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Abstract

Dyna is an architecture for model-based reinforce-
ment learning (RL), where simulated experience
from a model is used to update policies or value func-
tions. A key component of Dyna is search-control,
the mechanism to generate the state and action from
which the agent queries the model, which remains
largely unexplored. In this work, we propose to
generate such states by using the trajectory obtained
from Hill Climbing (HC) the current estimate of the
value function. This has the effect of propagating
value from high-value regions and of preemptively
updating value estimates of the regions that the agent
is likely to visit next. We derive a noisy projected
natural gradient algorithm for hill climbing, and
highlight a connection to Langevin dynamics. We
provide an empirical demonstration on four classical
domains that our algorithm, HC-Dyna, can obtain
significant sample efficiency improvements. We
study the properties of different sampling distribu-
tions for search-control, and find that there appears
to be a benefit specifically from using the samples
generated by climbing on current value estimates
from low-value to high-value region.

1 Introduction
Experience replay (ER) [Lin, 1992] is currently the most com-
mon way to train value functions approximated as neural net-
works (NNs), in an online RL setting [Adam et al., 2012;
Wawrzyński and Tanwani, 2013]. The buffer in ER is typ-
ically a recency buffer, storing the most recent transitions,
composed of state, action, next state and reward. At each
environment time step, the NN gets updated by using a mini-
batch of samples from the ER buffer, that is, the agent re-
plays those transitions. ER enables the agent to be more
sample efficient, and in fact can be seen as a simple form of
model-based RL [van Seijen and Sutton, 2015]. This con-
nection is specific to the Dyna architecture [Sutton, 1990;
Sutton, 1991], where the agent maintains a search-control
(SC) queue of pairs of states and actions and uses a model to
generate next states and rewards. These simulated transitions
are used to update values. ER, then, can be seen as a variant

of Dyna with a nonparameteric model, where search-control
is determined by the observed states and actions.

By moving beyond ER to Dyna with a learned model, we
can potentially benefit from increased flexibility in obtaining
simulated transitions. Having access to a model allows us to
generate unobserved transitions, from a given state-action pair.
For example, a model allows the agent to obtain on-policy
or exploratory samples from a given state, which has been
reported to have advantages [Gu et al., 2016; Pan et al., 2018;
Santos et al., 2012; Peng et al., 2018]. More generally, mod-
els allow for a variety of choices for search-control, which is
critical as it emphasizes different states during the planning
phase. Prioritized sweeping [Moore and Atkeson, 1993] uses
the model to obtain predecessor states, with states sampled
according to the absolute value of temporal difference error.
This early work, and more recent work [Sutton et al., 2008;
Pan et al., 2018; Corneil et al., 2018], showed this addition
significantly outperformed Dyna with states uniformly sam-
pled from observed states. Most of the work on search-control,
however, has been limited to sampling visited or predecessor
states. Predecessor states require a reverse model, which can
be limiting. The range of possibilities has yet to be explored
for search-control and there is room for many more ideas.

In this work, we investigate using sampled trajectories by
hill climbing on our learned value function to generate states
for search-control. Updating along such trajectories has the
effect of propagating value from regions the agent currently
believes to be high-value. This strategy enables the agent to
preemptively update regions where it is likely to visit next.
Further, it focuses updates in areas where approximate values
are high, and so important to the agent. To obtain such states
for search-control, we propose a noisy natural projected gra-
dient algorithm. We show this has a connection to Langevin
dynamics, whose distribution converges to the Gibbs distribu-
tion, where the density is proportional to the exponential of
the state values. We empirically study different sampling dis-
tributions for populating the search-control queue, and verify
the effectiveness of hill climbing based on estimated values.
We conduct experiments showing improved performance in
four benchmark domains, as compared to DQN1, and illustrate
the usage of our architecture for continuous control.

1We use DQN to refer to the algorithm by [Mnih et al., 2015] that
uses ER and target network, but not the exact original architecture.
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2 Background
We formalize the environment as a Markov Decision Process
(MDP) (S,A,P, R, γ), where S is the state space, A is the
action space, P : S×A×S → [0, 1] is the transition probabili-
ties,R : S×A×S → R is the reward function, and γ ∈ [0, 1]
is the discount factor. At each time step t = 1, 2, . . . , the agent
observes a state st ∈ S and takes an action at ∈ A, transitions
to st+1 ∼ P(·|st, at) and receives a scalar reward rt+1 ∈ R
according to the reward function R.

