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Abstract
In recent years, numerous multi-view subspace
clustering methods have been proposed to ex-
ploit the complementary information from multiple
views. Most of them perform data reconstruction
within each single view, which makes the subspace
representation unpromising and thus can not well
identify the underlying relationships among data.
In this paper, we propose to conduct subspace clus-
tering based on Flexible Multi-view Representation
(FMR) learning, which avoids using partial infor-
mation for data reconstruction. The latent represen-
tation is flexibly constructed by enforcing it to be
close to different views, which implicitly makes it
more comprehensive and well-adapted to subspace
clustering. With the introduction of kernel depen-
dence measure, the latent representation can flex-
ibly encode complementary information from dif-
ferent views and explore nonlinear, high-order cor-
relations among these views. We employ the Al-
ternating Direction Minimization (ADM) method
to solve our problem. Empirical studies on real-
world datasets show that our method achieves su-
perior clustering performance over other state-of-
the-art methods.

1 Introduction
Subspace clustering is a fundamental method for recov-
ering the subspace structure of data, especially for high-
dimensional data. Recently, self-representation-based sub-
space clustering methods [Elhamifar and Vidal, 2013; Liu et
al., 2013; Hu et al., 2014] have been proposed, which are
based on the assumption that each data point can be recon-
structed using the dictionary formed by all data points. Sparse
Subspace Clustering (SSC) [Elhamifar and Vidal, 2013] clus-
ters data based on sparse representation which can be ob-
tained by `1-norm. Low-Rank Representation (LRR) [Liu
et al., 2013] aims to search for a lowest-rank representation
among all the candidates. Smooth Representation clustering
(SMR) [Hu et al., 2014] introduces the grouping effect for
subspace clustering. The above mentioned methods have pro-
duced promising performances, however, they only focus on
boosting single-view clustering.

In many real-world applications, data are often from mul-
tiple sources. For example, a document might be described
by images, video, text, and audio. Human activities may be
captured by video cameras, depth cameras, and on-body sen-
sors. These different views often contain complementary in-
formation to each other, hence exploiting the complementar-
ity among multiple views could potentially advance the clus-
tering performance.

Considering that each individual view is insufficient for de-
picting data points, recently, subspace clustering has been ex-
tended to multi-view cases [Cao et al., 2015; Zhang et al.,
2015; Zhang et al., 2017]. With the introduction of low-rank
tensor constraint or exploration of the diversity among differ-
ent subspace representations, LT-MSC [Zhang et al., 2015]
and DiMSC [Cao et al., 2015] could well explore comple-
mentary information from multiple sources and improve the
subspace clustering by a large margin. However, there are
two main limitations in these approaches: (1) they reconstruct
data within each single view using original noisy features,
which is insufficient to describe data; (2) they only exploit
linear subspaces of data in the raw feature space, which is not
enough for capturing complex correlations among real-world
data.

One important technique for identifying the relationships
among different views and simultaneously constructing a
common space is Canonical Correlation Analysis (CCA)
[Chaudhuri et al., 2009]. Although simple, CCA-based meth-
ods have the following limitations: (1) they project multi-
ple views into a common space by improving their correla-
tions, but cannot well address the complementarity of differ-
ent views; (2) the dimensionalities of different views are re-
duced to the same, which is not suitable for the cases when the
dimensionalities of two views are extremely unbalanced; (3)
multi-view common representation learning process is sepa-
rated from subspace clustering, which will cause the common
representation not well-adapted to subspace clustering.

To address above issues, we propose a novel Flexible
Multi-view Representation (FMR) learning method to con-
struct a latent representation. Differing from CCA, we adopt
the kernel dependence measure to drive the latent representa-
tion closely correlated to each view, so that there is no need
to project multiple views into a common space. By mapping
original features into the kernel space, the high-order and
nonlinear dependence among different views can be captured.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2916



The latent representation effectively facilitates subspace clus-
tering, and meanwhile its comprehensiveness is promoted by
subspace reconstruction. The main contributions of this paper
include:

• We propose to conduct subspace clustering based on
Flexible Multi-view Representation (FMR) learning,
which avoids using partial information for data re-
construction and makes the latent representation well-
adapted to subspace clustering.

