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Abstract

Feature selection plays a critical role in data min-
ing, driven by increasing feature dimensionality
in target problems. In this paper, we propose a
new criterion for discriminative feature selection,
worst-case discriminative feature selection (WDF-
S). Unlike Fisher Score and other methods based
on the discriminative criteria considering the over-
all (or average) separation of data, WDFS adopt-
s a new perspective called worst-case view which
arguably is more suitable for classification applica-
tions. Specifically, WDFS directly maximizes the
ratio of the minimum of between-class variance of
all class pairs over the maximum of within-class
variance, and thus it duly considers the separation
of all classes. Otherwise, we take a greedy strate-
gy by finding one feature at a time, but it is very
easy to implement and effective. Moreover, we uti-
lize the correlation between features to help reduce
the redundancy, and then WDFS is extended to un-
correlated WDFS (UWDFS). To evaluate the ef-
fectiveness of the proposed algorithm, we conduct
classification experiments on many real data sets.
In the experiment, we respectively use the original
features and the score vectors of features over all
class pairs to calculate the correlation coefficients,
and analyze the experimental results in these two
ways. Experimental results demonstrate the effec-
tiveness of WDFS and UWDFS.

1 Introduction
Nowadays, the dimensionality of the data involved many real-
world applications has increased explosively. The presence of
many irrelevant and redundant features [Ben-Bassat, 1982]
tends to make a learning model overfitting, resulting in its per-
formance degenerates. Dimensionality reduction is one of the
most popular techniques to help address this problem. Feature
selection is a widely employed technique for reducing dimen-
sionality among practitioners. It aims to select a small number
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of significant and useful original features without any trans-
formation. Thus, feature selection could maintain the original
representation of variables, which leads to better readability
and interpretability. Many efforts have been devoted to the re-
search in feature selection during the past few years [Romero
and Sopena, 2008] [Pena and Nilsson, 2010].

According to how the learning algorithm is integrated into
the process of evaluating and selecting features, feature se-
lection methods can be roughly categorized as wrapper meth-
ods [Kohavi and John, 1997] [Wang et al., 2008], embedded
methods [Nie et al., 2010] [Cai et al., 2013] and filter meth-
ods. The wrapper methods and embedded methods are tightly
coupled with the specific classifier, they always have better
performance than filter methods on the particular classifier
but not on the other classifiers. Different from wrapper and
embedded methods, the filter-type methods, which evaluate
features based on a certain criterion, are absolutely indepen-
dent on any classifier. Most existing filter-type feature selec-
tion methods conducted the selection process in the manner
of feature ranking [Robnik et al., 2003] [Raileanu and Stoffel,
2004] or feature subset evaluation [Nie et al., 2008]. Methods
based on the feature ranking compute the relevance of a fea-
ture with respect to the class label distribution of data. In this
paper, we propose a new filter-type feature selection method
in the manner of feature ranking.

For the classification problem, feature selection aims to s-
elect subset of highly discriminant features. In other words,
it selects features that are capable of discriminating samples
that belong to different classes. Fisher discriminant criteri-
on [Fisher, 1936] is probably the most widely used one. One
of the most representative algorithms is Fisher score [He et
al., 2005], which optimizes the so-called Fisher criterion that
maximizes the ratio of between-class scatter over within-class
scatter in a individual feature level. On this basis, the Lapla-
cian score [He et al., 2005] also consider the feature ability
of preserving the local manifold structure. Then Trace Ra-
tio [Nie et al., 2008] was proposed to improve the computa-
tional efficiency of Fisher score, which selects a feature sub-
set based on the corresponding subset-level score that is cal-
culated in a Trace Ratio form. Moreover, there are many fea-
ture selection method, combining the popular transformation-
based dimensionality reduction method linear discriminan-
t analysis (LDA) and sparsity regularization [Masaeli et al.,
2010]. For example, Discriminative Feature Selection (DF-
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S) [Tao et al., 2016] imposes the row sparsity on the trans-
formation matrix of LDA through `2,1-norm regularization
to achieve feature selection. Zhang et al. proposed a self-
weighted supervised discriminative feature selection (SSD-
FS) method [Zhang et al., 2018], which constrains the trans-
formation matrix to be orthogonal and introduces the `2,1-
norm regularization to select features.