Typically, the goal is to learn a policy to maximize the
expected return starting from some fixed initial state. One pop-
ular algorithm is Q-learning, by which we can obtain approxi-
mate action-values Qθ : S × A → R for parameters θ. The
policy corresponds to acting greedily according to these action-
values: for each state, select action arg maxa∈AQ(s, a). The
Q-learning update for a sampled transition st, at, rt+1, st+1 is

θ ← θ + αδt∇Qθ(st, at)

where δt
def
= rt+1 + max

a′∈A
Qθ(st+1, a

′)−Qθ(st, at)

Though frequently used, such an update may not be sound
with function approximation. Target networks [Mnih et al.,
2015] are typically used to improve stability when training
NNs, where the bootstrap target on the next step is a fixed,
older estimate of the action-values.

ER and Dyna can both be used to improve sample efficiency
of DQN. Dyna is a model-based method that simulates (or
replays) transitions, to reduce the number of required interac-
tions with the environment. A model is sometimes available
a priori (e.g., from physical equations of the dynamics) or
is learned using data collected through interacting with the
environment. The generic Dyna architecture, with explicit
pseudo-code given by [Sutton and Barto, 2018, Chapter 8],
can be summarized as follows. When the agent interacts with
the real world, it updates both the action-value function and
the learned model using the real transition. The agent then
performs n planning steps. In each planning step, the agent
samples (s̃, ã) from the search-control queue, generates next
state s̃′ and reward r̃ from (s̃, ã) using the model, and updates
the action-values using Q-learning with the tuple (s̃, ã, r̃, s̃′).

3 A Motivating Example
In this section we provide an example of how the value func-
tion surface changes during learning on a simple continuous-
state GridWorld domain. This provides intuition on why it
is useful to populate the search-control queue with states ob-
tained by hill climbing on the estimated value function, as
proposed in the next section.

Consider the GridWorld in Figure 1(a), which is a vari-
ant of the one introduced by [Peng and Williams, 1993].
In each episode, the agent starts from a uniformly sam-
pled point from the area [0, 0.05]2 and terminates when it
reaches the goal area [0.95, 1.0]2. There are four actions
{UP, DOWN, LEFT, RIGHT}; each leads to a 0.05 unit move
towards the corresponding direction. As a cost-to-goal prob-
lem, the reward is −1 per step.

In Figure 1, we plot the value function surface after 0,
14k and 20k mini-batch updates to DQN. We visualize the

gradient ascent trajectories with 100 gradient steps starting
from five states (0.1, 0.1), (0.9, 0.9), (0.1, 0.9), (0.9, 0.1),
and (0.3, 0.4). The gradient of the value function used in
the gradient ascent is

∇sV (s) = ∇s max
a

Qθ(s, a), (1)

At the beginning, with a randomly initialized NN, the gradient
with respect to state is almost zero, as seen in Figure 1(b). As
the DQN agent updates its parameters, the gradient ascent gen-
erates trajectories directed towards the goal, though after only
14k steps, these are not yet contiguous, as seen Figure 1(c).
After 20k steps, as in Figure 1(d), even though the value func-
tion is still inaccurate, the gradient ascent trajectories take all
initial states to the goal area. This suggests that as long as the
estimated value function roughly reflects the shape of the opti-
mal value function, the trajectories provide a demonstration of
how to reach the goal—or high-value regions—and speed up
learning by focusing updates on these relevant regions.

More generally, by focusing planning on regions the agent
thinks are high-value, it can quickly correct value function
estimates before visiting those regions, and so avoid unneces-
sary interaction. We demonstrate this in Figure 1(e), where
the agent obtains gains in performance by updating from high-
value states, even when its value estimates have the wrong
shape. After 20k learning steps, the values are flipped by negat-
ing the sign of the parameters in the output layer of the NN.
HC-Dyna, introduced in Section 5, quickly recovers compared
to DQN and OnPolicy updates from the ER buffer. Planning
steps help pushing down these erroneously high-values, and
the agent can recover much more quickly.

4 Effective Hill Climbing
To generate states for search control, we need an algorithm
that can climb on the estimated value function surface. For
general value function approximators, such as NNs, this can
be difficult. The value function surface can be very flat or very
rugged, causing the gradient ascent to get stuck in local optima
and hence interrupt the gradient traveling process. Further, the
state variables may have very different numerical scales. When
using a regular gradient ascent method, it is likely for the state
variables with a smaller numerical scale to immediately go
out of the state space. Lastly, gradient ascent is unconstrained,
potentially generating unrealizable states.