• We propose to construct a latent representation by en-
couraging it to be similar to different views in a weighted
way, which implicitly enforces it to encode complemen-
tary information from multiple views.

• We introduce the kernel dependence measure: Hilbert
Schmidt Independence Criterion (HSIC), to capture
high-order, non-linear relationships among different
views, which benefits recovering underlying cluster
structure of data.

• Our model can be efficiently optimized by the Alternat-
ing Direction Minimization (ADM) method. Extensive
experiments on benchmark datasets show its effective-
ness.

2 Related Work
For single-view subspace clustering methods, the major dif-
ference lies in the constraint on subspace representation. LRR
[Liu et al., 2013] and SSC [Elhamifar and Vidal, 2013] en-
courage subspace representations to be low-rank and sparse,
respectively. Multi-Subspace Representation (MSR) [Luo et
al., 2011] combines both criteria of LRR and SSC. Least
Squares Regression (LSR) [Lu et al., 2012] improves group-
ing effect of data by Frobenius norm. Recently, researchers
propose some subspace clustering methods based on latent
space [Liu and Yan, 2011; Patel et al., 2013]. Latent Space
Sparse Subspace Clustering (LS3C) [Patel et al., 2013] in-
tegrates dimensionality reduction and subspace clustering
into a unified framework. Latent Low-Rank Representation
(LatLRR) [Liu and Yan, 2011] is an enhanced version of
LRR, which constructs the dictionary using both observed
and unobserved data. Above mentioned methods implement
subspace clustering in the single view without considering the
multi-view cases.

With the growing amount of data from multiple sources,
multi-view clustering has been widely studied and applied in
real-world applications. De Sa proposes to create a bipartite
graph and performs spectral clustering based on “minimizing-
disagreement” idea [De Sa, 2005]. Multi-view cluster-
ing via Canonical Correlation Analysis (CCA) [Chaudhuri
et al., 2009] projects different views into a common low-
dimensional space. Some approaches [Wei et al., 2009;
Gao et al., 2013] employ matrix factorization technique for
multi-view clustering. Gao et al. address large-scale is-
sue under the K-means framework [Gao et al., 2013]. The
co-regularized method [Kumar et al., 2011] searches for a
consistent clustering result across different views with a co-
regularization constraint. The convex representation learning

method [White et al., 2012] enforces the conditional inde-
pendence among separate views and simultaneously reduces
the dimensionality. Tao et al. conduct multi-view cluster-
ing in an ensemble clustering way, which constructs a con-
sensus partition of data across different view-specific basic
partitions [Tao et al., 2017; Tao et al., 2019]. Robust Multi-
view Spectral Clustering [Xia et al., 2014] recovers a shared
low-rank transition probability matrix as an input to the stan-
dard Markov chain. The recently proposed subspace meth-
ods [Cao et al., 2015; Zhang et al., 2015; Zhang et al., 2017;
Wang et al., 2017] incorporate multi-view information under
the self-representation-based subspace clustering framework.

Different from linear cases, we further explore the high-
order, nonlinear relationships among different original views,
so that the latent representation could properly depict data and
reveal the intrinsic cluster structure shared by multiple views.

3 Proposed Approach
3.1 Subspace Clustering
Self-representative subspace clustering is quite effective for
high-dimensional data. Suppose X=[x1,x2, ...,xN ] ∈
Rd×N is the sample matrix, each column of which represents
a data point, d is the dimensionality of feature space and N
is the number of samples. To cluster data into their respective
subspaces, we infer an coefficient matrix Z that reflects the
similarity among data points. Without loss of generality, the
formulation of subspace clustering can be written as:

min
Z
L(X,XZ) + λΩ(Z), (1)

where L(·, ·) and Ω(·) are loss function associated with data
reconstruction and regularization term respectively, and the
scalar λ > 0 is used to balance these two terms. Based
on the coefficient matrix Z, the similarity matrix S is fur-
ther obtained by S = abs(Z) + abs(ZT ), where abs(·) is the
element-wise absolute operator. Then it is taken as an input
for spectral clustering algorithm [Ng et al., 2001] to produce
the final results.

Although above methods have achieved promising perfor-
mances, they tend to be affected by original features, espe-
cially when each single view is insufficient to depict data.