However, according to the definition of between-class scat-
ter, the aforementioned methods actually maximize the aver-
age of all pairwise distances between classes [Bian and Tao,
2011] [Su et al., 2018]. This may cause the so-called class
separation problem [Loog et al., 2001]. Specifically, these
methods tend to pay close attention to classes with larger dis-
tances, but ignore those with smaller distances, resulting in
the overlap of neighboring classes in the lower-dimensional
space. An example to illustrate the class separation problem
is shown in Figure 1, where class 1 and class 2 locate close-
ly to each other while class 3 is far away from them, and all
classes have the same covariance. We can directly see that the
Feature 2 could easily separates three class, while the Feature
1 would result in a complete confusion of class 1 and class 2.
But according to the muti-class Fisher certeria [Rao, 1948],
the average of pairwise distances between classes is maxi-
mized in the Feature 1.
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Figure 1: An illustration of the class separation problem.

Due to the fact that many feature selection methods based
on the discriminative criteria usually consider the overall (or
average) separation of data, thus they cannot guarantee the
separation (as best as possible) of any class pairs. Thus, we
propose a new criterion for discriminative feature selection,
namely worst-case discriminative feature selection (WDFS),
which adopt a worst-case view [Yu and Yeung, 2010] but
the average view. Specifically, WDFS directly maximizes the
ratio of the minimum of between-class variance of all class
pairs over the maximum of within-class variance, and thus it
duly considers the separation of all classes. For the solution,
we take a greedy strategy by finding one feature at a time, but
that is very easy to implement. Moreover, in order to reduce
the redundancy of selected feature subset, we extend WDFS
to uncorrelated WDFS (UWDFS) with the help of the cor-
relation between features. Finally, in the experiment, we re-

spectively use the original features and the score vectors of
features over all class pairs to calculate the correlation co-
efficients, and analyze the experimental results in these two
ways. Our contribution are summarized as follows:

1. Our method WDFS duly considers the separation of all
classes, which adopts a new view called worst-case view
different from the conventional average view.

2. Considering the feature evaluation mechanism of the
WDFS model, we propose a method to help reduce the
redundancy, which only needs to calculate the correla-
tion coefficients between features or feature score vec-
tors.

3. Although we take a greedy strategy by finding one fea-
ture at a time, that is very easy to implement with low
computational complexity.

2 Related Works
2.1 Fisher Score
Given a set of N data points

{
xk ∈ Rd×1 |k = 1, · · · , N

}
which are sampled from C classes. The within-class matrix
Sw and between-class matrix Sb are defined as

Sb =
c∑

i=1

ni (µi − µ) (µi − µ)T (1)

Sw =
c∑

i=1

ni∑
p=1

(
xi
p − µi

) (
xi
p − µi

)T
(2)

where ni denotes the number of samples in the i − th class,
µi denotes the mean of the i − th class, and xi

p denotes the
p− th sample in the i− th class.

To specify the selected features in the procedure of fea-
ture selection, we equip the conventional transportation ma-
trix with an explainable structure to specify the selected fea-
tures, namely selective matrix. Next, we will go into details.
First, concatenate the dataset {x1,x2, . . . ,xN} to a matrix
X= [x1,x2, . . . ,xN ] ∈ Rd×N . Then let frT ∈ R1×N de-
notes the r−th row of X, i.e. the r−th feature of the dataset,
and then let F = XT = [f1, f2 . . . , fd] ∈ RN×d. Formally,
for a feature subset FI ∈ F , we could define the correspond-
ing selective matrix as

WI =
[
wI(1),wI(2), . . . ,wI(m)

]
∈ {0, 1}d×m (3)

where wI(k) ∈ Rd×1 (k = 1, 2, . . . ,m ≤ d) refers to a col-
umn vector whose components are all 0 expect 1 for the
I (k) − th one. Note that this WI is indeed a column-full-
rank transformation matrix. With the selective matrix WI ,
the process of feature selection could be expressed as

FI = FWI . (4)
Then the model of Fisher Score could be formulated as

max
WI∈Rd×m

m∑
k=1

wT
I(k)SbwI(k)

wT
I(k)SwwI(k)

