582 0.1536
SH 0.1656 0.1629 0.1641 0.1668 0.1785 0.1756 0.1768 0.1796 0.1247 0.1221 0.1235 0.1252 0.1706 0.1664 0.1677 0.1694

PCAH 0.1452 0.1464 0.1477 0.1499 0.1562 0.1575 0.1588 0.1614 0.1108 0.1110 0.1116 0.1125 0.1513 0.1516 0.1517 0.1533
ITQ 0.1356 0.1423 0.1599 0.1618 0.1431 0.1508 0.1719 0.1738 0.0996 0.1081 0.1206 0.1237 0.1326 0.1439 0.1608 0.1656
SGH 0.1681 0.1698 0.1715 0.1724 0.1807 0.1825 0.1841 0.1850 0.1280 0.1287 0.1298 0.1305 0.1696 0.1700 0.1700 0.1701

LSH+CNN 0.1621 0.1925 0.1954 0.2133 0.1750 0.2078 0.2112 0.2304 0.1233 0.1425 0.1435 0.1544 0.1657 0.1887 0.1878 0.1976
SH+CNN 0.2667 0.2805 0.2798 0.2877 0.2880 0.3041 0.3032 0.3122 0.1845 0.1981 0.1931 0.1971 0.2452 0.2460 0.2379 0.2429

PCAH+CNN 0.2991 0.3076 0.3063 0.3090 0.3236 0.3336 0.3321 0.3354 0.2215 0.2187 0.2122 0.2105 0.2803 0.2720 0.2616 0.2584
ITQ+CNN 0.3330 0.3627 0.3712 0.3781 0.3617 0.3942 0.4034 0.4123 0.2527 0.2684 0.2726 0.2765 0.3223 0.3339 0.3370 0.3415
SGH+CNN 0.1344 0.1423 0.1493 0.1575 0.1444 0.1530 0.1606 0.1697 0.1033 0.1079 0.1117 0.1152 0.1413 0.1460 0.1496 0.1527
UH BDNN 0.3442 0.3736 0.3828 0.3960 0.3737 0.4049 0.4148 0.4289 0.2605 0.2768 0.2811 0.2876 0.3262 0.3405 0.3439 0.3500

UTH 0.3011 0.3083 0.3102 0.3138 0.3375 0.3417 0.3481 0.3495 0.2276 0.2292 0.2317 0.2343 0.2743 0.2835 0.2891 0.2931
HashGAN 0.2711 0.2790 0.2866 0.2935 0.2930 0.3052 0.3121 0.3167 0.2028 0.2091 0.2131 0.2177 0.2496 0.2528 0.2589 0.2635
ODUDH 0.3961 0.4153 0.4252 0.4290 0.4291 0.4482 0.4577 0.4619 0.3057 0.3216 0.3269 0.3285 0.3902 0.4039 0.4088 0.4097

Table 2: Results on the BMVC 2009. The ranking results are measured by NDCG, ACG, WMAP, and MAP@N (N=5000, i.e., the values are
calculated based on the top 5000 returned neighbors). The best results for each category are shown in boldface.

2009 are subnet of the 81 object classes. All the weights and
bias in the feature learning part and hash function learning
part are learned via back-propagation algorithm. Further-
more, the weights and bias in the feature learning part are
initialized as the values pre-trained in Alexnet [Krizhevsky et
al., 2012]. We adopt SGD with a mini-batch size of 128 as
our optimization algorithm. The learning rate is initialized as
0.01. The hyper-parameters α, β in ODDUH are empirically
set as 2 and 100, respectively, and will be discussed in sec-
tion 4.5. And the learning rate is adjusted to one tenth of the
current learning rate every one third of epoches.

4.3 Evaluation Criterions
To verify the effectiveness of learned hash codes, we evalu-
ate the image retrieval quality for different methods by Av-
erage Cumulative Gains (ACG) [Järvelin and Kekäläinen,
2000], Normalized Discounted Cumulative Gains (NDCG)
[Järvelin and Kekäläinen, 2002], Mean Average Precision
(MAP) [Baeza-Yates et al., 2011], Weighted Mean Average
Precision (W-MAP) [Zhao et al., 2015] and Precision at top
n retrieved images (Precision@k).

4.4 Experimental Results
Table 1, Table 2 and Figure 3 summarize the comparative re-
sults of different hashing methods by MAP, WMAP, NDCG
ACG and Precison@n over Pascal VOC 2007 and BMVC
2009, respectively. In general, from the two tabels and Figure

3, we have two observations: (1) Our proposed method sub-
stantially outperforms the other unsupervised hashing meth-
ods for different length of hash code. For example, on Pascal
VOC 2007, comparing with the best traditional competitor
ITQ+CNN on 48-bits, the results of ODDUH have a rela-
tive increase of 26.8% on MAP, 17.7% on WMAP, 16.7% on
NDCG, 16.9% on ACG. Moreover, on BMVC 2009, compar-
ing with the competitor UH BDNN on 48-bits, the results of
ODDUH have a relative increase of 8.3% on MAP, 11.4% on
WMAP, 14.2% on NDCG, 17.1% on ACG. In Figure 3, the
precision@n curves show ODDUH can get the best perfor-
mance. All these results obviously indicate that pseudo-labels
mined from images are useful to improve the performance of
hashing models; (2) The performance of the methods with
deep features is better than the one of the methods with hand-
crafted features. For example, the MAP@1000 of ITQ+CNN
over Pascal VOC 2007 is 0.6070 in 48 bits, and the corre-
sponding value of ITQ is 0.3223.

In order to verify the denoisy ability of pair-wise percent-
age similarity on hash codes learning, an experiment is car-
ried out over Pascal VOC 2007. As shown in Figure 4, it can
be found that ODDUH with percentage similarity can get a
better performance than ODDUH with two-value similarity.
It verifies that pair-wise percentage similarity can decrease
the harm of noisy pseudo-labels in hashing code learning pro-
cedure.
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(a) (b)

Figure 3: Precision@n over (a) Pascal VOC 2007 and (b) BMVC 2009.

Figure 4: MAP of ODDUH with percentage similarity and two-
value similarity over Pascal VOC 2007.

4.5 Sensitivity to Hyper-Parameters
Figure 5(a) shows the effect of the hyper-parameter α on
48 bits over Pascal VOC 2007 and BMVC 2009. It can be
found that ODDUH is not sensitive to α on both datasets.
For instance, ODDUH can achieve good performance on both
datasets with 1 ≤ α ≤ 5. Figure 5(b) shows the effect of
the hyper-parameter β on 48 bits over Pascal VOC 2007 and
BMVC 2009. Also, ODDUH is not sensitive to β in a large
range. For example, ODDUH can achieve good performance
on both datasets with 80 ≤ β ≤ 150. And we can also ob-
tain similar conclusion on other length of hash codes for both
hyper-Parameters α and β.

5 Conclusion
In this paper, we have proposed a novel Object Detection
based Deep Unsupervised Hashing method for unlabeled
data, called ODDUH. To the best of our knowledge, ODDUH
is the first method which try to mine semantic ’label infor-
mation’ from images to guide hashing function learning. By
incorporating the semantic ’label information’ into the train-

(a) Sensitivity to hyper-parameter α
over two dataset with β = 100

(b) Sensitivity to hyper-parameter β
over two dataset with α = 2

Figure 5: Sensitivity to hyper-parameters.

ing process, the learnt hashing functions can generate high-
quality similarity-preserving hash codes. Extensive experi-
ments on two real-world public datasets have shown that the
proposed ODDUH method can outperform the state-of-the-
art baselines in image retrieval application.
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