3.2 Measuring Dependence
In this work, we propose a novel method to flexibly learn a
common latent representation H by maximizing the depen-
dence between it and different views. In this paper, we adopt
the Hilbert-Schmidt Independence Criterion (HSIC) to mea-
sure dependence in the kernel space. The basic idea is to map
original views into the Reproducing Kernel Hilbert Spaces
(RKHSs) to capture high-order, nonlinear dependence among
different original features. Suppose that data points x and y
are drawn from two feature spaces X and Y , respectively.
φ(x) represents a mapping from x ∈ X to kernel space F .
Similarly, ϕ(y) is a mapping from y ∈ Y to the other kernel
space G. The linear cross-covariance operator Cxy is defined
as:

Cxy = Exy[(φ(x)− µx)⊗ (ϕ(y)− µy)], (2)

where µx and µy are mean values of φ(x) and ϕ(y), respec-
tively. ⊗ is the tensor product. Based on the cross-covariance
operator, we have the following definition of HSIC:
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Definition 3.1 [Gretton et al., 2005] Given separable
RKHSs F , G and a joint distribution pxy, we define HSIC
as the squared Hilbert-Schmidt norm of Cxy:

HSIC(pxy,F ,G) = ||Cxy||2HS. (3)

Given N independent observations drawn from the joint
distribution pxy: {(x1,y1), ..., (xN ,yN )} ⊆ X×Y , denoted
as X,Y, the empirical HSIC measure is defined as:

HSIC(X,Y) := (N − 1)−2tr(KxLKyL), (4)

where Kx, Ky ∈ RN×N are Gram matrices with (Kx)ij =
kx(xi,xj) =< φ(xi), φ(xj) >, (Ky)ij = ky(yi,yj) =<
ϕ(yi), ϕ(yj) >, and where (L)ij = δij − N−1 centers the
Gram matrices to have zero mean in the feature space, δij
denotes the entity of identity matrix.

3.3 Formulation
Given N observations from V views, we denote the vth view
of data as X(v) = {x(v)

1 , ...,x
(v)
N } ∈ Rdv×N , 1 ≤ v ≤ V . For

exploring complementary information from different views,
we employ HSIC as a measure of dependence to drive the
latent representation H to be close to different views. Fur-
thermore, considering the varying quality of different views,
we give weight αγv for the vth view, which encodes the degree
of similarity between the vth view and the latent representa-
tion. γ is the parameter to adjust the weight distribution of
different views [Wang et al., 2007]. That is to say, the view
strongly correlated to H will be assigned large weight. Over
all, the objective function to infer the latent representation is:

max
H,α

γ
v

V∑
v=1

αγvHSIC(X(v),H) s.t.
V∑
v=1

αv = 1, αv ≥ 0. (5)

The latent representation is more comprehensive than any
single view due to the encoded complementary information.
We conduct subspace clustering on it and obtain the total ob-
jective function as follows:

min
H,Z,E,α

γ
v

−
V∑
v=1

αγvHSIC(X(v),H)+λ1||Z||∗ + λ2||E||2,1

s.t.H = HZ + E,

V∑
v=1

αv = 1, αv ≥ 0. (6)

The first term is used to integrate complementary informa-
tion from multiple views into a latent representation. || · ||∗
denotes the nuclear norm, which enforces the subspace rep-
resentation Z to be low-rank. We impose `2,1-norm on re-
construction error E with ||E||2,1 =

∑N
j=1

√∑N
i=1 ([E]ij)

2 to
encourage columns of E to be zero [Liu et al., 2013]. The
hyper-parameters λ1 and λ2 control the trade-off among the
three terms.

4 Optimization
To make the objective function separable, we introduce an
auxiliary variable J to replace Z, then Eq. (6) is converted to

the following equivalent problem:

min
H,Z,J,E,α

γ
v

−
V∑
v=1

αγvHSIC(X(v),H) + λ1||J||∗ + λ2||E||2,1

s.t.H = HZ + E, Z = J,

V∑
v=1

αv = 1, αv ≥ 0. (7)

Accordingly, we solve the above problem by the Aug-
mented Lagrange Multiplier (ALM) method, and induce the
following objective function:

L(H,Z,J,E, αγv) =−
V∑
v=1

αγvHSIC(X(v),H) + λ1||J||∗ (8)

+λ2||E||2,1+Φ(Y1,H−HZ−E) + Φ(Y2,Z− J).