In this section, we propose solutions for all these issues. We
provide a noisy invariant projected gradient ascent strategy to
generate meaningful trajectories of states for search-control.
We then discuss connections to Langevin dynamics, a model
for heat diffusion, which provides insight into the sampling
distribution of our search-control queue.

4.1 Noisy Natural Projected Gradient Ascent
To address the first issue, of flat or rugged function surfaces,
we propose to add Gaussian noise on each gradient ascent
step. Intuitively, this provides robustness to flat regions and
avoids getting stuck in local maxima on the function surface,
by diffusing across the surface to high-value regions.

To address the second issue of vastly different numerical
scales among state variables, we use a standard strategy to be
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invarianttoscale:naturalgradientascent.Apopularchoice
ofnaturalgradientisderivedbydefiningthemetrictensor
astheFisherinformationmatrix[AmariandDouglas,1998;
Amari,1998;Thomasetal.,2016]. Weintroduceasimple
andcomputationallyefficientmetrictensor:theinverseof
covariancematrixofthestatesΣ−1s .Thischoiceissimple,
becausethecovariancematrixcaneasilybeestimatedonline.
Wecandefinethefollowinginnerproduct:

s,s =sΣ−1s s,∀s,s∈S,

whichinducesavectorspace—theRiemannianmanifold—
wherewecancomputethedistanceoftwopointssands+∆

thatareclosetoeachotherbyd(s,s+∆)
def
=∆ Σ−1s ∆.The

steepestascentupdatingrulebasedonthisdistancemetric
becomess←s+αΣsg,wheregisthegradientvector.
Wedemonstratetheutilityofusingthenaturalgradientscal-
ing.Figure2showsthestatesfromthesearch-controlqueue
filledbyhillclimbinginearlystagesoflearning(after8000
steps)onMountainCar.Thedomainhastwostatevariables
withverydifferentnumericalscale:position∈[−1.2,0.6]and
velocity∈[−0.07,0.07].Usingaregulargradientupdate,the
queueshowsastatedistributionwithmanystatesconcentrated
nearthetopsinceitisveryeasyforthevelocityvariableto
gooutofboundary.Incontrast,theonewithnaturalgradient,
showscleartrajectorieswithanobvioustendencytotheright
toparea(position≥0.5),whichisthegoalarea.
Weuseprojectedgradientupdatestoaddressthethirdissue
regardingunrealizablestates.Weexplaintheissueandsolu-
tionusingtheAcrobotdomain.Thefirsttwostatevariablesare
cosθ,sinθ,whereθistheanglebetweenthefirstrobotarm’s
linkandthevectorpointingdownwards.Thisinducesthe
restrictionthatcos2θ+sin2θ=1.Thehillclimbingprocess
couldgeneratemanystatesthatdonotsatisfythisrestriction.

Thiscouldpotentiallydegradeperformance,sincetheNN
needstogeneralizetothesestatesunnecessarily.Wecanusea
projectionoperatorΠtoenforcesuchrestrictions,whenever
known,aftereachgradientascentstep.InAcrobot,Πisasim-
plenormalization.Inmanysettings,theconstraintsaresimple
boxconstraints,withprojectionjustinsidetheboundary.
Nowwearereadytointroduceourfinalhillclimbingrule:

s←Π(s+αΣsg+N), (2)

whereNisGaussiannoiseandαastepsize.Forsimplicity,
wesetthestepsizetoα=0.1/||Σsg||acrossallresultsinthis
work,thoughofcoursetherecouldbebetterchoices.

4.2 ConnectiontoLangevinDynamics

TheproposedhillclimbingprocedureissimilartoLangevin
dynamics,whichisfrequentlyusedasatooltoanalyzeopti-
mizationalgorithmsortoacquireanestimateoftheexpected
parametervaluesw.r.t.someposteriordistributioninBayesian
learning[WellingandTeh,2011].TheoverdampedLangevin
dynamicscanbedescribedbyastochasticdifferentialequation
(SDE)dW(t)=∇U(Wt)dt+