. (5)

It should be noted that each feature is evaluated individual-
ly. It is easy to see that the model in the Eq. (5) consider the
overall (or average) separation of data, thus it cannot guaran-
tee the separation (as best as possible) of any class pairs.
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2.2 Redundancy
The Redundancy (feature−feature) analysis has been another
concerned part of supervised filter models, which has many
similarities to the Relevance (feature−class) in term of mea-
surement. Yu and Liu [Yu and Liu, 2004] explored further
feature redundancy, and more restrictively defined relevant
features as any feature that is neither irrelevant nor redundant
to the target concept. The independence or complementarity
of one feature can be defined based on correlation coefficien-
t, mutual information, or any criterion characterizing feature
redundancy. Many models use Euclidean distance, Pearson
correlation [Battiti, 1994], and information measures for re-
dundancy analysis. Some feature selection methods seek to
remove redundant features while others do not. A classical
criterion for feature selection based on relevance and redun-
dancy analysis is Max-Relevance and Min-Redundancy (m-
RMR) [Bian and Tao, 2011], which maximizes the correlation
between features and categorical variables while minimizing
the correlation between features by measuring the mutual in-
formation.

3 Approach
In order to guarantee the separation (as best as possible) of
any class pairs, we propose a new criterion for discriminative
feature selection, worst-case discriminative feature selection
(WDFS) in the subsection 3.1. Unlike Fisher Score and oth-
er methods based on the discriminative criteria considering
the overall (or average) separation of data, WDFS adopts a
worst-case view which duly considers the separation of all
classes. Specifically, WDFS directly maximizes the ratio of
the minimum of between-class variance of all class pairs over
the maximum of within-class variance of all classes.

Apart from the analysis of relevance (feature−class), the
analysis of redundancy (feature−feature) is another crucial
part of supervised filter models. This work simply uses the
correlation coefficient to help reduce redundancy among
features. Then WDFS is extended to uncorrelated WDFS
(UWDFS) in the subsection 3.2.

3.1 Worst-Case Discriminative Feature Selection
In the Eq. (1), due to the fact that µ = 1

N

c∑
i=1

niµi, thus the

equation (1) would be equal to the following equation by sim-
ple derivation.

Sb =
1

2

c∑
i=1

c∑
j=1

ninj (µi − µj) (µi − µj)
T
. (6)

Next, we define the between-class matrix Si,j
b for the class

pair (i, j) and the within-class matrix Si
w as

Si,j
b = (µi − µj) (µi − µj)

T , 1 ≤ i < j ≤ c, (7)

Si
w =

1

ni

ni∑
p=1

(
xi
p − µi

)(
xi
p − µi

)T
, 1 ≤ i ≤ c. (8)

where µi denotes the mean of the i − th class, and denotes
the sample in the class. Similarly, based on the Fisher dis-
criminative criterion, we formulate the model of worst-case

Algorithm 1 WDFS
Input: Train dataset {(xi, yi) |i = 1, 2, . . . , N }, wherein
xi ∈ Rd×1 and yi ∈ {1, 2, · · · , C}, the selected number m.
Initialize: Concatenate the dataset {x1,x2, . . . ,xN} to a ma-
trix X= [x1,x2, . . . ,xN ] ∈ Rd×N , and let F = XT =
[f1, f2 . . . , fd].
Output: Selective matrix WI ∈ Rd×m.

1: Calculate the within-class matrix Si
w for all class by the

Eq. (7), and between-class matrix Si,j
b for all class pair

(i, j) , 1 ≤ i < j ≤ C by the Eq. (8).
2: For each feature, calculate the score score(fr),r =

1, 2, . . . , d by the Eq. (10).
3: Sort the scores of all features.
4: Select the m feature indexes corresponding to the first
m largest feature scores and construct the corresponding
selective matrix WI .

discriminative feature selection as

max
WI∈Rd×m

m∑
k=1

min
1≤i<j≤c

wT
I(k)S

i,j
b wI(k)

max
1≤i≤c

wT
I(k)S

i
wwI(k)

. (9)

It should be noted that each feature is evaluated individually.
Thus, we could a greedy strategy by finding one feature at a
time to solve this optimization problem. Define the score of
the r − th feature in F as

score(fr) =

min
1≤i<j≤c

wT
r S

i,j
b wr

max
1≤i≤c

wT
r S

i
wwr

, r = 1, 2, . . . , d, (10)

where wr is a selective vector corresponding to the r − th
feature in F . For clarity, Algorithm 1 lists the pseudo code
of solving the model WDFS.