For convenience, we give the definition Φ(Y,C) =
µ
2 ||C||

2
F + 〈Y,C〉, where 〈·, ·〉 defines the matrix inner prod-

uct, Y is Lagrange multiplier matrix, and µ is a positive
penalty scalar. According to the LADMAP [Lin et al., 2011],
Eq. (8) can be separated into the following subproblems:
H-subproblem. Fixing the other variables, we firstly up-
date H by solving the following subproblem:

L(H) =−
V∑
v=1

αγvHSIC(Xv,H) + Φ(Y1,H−HZ−E). (9)

We optimize Eq. (9) with Gradient Descent algorithm
(GD), where the gradient with respect to H is:
∂L(H)

∂H
= −2HK̃ + Y1(I− Z)T + µ(H−HZ−E)(I− Z)T ,

with K̃ = LKL and K =

V∑
v=1

αγvX
(v)TX(v). (10)

Z-subproblem. Fixing the other variables, we update Z by
solving the following problem:

Z∗ = arg min
Z

Φ(Y1,H−HZ−E) + Φ(Y2,Z− J). (11)

Taking the derivative with respect to Z and setting it to
zero, we can update Z with the following rule:

Z∗ = (HTH + I)−1[(J + HTH−HTE) + (HTY1 −Y2)/µ].
(12)

E-subproblem. For updating the reconstruction error E,
we solve the following problem:

E∗ = arg min
E
λ2||E||2,1 + Φ(Y1,H−HZ−E) (13)

= arg min
E

λ2

µ
||E||2,1 +

1

2
||E− (H−HZ + Y1/µ)||2F .

The above subproblem can be solved by Lemma 4.1 in [Liu
et al., 2013].
J-subproblem. The Lagrange function with respect to J
can be optimized by:

J∗ = arg min
J
λ1||J||∗ + Φ(Y2,Z− J)

= arg min
J

λ1

µ
||J||∗ +

1

2
||J− (Z + Y2/µ)||2F .

(14)

This step can be solved by the Singular Value Thresholding
(SVT) operator [Cai et al., 2010].
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Algorithm 1: Optimization of our method

Input: Multi-view data: {X(1), ...,X(V )}, the number of
clusters m, hyper-parameters λ1 and λ2, the
dimensionality of latent representation K, and the
parameter γ.

Initialize: E = 0,Z = J = 0,Y1 = 0,Y2 = 0,
µ = 10−5, ρ = 1.1, ε = 10−4,maxµ = 1010;
Initialize the latent representation H with
random values and initialize the weight
α = 1/V for all the views.

while not converged do
Update variables H,Z,E,J according to Eq. (10), (12)
-(14), respectively;
Update weight αv (1 ≤ v ≤ V ) according to Eq. (18);
Update multipliers Y1,Y2 and penalty parameter µ
according to Eq. (19);
Check the convergence conditions:
||H−HZ−E||∞ < ε and ||Z− J||∞ < ε.

end
Output: H,Z, {α1,...,αV }.

Updating weights. αv (1 ≤ v ≤ V ): To update αv , we
rewrite Eq. (7) as:

min
α1,...,αV

V∑
v=1

αγvFv s.t.

V∑
v=1

αv = 1, αv ≥ 0, (15)

where
Fv = −HSIC(X(v),H). (16)

The Lagrange function of Eq. (15) is:

L(α) =

V∑
v=1

αγvFv − β(

V∑
v=1

αv − 1), (17)

where β is the Lagrange multiplier. We set the derivative with
respect to αv to zero, then we get:

αv =
(Fv)

1
1−γ

V∑
k=1

(Fk)
1

1−γ

. (18)

Updating multipliers. Finally, the Lagrange multipliers
Y1,Y2 and penalty parameter µ are updated according to
LADMAP [Lin et al., 2011] algorithm:

Y1 = Y1 + µ(H−HZ−E)

Y2 = Y2 + µ(Z− J)

µ = min(µmax, ρµ)

(19)

where ρ is a positive scalar.