√
2dBt,whereBt∈R

disa
d-dimensionalBrownianmotionandUisacontinuousdiffer-
entiablefunction.Undersomeconditions,itturnsoutthatthe
Langevindiffusion(Wt)t≥0convergestoauniqueinvariant
distributionp(x)∝exp(U(x))[Chiangetal.,1987].
ByapplytheEuler-Maruyamadiscretizationschemeto
theSDE,weacquirethediscretizedversionYk+1 =Yk+
αk+1∇U(Yk)+

√
2αk+1Zk+1where(Zk)k≥1isani.i.d.se-

quenceofstandardd-dimensionalGaussianrandomvectors
and(αk)k≥1isasequenceofstepsizes.Thisdiscretization
schemewasusedtoacquiresamplesfromtheoriginalin-
variantdistributionp(x)∝exp(U(x))throughtheMarkov
chain(Yk)k≥1whenitconvergestothechain’sstationary
distribution[Roberts,1996].Thedistancebetweenthelim-
itingdistributionof(Yk)k≥1andtheinvariantdistributionof
theunderlyingSDEhasbeencharacterizedthroughvarious
bounds[DurmusandMoulines,2017].
Whenweperformhillclimbing,theparameterθisconstant
ateachtimestept.BychoosingthefunctionUintheSDE
abovetobeequaltoVθ,weseethatthestatedistributionp(s)
inoursearch-controlqueueisapproximately2

p(s)∝exp(Vθ(s)).

2Differentassumptionson(αk)k≥1andpropertiesofUcangive
convergenceclaimswithdifferentstrengths.Alsoreferto[Welling
andTeh,2011]forthediscussionontheuseofapreconditioner.
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Algorithm1HC-Dyna

Input:budgetkforthenumberofgradientascentsteps
(e.g.,k=100),stochasticityηforgradientascent(e.g.,
η=0.1),ρpercentageofupdatesfromSCqueue(e.g.,
ρ=0.5),dthenumberofstatevariables,i.e.S⊂Rd

InitializeemptySCqueueBscandERbufferBer
Σ̂s←I (empiricalcovariancematrix)
µss← 0∈R

d×d,µs← 0∈R
d (auxiliaryvariables

forcomputingempiricalcovariancematrix,sampleaverage
willbemaintainedforµss,µs)
a←0 (thresholdforacceptingastate)
fort=1,2,...do
Observe(s,a,s,r)andaddittoBer

µss←
µss(t−1)+ss

t ,µs←
µs(t−1)+s

t

Σ̂s←µss−µsµs
a←(1−β)a+βdistance(s,s)forβ=0.001
Samples0fromBer,̃s←∞
fori=0,...,kdo
gsi←∇sV(si)=∇smaxaQθ(si,a)

si+1←Π(si+
0.1

||̂Σsgsi||
Σ̂sgsi+Xi),Xi∼N(0,η̂Σs)

ifdistance(̃s,si+1)≥ athen
Addsi+1intoBsc,̃s←si+1

forntimesdo
Sampleamixedmini-batchb,withproportionρfrom
Bscand1−ρfromBer
Updateparametersθ(i.e.DQNupdate)withb

Animportantdifferencebetweenthetheoreticallimitingdistri-
butionandtheactualdistributionacquiredbyourhillclimbing
methodisthatourtrajectorieswouldalsoincludethestates
duringtheburn-inortransientperiod,whichreferstothepe-
riodbeforethestationarybehaviorisreached.Wewouldwant
topointoutthatthosestatesplayanessentialroleinimproving
learningefficiencyaswewilldemonstrateinsection6.2.

5 HillClimbingDyna

Inthissection,weprovidethefullalgorithm,calledHillClimb-
ingDyna,summarizedinAlgorithm1.Thekeycomponent
istousetheHillClimbingproceduredevelopedinthepre-
vioussection,togeneratestatesforsearch-control(SC).To
ensuresomeseparationbetweenstatesinthesearch-control
queue,weuseathreshold atodecidewhetherornotto
addastateintothequeue. Weuseasimpleheuristictoset
thisthresholdoneachstep,asthefollowingsampleaverage:

a≈
(T)
a =

T
t=1

||st+1−st||2/
√
d

T .Thestartstateforthe
gradientascentisrandomlysampledfromtheERbuffer.
Inadditiontousingthisnewmethodforsearchcontrol,we
alsofounditbeneficialtoincludeupdatesontheexperience
generatedintherealworld.Themini-batchsampledfortrain-
inghasρproportionoftransitionsgeneratedbystatesfrom
theSCqueue,and1−ρfromtheERbuffer.Forexample,for
ρ=0.75withamini-batchsizeof32,theupdatesconsists
of24(=32×0.75)transitionsgeneratedfromstatesinthe
SCqueueand6transitionsfromtheERbuffer.Previouswork
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Figure3:Theeffectofmixingrateonlearningperformance.The
numericallabelmeansHC-Dynawithacertainmixingrate.