3.2 Uncorrelated WDFS
In this subsection, we extend WDFS to Uncorrelated WDF-
S (UWDFS) by calculating correlation coefficients between
features to help reduce the redundancy. For a feature pair
(fi, fj), we define the correlation coefficient as

0 ≤ σ (fi, fj) ≤ 1, (11)
where σ (•) is a scalar function, which calculate the similar-
ity (correlation) between two vectors. It is worth noting that
the larger correlation coefficient means a greater redundancy
between features.

Moreover, according to the aforementioned analysis, we
have that WDFS evaluates feature individually. Then we cal-
culate the correlation coefficient between each feature of the
rest features (current candidate feature subset except for the
feature with the largest score) and the feature with the largest
score. These correlation coefficients can further be used to
calculate the weights, indicating the importance difference a-
mong the rest features.
Specifically, suppose the current selected feature subset be
Fk =

{
fI(1), fI(2), · · · , fI(k)

}
⊂ F , and its complement,

namely the candidate feature set, could be defined as
Fc

k = F −
{
fI(1), fI(2), · · · , fI(k)

}
=
{
f̃1, f̃2, · · · , f̃d−k

}
.

(12)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2975



Algorithm 2 UWDFS
Input: Train dataset {(xi, yi) |i = 1, 2, . . . , N }, wherein
xi ∈ Rd×1 and yi ∈ {1, 2, · · · , C}, the selected number m.
Initialize: Concatenate the dataset {x1,x2, . . . ,xN} to a ma-
trix X= [x1,x2, . . . ,xN ] ∈ Rd×N , and let F = XT =
[f1, f2 . . . , fd].
Output: Selective matrix WI ∈ Rd×m.

1: Calculate the score vector s(0) by the Eq. (10).
2: for k = 1 to m do
3: Find the feature fI(k) = fmax and remove it from the

current candidate feature subset Fc
k , then obtain the

new candidate feature subset Fc
k+1.

4: Calculate the correlation coefficient vector
5: ρ = [ρ1, ρ2, · · · , ρd−k−1]

between Fc
k+1 and current fmax by the Eq. (11).

6: Update the score vector by the Eq. (16), then
s(k) =

[
s
(k)
1 , s

(k)
2 , · · · , s(k)d−k−1

]
7: end for
8: Construct the selective matrix WI corresponding to the

selected feature subset
{
fI(1), fI(2), · · · , fI(m)

}
.

Here, we take the process of selecting the first two features as
an example. The main steps are summarized as follows.
Step 1 : When k = 0, i.e. F0 = ∅, we calculate the score for
f̃r (r = 1, · · · , d) by the Eq. (10), then we get a score vector

s(0) =
[
s
(0)
1 , s

(0)
2 , · · · , s(0)d

]
, (13)

where sr (r = 1, · · · , d) is a scalar. Then we find the feature
fmax with the largest score as

fmax = fI(1) ↔ max
{
s
(0)
1 , s

(0)
2 , · · · , s(0)d

}
. (14)

Then we obtain Fc
1 = F −

{
fI(1)

}
=
{
f̃1, f̃2, · · · , f̃d−1

}
.

Step 2 : We calculate the correlation coefficient between
f̃r (r = 1, · · · , d− 1) and fmax = fI(1) by the Eq. (11).
Then we get the correlation coefficient vector

ρ = [ρ1, ρ2, · · · , ρd−1] . (15)

Then we can use the 1− ρr (r = 1, · · · , d− 1) as the weight
of f̃r. This is consistent with the assumption that a less re-
dundant feature should be assigned a larger weight, while a
more redundant feature should be assigned a smaller weight.
Finally, we update the score of f̃r (r = 1, · · · , d− 1) as

s(1)r = (1− ρr)× s(0)r , (r = 1, · · · , d− 1) . (16)

Then the new score vector is s(1) =
[
s
(1)
1 , s

(1)
2 , · · · , s(1)d−1

]
and the new fmax is

fmax = fI(2) ↔ max
{
s
(1)
1 , s

(1)
2 , · · · , s(1)d−1

}
. (17)

So far, we have described a complete operation of selecting a
feature in UWDFS. For clarity, Algorithm 2 lists the pseudo
code of solving the model UWDFS.