4.1 Complexity Analysis
The main complexities of self-representative subspace clus-
tering methods (DiMSC [Cao et al., 2015], LT-MSC [Zhang
et al., 2015], LMSC [Zhang et al., 2017]) are from the graph
(with the size N ×N ) involved, which leads to the computa-
tional cost of matrix operations (e.g., SVD decomposition and
matrix inversion). There are two main steps for these meth-
ods, i.e., affinity matrix learning (step1) and spectral cluster-
ing (step2). We list the complexity of each step in Table 1. In
general, the total complexities for all these methods on large-
scale data are O(N3).

Methods Step 1 Step 2 Total
DiMSC O(TV N3 + V DN2) O(N3) O(N3)
LT-MSC O(TV N3 + TV DN2) O(N3) O(N3)
LMSC O(T (D3 +N3 +DKN +KN2)) O(N3) O(N3)
Ours O(T (L+ 1)(N3 +KN2)) O(N3) O(N3)

1 N,T, V,D,K are the number of data points, iterations, views, the dimen-
sionality of feature space and latent space, respectively. For our method,
L denotes the number of iterations of GD in Eq. (10).

Table 1: Complexity analysis of different methods

5 Experiments
We conduct experiments on 7 datasets from different applica-
tions: images, text, and community networks.
• Yale1 consists of 165 grayscale images of 15 individuals,

from which 3 types of features are extracted.
• MSRC-v1 [Xu et al., 2016] consists of 210 images of 7

object classes, which includes 6 types of features.
• Notting-Hill [Wu et al., 2013] is a video face dataset

consisting of 550 images of 5 main casts described from
3 different views. It is more challenging because of the
rich facial expressions, changing angles, and varied light
intensities.
• Reuters [Amini et al., 2009] is a multilingual dataset

including 2000 newswire articles of 6 classes written in
5 languages (views).
• BBCSport2 is composed of news articles in 5 topical ar-

eas from BBC website, which is associated with 2 views.
• Football3 contains 248 English Premier League football

players and clubs active on Twitter, which are described
from 9 different views and associated with 20 clubs.
• ANIMAL [Lampert et al., 2014] contains 30475 im-

ages of 50 animal classes including 2 types of feature.
10158 samples are selected with fixed interval to gener-
ate a subset.

5.1 Compared Methods
We compare our approach with 8 state-of-the-art baselines.
SPCBestSV [Ng et al., 2001] performs standard spectral clus-
tering within the best single view. Min-D [De Sa, 2005]
creates a bipartite graph to minimize the disagreement be-
tween two views. Co-Reg SPC [Kumar et al., 2011] co-
regularizes the clustering hypotheses to be consistent across
multiple views. RMSC [Xia et al., 2014] constructs a joint
low-rank transition probability matrix as an input for spectral
clustering. DiMSC [Cao et al., 2015] explores the diversity
among subspaces of all views through kernel technique. LT-
MSC [Zhang et al., 2015] employs low-rank tensor to cap-
ture high-order relationships among different views. LMSC
[Zhang et al., 2017] constructs an underlying latent repre-
sentation through linear mapping and then conducts subspace
clustering on it. ECMSC [Wang et al., 2017] simultane-
ously explores the representation complementarity and indi-
cator consistency among different views.

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://mlg.ucd.ie/datasets/
3http://mlg.ucd.ie/aggregation/
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Datasets Metrics SPCBestSV Min-D Co-Reg RMSC DiMSC LT-MSC LMSC ECMSC FMR

Yale

NMI 65.42±1.05 64.53±2.48 64.87±1.24 68.49±3.32 72.73±1.26 76.53±0.82 68.31±2.67 77.34±1.06 84.11±2.95
ACC 70.73±3.04 61.57±4.30 69.72±2.05 64.20±3.65 70.95±3.56 74.08±0.24 64.73±2.52 77.18±1.42 85.31±3.80

F-score 47.52±1.12 47.06±0.59 46.63±3.04 51.74±4.31 56.38±2.34 59.83±0.62 51.81±2.19 61.70±1.25 72.17±4.57
RI 92.99±0.65 92.68±0.34 92.64±0.50 93.36±0.87 93.64±0.41 94.17±0.08 93.92±0.27 94.62±0.51 95.23±0.64