mixedmini-batches[Hollandetal.,2018].
Onepotentialreasonthisadditionisbeneficialisthatitalle-

viatesissueswithheavilyskewingthesamplingdistributionto
beoff-policy.TabularQ-learningisanoff-policylearningal-
gorithm,whichhasstrongconvergenceguaranteesundermild
assumptions[Tsitsiklis,1994].Whenmovingtofunctionap-
proximation,however,convergenceofQ-learningismuchless
wellunderstood.Thechangeinsamplingdistributionforthe
statescouldsignificantlyimpactconvergencerates,andpoten-
tiallyevencausedivergence.Empirically,previousprioritized
ERworkpointedoutthatskewingthesamplingdistribution
fromtheERbuffercanleadtoabiasedsolution[Schaulet
al.,2016].ThoughtheERbufferisnoton-policy,because
thepolicyiscontinuallychanging,thedistributionofstatesis
closertothestatesthatwouldbesampledbythecurrentpolicy
thanthoseinSC.UsingmixedstatesfromtheERbuffer,and
thosegeneratedbyHillClimbing,couldalleviatesomeofthe
issueswiththisskewness.
Anotherpossiblereasonthatsuchmixedsamplingcouldbe
necessaryisduetomodelerror.Theuseofrealexperience
couldmitigateissueswithsucherror. Wefound,however,
thatthismixinghasaneffectevenwhenusingthetruemodel.
Thissuggeststhatthisphenomenonindeedisrelatedtothe
distributionoverstates.
WeprovideasmallexperimentintheGridWorld,depicted

inFigure1,usingbothacontinuous-stateandadiscrete-state
version.Weincludeadiscretestateversion,sowecandemon-
stratethattheeffectpersistseveninatabularsettingwhen
Q-learningisknowntobestable.Thecontinuous-statesetting
usesNNs—asdescribedmorefullyinSection6—withamini-
batchsizeof32.Forthetabularsetting,themini-batchsizeis
1;updatesarerandomlyselectedtobefromtheSCqueueor
ERbufferproportionaltoρ.Figure3showstheperformance
ofHC-Dynaasthemixingproportionincreasesfrom0(ER
only)to1.0(SConly).Inbothcases,amixingratearound
ρ=0.5providesthebestresults.Generally,usingtoofew
search-controlsamplesdonotimproveperformance;focusing
toomanyupdatesonsearch-controlsamplesseemstoslightly
speedupearlylearning,butthenlaterlearningsuffers.Inall
furtherexperimentsinthispaper,wesetρ=0.5.

6 Experiments
Inthissection,wedemonstratetheutilityof(DQN-)HC-Dyna
inseveralbenchmarkdomains,andthenanalyzethelearning
effectofdifferentsamplingdistributionstogeneratestatesfor
thesearch-controlqueue.
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Figure4:Evaluationcurves(sumofepisodicrewardv.s.environ-
menttimesteps)of(DQN-)HC-Dyna,(DQN-)OnPolicy-Dyna,DQN
onGridWorld(a-c),MountainCar-v0(d-f),CartPole-v1(g-i)and
Acrobot-v1(j-l).Thecurvesplottedbydottedlinesareusingonline
learnedmodels.Resultsareaveragedover30randomseeds.

6.1 ResultsinBenchmarkDomains

Inthissection,wepresentempiricalresultsonfourclassic
domains:theGridWorld(Figure1(a)),MountainCar,CartPole
andAcrobot.Wepresentbothdiscreteandcontinuousaction
resultsintheGridWorld,andcomparetoDQNforthediscrete
controlandtoDeepDeterministicPolicyGradient(DDPG)
forthecontinuouscontrol[Lillicrapetal.,2016].Theagents
alluseatwo-layerNN,withReLUactivationsand32nodes
ineachlayer. Weincluderesultsusingboththetruemodel
andthelearnedmodel,onthesameplots.Wefurtherinclude
multipleplanningstepsn,whereforeachrealenvironment
step,theagentdoesnupdateswithamini-batchofsize32.
InadditiontoER,weaddanon-policybaselinecalled

OnPolicy-Dyna. Thisalgorithmsamplesamini-batchof
states(notthefulltransition)fromtheERbuffer,butthen
generatesthenextstateandrewardusinganon-policyaction.
ThisbaselinedistinguisheswhenthegainofHC-Dynaalgo-
rithmisduetoon-policysampledactions,ratherthanbecause
ofthestatesinoursearch-controlqueue.