Dataset Instances Features Classes Type
COIL20 1440 1024 20 Object Image
USPS 7000 256 10 Hand Written Image
ORL 400 1024 40 Face Image

UMIST 575 1024 20 Face Image
LUNG 203 3312 5 Biological

Table 2: Details of the selected benchmark data sets

4 Experiments

In this section, we will validate our proposed methods com-
pared with other state-of-the-art methods on five datasets.

4.1 Datasets Descriptions

These datasets include one object image dataset, COIL20,
USPS, two face image datasets ORL1 and UMIST, and one
biological gene expression microarray dataset, lung cancer
(LUNG). (The COIL20, USPS and LUNG datasets are download
from the Internet2). We summarize the statistics of the data sets
in Table 2 and briefly introduce them as follows.

(1) COIL20 contains 1440 images of 20 objects. The im-
ages of each object were taken 5 degrees apart as the object
is rotated on a turntable, and each object has 72 images.

(2) The original USPS handwritten digit database contain-
s 9298 images. In this paper, we select a balanced random
sample of the original data set.

(3) ORL consists of 400 face images. There are ten differ-
ent images of each of 40 distinct subjects. For some subjects,
the images were taken at different times with varying lighting,
different facial expressions, and facial details.

(4) UMIST contains 20 persons and totally 575 images.
The number of data in each class is between 10 and 24.

(5) LUNG is composed of 203 samples in five classes with
139, 21, 20, 6, and 17 samples, respectively. Each sample has
12600 genes. The genes with standard deviations smaller than
50 expression units were removed and the remaining data set
contains 203 samples with 3312 genes.

4.2 Reducing Feature Redundancy

A redundant feature does not add anything new to the target
concept [Dash and Liu, 1997]. Thus, removing redundancy
is straightforward when we require the number of selected
features is as small as possible. Actually, we want the pre-
served features to be informative and complemental to each
other. Considering that our proposed method selects one fea-
ture at a time, so we simply uses the correlation criteria to
help reduce redundancy among features. The Pearson corre-
lation coefficient [Battiti, 1994] is one of the simplest criteria.
Moreover, in the experiment, we also try to use the score vec-
tors over all class pairs instead of original feature as the input
for calculating the correlation coefficients. The corresponding
calculation formulas are as follows.

1http://www.zjucadcg.cn/dengcai/Data/FaceData.html
2http://featureselection.asu.edu/datasets.php
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Dataset Average accuracy(%) of top 20 features Average accuracy(%) of top 40 features

Methods COIL20 USPS ORL UMIST LUNG COIL20 USPS ORL UMIST LUNG

RALMFS 91.33 80.93 65.60 91.16 83.90 96.42 87.47 79.95 93.54 85.30
±3.97 ±4.02 ±6.04 ±2.57 ±5.47 ±0.88 ±2.65 ±2.58 ±1.84 ±2.83

mRMR 94.26 38.94 66.85 87.23 84.70 96.56 47.19 73.00 92.11 89.70
±1.67 ±2.12 ±4.31 ±3.62 ±2.06 ±0.95 ±1.78 ±2.47 ±1.89 ±3.02

RFS 88.25 82.95 68.55 90.07 87.30 95.61 90.45 76.70 93.54 90.50
±5.17 ±3.06 ±2.01 ±2.99 ±4.64 ±2.70 ±1.92 ±3.28 ±1.60 ±2.32

TR 58.83 73.38 60.05 83.79 81.50 90.28 85.44 76.50 92.49 86.70
±15.37 ±1.00 ±3.26 ±4.88 ±4.20 ±1.95 ±0.83 ±3.73 ±2.21 ±2.41