MSRC-v1

NMI 57.42±3.16 60.64±0.35 56.92±1.25 58.57±0.56 62.87±2.18 70.04±0.13 65.34±0.15 66.86±0.44 71.68±1.51
ACC 66.82±4.26 69.21±3.45 65.30±1.65 69.10±0.71 68.57±3.92 80.00±0.09 80.55±1.28 80.00±0.00 82.08±1.44

F-score 53.54±4.32 57.48±0.47 53.71±2.15 57.63±1.62 57.92±2.44 68.48±0.03 65.17±1.71 66.93±0.16 69.88±1.70
RI 86.35±0.63 88.18±0.09 89.21±0.30 87.97±0.21 89.72±1.10 91.12±0.00 90.40±0.22 90.73±0.04 91.50±0.47

Notting

NMI 72.31±3.85 70.64±2.61 73.53±3.35 70.83±4.68 79.88±3.29 63.36±0.09 75.56±4.28 70.93±1.58 80.91±3.85
ACC 81.32±5.21 76.18±3.06 84.55±2.71 71.16±5.06 84.32±2.09 68.91±0.08 81.64±4.86 78.33±2.29 89.47±4.43

F-score 77.56±3.82 76.62±2.86 78.41±2.65 70.11±5.59 83.40±1.41 61.29±0.12 79.99±2.70 74.67±0.39 84.47±2.06
RI 90.07±1.78 89.81±1.24 90.81±3.06 87.28±2.32 90.79±0.69 82.56±0.07 90.40±0.22 90.33±1.03 91.95±0.28

Reuters

NMI 20.93±0.95 23.26±1.55 26.38±1.75 19.00±0.75 18.21±0.33 17.93±1.32 20.56±0.63 20.97±0.15 26.60±0.71
ACC 41.92±1.17 40.70±1.18 28.74±1.13 39.46±1.29 40.00±1.13 36.20±1.46 38.40±1.63 39.48±0.22 44.76±0.24

F-score 33.72±0.52 33.70±0.75 36.45±1.67 31.86±1.40 28.68±0.39 28.29±0.95 34.76±1.21 34.76±0.02 37.03±0.52
RI 70.20±0.63 71.98±0.52 68.60±0.29 68.05±0.92 67.49±0.28 68.16±0.53 65.37±0.63 59.72±0.04 71.66±0.36

BBCSport

NMI 71.65±0.65 77.64±0.19 71.76±0.06 81.28±0.95 85.11±0.13 77.54±0.46 82.56±0.65 74.48±1.37 86.57±1.85
ACC 83.60±3.52 79.71±4.96 73.31±0.54 85.78±1.47 95.10±2.17 90.26±0.73 90.77±0.45 80.66±0.46 95.59±0.78

F-score 76.78±0.38 76.09±1.31 76.65±0.14 86.65±0.84 91.02±0.14 80.16±0.59 88.65±0.71 76.01±0.41 91.60±1.36
RI 89.10±0.09 90.12±0.26 89.16±0.04 92.16±0.30 95.72±0.10 90.36±0.11 94.58±0.06 87.20±0.69 96.03±0.64

Football

NMI 78.65±2.38 80.38±1.53 76.58±1.47 84.34±2.04 82.16±1.45 84.22±1.17 83.96±2.08 80.34±1.11 89.96±0.75
ACC 73.02±3.45 72.98±1.65 52.96±1.21 78.55±3.84 75.40±2.26 79.03±2.01 80.24±2.18 77.08±2.54 88.02±1.43

F-score 62.63±2.98 64.35±3.15 60.19±2.81 70.97±4.01 67.13±1.19 71.32±1.37 70.82±1.09 70.38±1.87 81.82±1.50
RI 95.56±0.23 96.27±0.27 94.97±0.35 97.08±0.44 96.74±0.59 97.19±0.55 97.14±0.82 96.97±0.43 98.16±0.16

ANIMAL

NMI 36.18±0.70 66.17±0.76 40.31±0.97 70.46±1.84 44.62±0.89 41.29±0.40 70.44±0.35 70.11±0.25 72.42±0.96
ACC 26.88±0.74 57.92±1.57 25.51±2.05 61.58±4.50 32.61±1.81 33.65±0.67 60.59±1.03 59.86±0.29 62.23±1.13