DiscreteAction
TheresultsinFigure4showthat(a)HC-Dynaneverharms

GSC queue 

ER buffer

performanceoverERandOnPolicy-Dyna,andinsomecases

1
0

1

(a)DQN (b)HC-Dyna

Figure5:Figure(a)(b)showbuffer(red·)/queue(black+)distribution
onGridWorld(s∈[0,1]2)byuniformlysampling2kstates.(a)is
showingERbufferwhenrunningDQN,hencethereisno“+”init.
(b)shows0.2%oftheERsamplesfallinthegreenshadow(i.e.high
valueregion),while27.8%samplesfromtheSCqueuearethere.

significantlyimprovesperformance,(b)thesegainspersist
evenunderlearnedmodelsand(c)therearecleargainsfrom
HC-Dynaevenwithasmallnumberofplanningsteps.Inter-
estingly,usingmultiplemini-batchupdatespertimestepcan
significantlyimprovetheperformanceofallthealgorithms.
DQN,however,hasverylimitedgainwhenmovingfrom10to
30planningstepsonalldomainsexceptGridWorld,whereas
HC-Dynaseemstomorenoticeablyimprovefrommoreplan-
ningsteps.Thisimpliesapossiblelimitoftheusefulnessof
onlyusingsamplesintheERbuffer.
Weobservethattheon-policyactionsdoesnotalwayshelp.

TheGridWorlddomainisinfacttheonlyonewhereon-policy
actions(OnPolicy-Dyna)showsanadvantageasthenumber
ofplanningstepsincrease.Thisresultprovidesevidencethat
thegainofouralgorithmisduetothestatesinoursearch-
controlqueue,ratherthanon-policysampledactions. We
alsoseethateventhoughbothmodel-basedmethodsperform
worsewhenthemodelhastobelearnedcomparedtowhenthe
truemodelisavailable,HC-Dynaisconsistentlybetterthan
OnPolicy-Dynaacrossalldomains/settings.
Togainintuitionforwhyouralgorithmachievessuperior
performance,wevisualizethestatesinthesearch-control
queueforHC-DynaintheGridWorlddomain(Figure5).We
alsoshowthestatesintheERbufferatthesametimestep,for
bothHC-DynaandDQNtocontrast.Therearetwointeresting
outcomesfromthisvisualization.First,themodificationto
search-controlsignificantlychangeswheretheagentexplores,
asevidencedbytheERbufferdistribution.Second,HC-Dyna
hasmanystatesintheSCqueuethatarenearthegoalregion
evenwhenitsERbuffersamplesconcentrateontheleftparton
thesquare.Theagentcanstillupdatearoundthegoalregion
evenwhenitisphysicallyintheleftpartofthedomain.

ContinuousControl
Ourarchitecturecaneasilybeusedwithcontinuousactions,
aslongasthealgorithmestimatesvalues. WeuseDDPG
[Lillicrapetal.,2016]asanexampleforuseinsideHC-
Dyna. DDPGisanactor-criticalgorithmthatusesthede-
terministicpolicygradienttheorem[Silveretal.,2014].Let
πψ(·):S →Abetheactornetworkparameterizedbyψ,
andQθ(·,·):S×A →Rbethecritic. Givenanini-
tialstatevalues,thegradientascentdirectioncanbecom-
putedby∇sQψ(s,πθ(s)).Infact,becausethegradientstep
causessmallchanges,wecanfurtherapproximatethisgra-
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Figure6:HC-DynaforcontinuouscontrolwithDDPG.Weused5
planningstepsinthisexperiment.

dientmoreefficientlyusing∇sQψ(s,a
∗),a∗

def
=πθ(s),with-

outbackpropagatingthegradientthroughtheactornetwork.
WemodifiedtheGridWorldinFigure1(a)tohaveaction
spaceA=[−1,1]2andanactionat∈Aisexecutedas
st+1 ← st+0.05at.Figure6showsthelearningcurveof
DDPG,andDDPGwithOnPolicy-DynaandwithHC-Dyna.
Asbefore,HC-Dynashowssignificantearlylearningbene-
fitsandalsoreachesabettersolution.Thishighlightsthat
improvedsearch-controlcouldbeparticularlyeffectivefor
algorithmsthatareknowntobepronetolocalminima,like
Actor-Criticalgorithms.