DFS 95.57 81.19 67.40 90.81 86.30 97.68 91.07 77.05 94.18 90.70
±1.47 ±5.00 ±3.65 ±3.62 ±5.36 ±0.62 ±1.88 ±3.17 ±1.81 ±4.65

FisherScore 58.83 73.38 60.05 83.79 81.50 90.28 85.44 76.50 92.49 86.70
±15.37 ±1.00 ±3.26 ±4.88 ±4.20 ±1.95 ±0.83 ±3.73 ±2.21 ±2.41

Ours-WDFS 96.13 87.75 73.65 90.63 89.40 97.90 93.40 83.25 94.18 90.90
±1.50 ±1.63 ±2.37 ±3.38 ±3.95 ±1.02 ±0.90 ±3.44 ±2.01 ±2.60

Ours-UWDFS-1 96.96 91.09 70.70 92.39 84.40 98.68 94.52 79.90 94.77 84.00
±0.54 ±1.19 ±4.87 ±1.53 ±3.17 ±0.44 ±0.53 ±3.59 ±1.80 ±3.33

Ours-UWDFS-2 97.25 90.47 73.80 92.70 89.30 98.68 94.24 82.65 95.61 91.20
±0.94 ±1.24 ±4.84 ±1.55 ±2.67 ±0.54 ±0.43 ±3.49 ±1.66 ±2.35

Table 1: The average classification accuracy(%) and corresponding standard deviation under the selected Top 20 and 40 features.
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Figure 2: Average classification accuracy vs. Number of selected features of different methods on five datasets.

(1) Pearson correlation coefficient

σ (a,b) =
N
∑
aibi −

∑
ai
∑
bi√

N
∑
ai2 − (

∑
ai)

2
√
N
∑
bi

2 − (
∑
bi)

2
,

(18)
where a and b are two vectors.

(2) The score vector over all class pairs
For the feature fr, similar to its score in the Eq. (10), we

could define the corresponding score vector vr ∈ R
C(C−1)

2

over all class pairs as

vr =

 wT
r S

1,2
b wr

max
1≤i≤c

wT
r Si

wwr
,

wT
r S

1,3
b wr

max
1≤i≤c

wT
r Si

wwr
, · · · ,

wT
r S

C−1,C
b wr

max
1≤i≤c

wT
r Si

wwr


(19)
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Dataset Average accuracy(%) of top 60 features Average accuracy(%) of top 80 features

Methods COIL20 USPS ORL UMIST LUNG COIL20 USPS ORL UMIST LUNG

RALMFS 96.97 90.57 80.45 95.44 88.60 97.75 92.58 83.75 95.96 89.10
±0.92 ±1.98 ±3.30 ±0.95 ±3.20 ±0.64 ±1.34 ±3.16 ±1.22 ±3.14

mRMR 97.10 57.63 77.85 93.86 90.20 97.61 66.35 80.20 94.95 90.90
±0.76 ±1.88 ±2.15 ±1.74 ±1.75 ±0.57 ±1.04 ±3.55 ±1.54 ±1.85

RFS 97.07 92.40 79.05 94.32 91.20 97.86 93.45 80.30 94.42 91.60
±1.10 ±1.31 ±3.28 ±1.76 ±1.69 ±0.81 ±1.02 ±3.34 ±1.78 ±2.12

TR 94.33 89.22 82.20 94.98 88.60 95.58 92.45 86.60 96.14 90.70
±0.88 ±0.79 ±2.66 ±2.40 ±3.17 ±0.63 ±0.80 ±1.43 ±1.96 ±2.50

DFS 98.36 93.69 81.70 94.81 90.90 98.50 94.95 83.35 95.72 91.60
±0.72 ±0.87 ±2.55 ±1.89 ±3.33 ±0.81 ±0.52 ±2.31 ±1.77 ±3.50

FisherScore 94.33 89.22 82.20 94.98 88.60 95.58 92.45 86.60 96.14 90.70
±0.88 ±0.79 ±2.66 ±2.40 ±3.17 ±0.63 ±0.80 ±1.43 ±1.96 ±2.50