F-score 16.44±0.71 48.92±1.79 19.83±1.02 54.30±4.16 20.66±1.10 21.65±0.49 51.29±1.24 51.90±0.64 54.96±1.31
RI 95.32±0.05 96.96±0.78 95.52±0.76 97.95±0.35 96.30±0.23 96.53±0.16 97.23±0.09 97.86±0.01 97.58±0.63

1 The top value is highlighted in red bold font and the second best in blue.

Table 2: Performance comparison of different methods

In experiments, we use four metrics to evaluate the cluster-
ing performances: Normalized Mutual Information (NMI),
Accuracy (ACC), F-score, and Rand Index (RI). Higher val-
ues indicate better performances for all these metrics.

5.2 Experimental Results
For all compared methods, we tune the parameters to achieve
the best performance and run each experiment 30 times to
report the mean and standard deviation.

Experimental results. According to the performance com-
parisons of different methods shown in Table 2, we have
the following observations: (1) our algorithm outperforms
other baselines on most datasets. For example, our method
gains large improvements around 6.77%, 8.13% over the sec-
ond best baseline (ECMSC) in terms of NMI and ACC on
Yale, respectively; (2) our method consistently obtains bet-
ter performances than DiMSC, LT-MSC, and ECMSC, be-
cause we construct subspace representation based on the la-
tent representation instead of each original single view; (3)
our algorithm obviously boosts the clustering performance
over LMSC, because it explores nonlinear and high-order re-
lationships among different views using HSIC, while LMSC
can only address linear cases.

Improvement of latent representation. To further investi-
gate the improvement of latent representation, as shown in Ta-
ble 3, we implement LRR [Liu et al., 2013] on each original
view, Feature Concatenation (FeatConcate), and the com-
mon representations learned by CCA-based methods (CCA
[Hotelling, 1936], KCCA [Bach and Jordan., 2002], DCCA
[Andrew et al., 2013]). Note that we only list the results
within the best two views. Intuitively, benefiting from en-

Figure 1: Model analysis: (a) parameter tuning on Yale; (b) the
convergence curves on Yale.

coding complementary information from multiple views, our
method advances the clustering performance by a large mar-
gin. Besides, our method even outperforms deep neural net-
works based method (DCCA) on all the datasets. Figure 2
shows the t-SNE visualizations of different representations.
As can be seen, our method better recovers the cluster struc-
ture of data due to the exploration of high-order, nonlinear
correlations among multiple views.

5.3 Model Analysis

Parameter tuning. In our experiments, we set the dimen-
sionality of latent representation as 200 and tune hyper-
parameters λ1 and λ2 from {10−5, 10−4, · · · , 10−1, 100} and
{10−10, 10−9, · · · , 10−3,
10−2}, respectively. Figure 1(a) shows the effect of chang-
ing values of λ1 and λ2 on clustering performance. We can
observe that our method is less sensitive to λ2.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2920



Datasets Metrics Best View 2nd Best FeatConcate CCA KCCA DCCA FMR

Yale

NMI 70.85±0.53 65.73±1.53 74.00±0.90 28.43±1.20 70.62±0.72 74.30±0.76 84.11±2.95
ACC 70.67±0.73 65.33±1.11 70.48±0.86 23.03±0.99 69.58±1.81 71.52±0.62 85.31±3.80

F-score 55.06±1.15 46.81±1.50 56.76±1.48 8.67±0.65 50.17±1.29 57.12±1.03 72.17±4.57
RI 94.37±0.18 93.05±0.19 94.37±0.22 87.72±0.17 93.83±0.88 94.59±0.16 95.23±0.64

MSRC-v1

NMI 56.15±0.67 51.73±0.28 42.88±1.00 9.60±0.91 39.97±0.44 66.04±0.09 71.68±1.51
ACC 67.81±0.65 60.84±0.00 48.35±2.18 24.68±0.68 56.37±0.23 76.09±0.08 82.08±1.44

F-score 52.20±0.55 47.04±0.04 39.20±1.29 16.69±0.46 40.70±0.38 62.38±0.12 69.88±1.70
RI 86.38±0.21 84.26±0.01 78.75±0.71 65.59±0.13 83.14±0.09 89.62±0.07 91.50±0.47