6.2 InvestigatingSamplingDistributionsfor
Search-control

WenextinvestigatetheimportanceoftwochoicesinHC-
Dyna:(a)usingtrajectoriestohigh-valueregionsand(b)
usingtheagent’svalueestimatestoidentifytheseimportant
regions.Totestthis,weincludefollowingsamplingmethods

forcomparison:(a)HC-Dyna:hillclimbingbyusingV̂θ
(ouralgorithm);(b)Gibbs:sampling∝exp(̂Vθ);(c)HC-
Dyna-Vstar:hillclimbingbyusingV∗and(d)Gibbs-Vstar:
sampling∝exp(V∗),whereV∗isapre-learnedoptimal
valuefunction.WealsoincludethebaselinesOnPolicyDyna,
ERandUniform-Dyna,whichuniformlysamplesstatesfrom
thewholestatespace. AllstrategiesmixwithER,using
ρ=0.5,tobettergiveinsightintoperformancedifferences.
TofacilitatesamplingfromtheGibbsdistributionandcom-
putingtheoptimalvaluefunction,wetestonasimplified
TabularGridWorlddomainofsize20×20,withoutanyobsta-
cles.Eachstateisrepresentedbyanintegeri∈{1,...,400},
assignedfrombottomtotop,lefttorightonthesquarewith
20×20grids.HC-DynaandHC-Dyna-Vstarassumethatthe
statespaceiscontinuousonthesquare[0,1]2andeachgrid
canberepresentedbyitscenter’s(x,y)coordinates.Weuse
thefinitedifferencemethodforhillclimbing.

ComparingtotheGibbsDistribution

AswepointedouttheconnectiontotheLangevindynamicsin
Section4.2,thelimitingbehaviorofourhillclimbingstrategy
isapproximatelyaGibbsdistribution.Figure7(a)showsthat
HC-Dynaperformsthebestamongallsamplingdistributions,
includingGibbsandotherbaselines.Thisresultsuggeststhat
thestatesduringtheburn-inperiodmatter.Figure7(b)shows
thestatecountbyrandomlysamplingthesamenumberof
statesfromtheHC-Dyna’ssearch-controlqueueandfromthat
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concentratesitsdistributiononlyonveryhighvaluestates.

ComparingtoTrueValues
Onehypothesisisthatthevalueestimatesguidetheagentto
thegoal.Anaturalcomparison,then,istousetheoptimal
values,whichshouldpointtheagentdirectlytothegoal.Fig-
ure8(a)indicatesthatusingtheestimates,ratherthantrue
values,ismorebeneficialforplanning.Thisresulthighlights
thattheredoesseemtobesomeadditionalvaluetofocusing
updatesbasedontheagent’scurrentvalueestimates.Com-
paringstatedistributionofGibbs-VstarandHC-Dyna-Vstar
inFigure8(b)toGibbsandHC-DynainFigure7(b),onecan
seethatbothdistributionsareevenmoreconcentrated,which
seemstonegativelyimpactperformance.

7 Conclusion
WepresentedanewDynaalgorithm,calledHC-Dyna,which
generatesstatesforsearch-controlbyusinghillclimbingon
valueestimates.Weproposedanoisynaturalprojectedgradi-
entascentstrategyforthehillclimbingprocess.Wedemon-
stratethatusingstatesfromhillclimbingcansignificantly
improvesampleefficiencyinseveralbenchmarkdomains.We
empiricallyinvestigated,andvalidated,severalchoicesinour
algorithm,includingtheuseofnaturalgradients,theutility
ofmixingwithERsamples,thebenefitsofusingestimated
valuesforsearchcontrol.Anaturalnextstepistofurtherin-
vestigateothercriteriaforassigningimportancetostates.Our
HCstrategyisgenericforanysmoothfunction;notonlyfor
valueestimates.Apossiblealternativeistoinvestigateimpor-
tancebasedonerrorinaregion,orbasedmoreexplicitlyon
optimismoruncertainty,toencouragesystematicexploration.
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