Ours-WDFS 98.54 94.76 86.20 95.44 91.50 98.76 95.26 86.95 95.58 92.20
±0.90 ±0.84 ±2.36 ±1.34 ±3.27 ±0.81 ±0.60 ±3.62 ±1.27 ±2.04

Ours-UWDFS-1 98.75 95.28 82.75 95.51 83.00 98.99 95.55 84.00 95.93 82.60
±0.57 ±0.36 ±3.16 ±1.26 ±2.31 ±0.40 ±0.43 ±3.90 ±1.26 ±2.72

Ours-UWDFS-2 98.92 95.11 84.50 96.07 92.30 99.13 95.42 84.30 96.32 92.80
±0.28 ±0.32 ±3.70 ±1.70 ±2.63 ±0.36 ±0.22 ±3.50 ±1.35 ±2.20

Table 3: The average classification accuracy(%) and corresponding standard deviation under the selected Top 60 and 80 features.

4.3 Comparison Algorithms and Parameter
Setting

In our experiments, we compare our methods (WDFS and
UWDFS) with other five methods, including RALMFS [Cai
et al., 2013], mRMR [Peng et al., 2005], RFS [Nie et al.,
2010], DFS [Tao et al., 2016], TR[Nie et al., 2008] and Fish-
erScore [He et al., 2005]. (The code of mRMR, TR and Fisher-
Score are downloaded from the ASU feature selection repository3

and the code of DFS is implemented by ourselves in Python2.7.)
Among them, RALMFS and RFS algorithms are embedded
methods based on the linear regression model. The other
methods belong to filter-type methods and except mRMR are
all based on the Fisher discriminant criterion. Moreover, we
respectively use the original features and the score vectors of
features over all class pairs to calculate the correlation coeffi-
cients for UWDFS. For clarity, we call them UWDFS-1 and
UWDFS-1 respectively.

We randomly divide each dataset into two parts that
are approximately equal, one for training and the other
for testing, and we repeat each group experiment for ten
times. For the sake of simplicity and justice, we use the
1NN calssifier for classification and Euclidean distance as
the metric and let the number of selected features be be-
tween 10 and 100 with an interval of 10.(There is no ide-
al method for choosing the dimension of the feature space.)
In particular, the trade-off parameters in DFS and RFS,
the trade-off parameters in DFS and RFS are set α from
[1e− 6, 1e− 4, 1e− 3, 1e− 2, 0.1, 1, 10, 100, 1e3, 1e4].

4.4 Results Analysis
Figure 2 shows the average classification accuracy vs. the
number of selected features on six datasets with five different

3http://featureselection.asu.edu/index.php

methods. Tables 1 and 3 list the average classification accu-
racy and the corresponding standard deviation, using the top
20, 40, 60 and 80 features respectively. As can be seen in the
experimental results, we have that

1. As shown in Figure 2, with the increase in the number
of selected features, the trends of average classification
accuracy of different methods almost have a steady rise
on different datasets. With the specific values in Tables1
and 3, we can see that our methods have a better classifi-
cation performance with minor exceptions. Particularly,
our methods trumps all the other algorithms at the small
number of features with a noticeable rise.

2. On the ORL dataset, WDFS has better classification re-
sults than the other methods in most feature numbers.
Our Uncorrelated WDFS is almost inferior to the WDF-
S algorithm. This may be an indication that the de-
correlation process is working in a bad way, resulting in
removing some weakly relevant and redundant features.

3. Comparing the model UWDFS-1 with UWDFS-2, we
can see that UWDFS-2 always has better performance
than UWDFS-1. Especially on the LUNG dataset,
UWDFS-2 shows a steady rise but UWDFS-1 has a com-
pletely opposite trend.

5 Conclusions
In this paper, we propose a new criterion for discriminative
feature selection, worst-case discriminative feature selection
(WDFS). Based on a worst-case view, WDFS duly considers
the separation of all classes by maximizing the ratio of the
minimum of between-class variance of all class pairs over the
maximum of within-class variance. Moreover, we also utilize
the correlation between features to help reduce the redundan-
cy and extend WDFS to uncorrelated WDFS (UWDFS). Last
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but not least, the solution process in our model is simple and
effective. Experimental results demonstrate the effectiveness
of WDFS and UWDFS.
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