Notting

NMI 71.92±0.00 66.64±0.00 79.80±0.13 14.50±0.00 60.27±0.00 65.46±0.00 80.91±3.85
ACC 86.36±0.00 78.55±0.00 87.05±0.01 30.36±0.00 72.00±0.00 80.73±0.00 89.47±4.43

F-score 79.10±0.00 72.79±0.00 83.28±0.01 35.69±0.00 64.78±0.00 68.42±0.00 84.47±2.06
RI 91.00±0.00 88.18±0.00 91.70±0.00 42.62±0.00 83.20±0.00 86.59±0.00 91.95±2.08

Reuters

NMI 24.11±0.12 19.23±0.85 15.27±0.02 15.08±0.01 18.29±0.09 16.06±0.01 26.60±0.71
ACC 38.20±0.25 39.08±0.60 29.73±0.04 34.36±0.05 39.47±0.05 35.32±0.04 44.76±0.24

F-score 32.24±0.32 31.63±0.10 28.56±0.00 26.69±0.02 29.19±0.04 27.55±0.03 37.03±0.52
RI 71.27±0.04 70.93±0.03 59.42±0.03 66.93±0.03 71.69±0.02 68.77±0.03 71.66±0.36

BBCSport

NMI 60.93±0.08 54.61±0.03 55.58±2.37 13.33±0.13 71.65±0.00 75.36±1.83 86.57±1.85
ACC 82.68±0.07 73.31±0.07 72.88±2.08 36.99±0.07 88.24±0.00 90.39±1.80 95.59±0.78

F-score 70.77±0.08 59.75±0.08 66.73±1.75 38.60±0.00 79.72±0.00 81.18±1.16 91.60±1.36
RI 86.42±0.04 85.82±0.02 83.93±1.06 30.50±0.00 90.76±0.00 91.55±0.22 96.03±0.64

Football

NMI 85.22±0.00 81.42±0.44 83.47±0.55 53.21±0.40 82.42±0.79 87.92±0.65 89.96±0.75
ACC 84.27±0.00 75.97±2.45 79.60±0.87 45.56±1.28 81.53±0.90 81.45±0.63 88.02±1.43

F-score 75.35±0.00 67.25±0.93 70.95±0.93 27.41±0.53 70.02±1.08 74.62±1.67 81.82±1.50
RI 97.50±0.00 96.71±0.12 96.73±0.08 92.37±0.08 96.79±0.28 96.83±0.17 98.16±0.16

ANIMAL

NMI 66.55±0.95 40.28±0.79 63.14±0.78 32.14±4.39 64.59±1.17 71.62±0.75 72.42±0.96
ACC 53.36±1.12 28.90±1.35 49.95±2.63 24.02±3.69 52.54±2.51 61.80±1.55 62.23±1.13

F-score 48.05±1.35 18.23±0.99 43.30±2.16 8.71±1.31 40.83±1.98 52.93±2.14 54.96±1.31
RI 97.25±0.16 95.36±0.06 96.75±0.16 71.32±2.60 96.25±0.19 97.52±0.15 97.58±0.63

1 The top value is highlighted in red bold font and the second best in blue.

Table 3: Performance comparison of different representations

Figure 2: t-SNE visualizations of (a) FeatConcate, (b) KCCA, (c) DCCA, (d)FMR on MSRC-v1 (top row) and BBCSport (bottom row).

Convergence analysis. The convergence of inexact Aug-
mented Lagrange Multiplier (ALM) method with three or
more variable blocks is still difficult to theoretically prove
[Liu et al., 2013], while there are six variable blocks in Al-
gorithm 1. Fortunately, as shown in Figure 1(b), our method
has strong convergence property in practice.

6 Conclusions
In this paper, we propose a novel method to flexibly learn
a multi-view representation to improve subspace clustering.
Different from data reconstruction within each single view,
our method explores the complementary information among
multiple views. Besides, we further extend the multi-view

representation learning to nonlinear cases using HSIC. The
learned latent representation can recover underlying clus-
ter structure shared by multiple views and boost clustering
performance greatly. Comprehensive evaluations on several
benchmarks demonstrate the validity and superiority of our
method.
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