
Affine Equivariant Autoencoder

Xifeng Guo1 , En Zhu1∗ , Xinwang Liu1∗ and Jianping Yin2

1College of Computer, National University of Defense Technology, Changsha 410073, China
2Dongguan University of Technology, Dongguan, China

guoxifeng1990@163.com, {enzhu, xinwangliu}@nudt.edu.cn, jpyin@dgut.edu.cn

Abstract

Existing deep neural networks mainly focus on
learning transformation invariant features. How-
ever, it is the equivariant features that are more ade-
quate for general purpose tasks. Unfortunately, few
work has been devoted to learning equivariant fea-
tures. To fill this gap, in this paper, we propose
an affine equivariant autoencoder to learn features
that are equivariant to the affine transformation in
an unsupervised manner. The objective consists
of the self-reconstruction of the original example
and affine transformed example, and the approxi-
mation of the affine transformation function, where
the reconstruction makes the encoder a valid fea-
ture extractor and the approximation encourages
the equivariance. Extensive experiments are con-
ducted to validate the equivariance and discrimi-
native ability of the features learned by our affine
equivariant autoencoder.

1 Introduction
Deep neural networks (DNNs) have brought breakthroughs in
different machine learning domains and applications. To ac-
complish the task at hand, DNNs learn task-specific features
and discard the information that is irrelevant to the current
task. For example, applying local transformation to an image
example will not change the feature representation in a DNN
for classification. This kind of feature is called transforma-
tion invariant feature. The transformation invariance property
improves the robustness of the feature and favors the task at
hand. However, in some cases where there’s no specific task
to achieve, especially in representation learning field [Ben-
gio et al., 2013], the feature is required to preserve as much
information as possible. To capture the transformation infor-
mation which is directly discarded by traditional DNNs, the
feature should change accordingly with the transformation of
the input image. We call the feature with the above property
transformation equivariant feature.

The transforming autoencoder [Hinton et al., 2011] is the
first work to mention about the importance of the equivariant
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feature. But it is only an approximation of the given transfor-
mation function. Neither theoretical guarantee nor empirical
validation is provided to prove the equivariance. Capsule net-
work [Sabour et al., 2017] encodes the instantiation parame-
ters to a group of neurons but can not control what parameters
to learn. The rotation equivariant network [Li et al., 2018]
is the only work that explicitly incorporates the equivariance
property. But it can only achieve the equivariance to rotation
transformation by defining a series of complex layers.

In this paper, we propose an affine equivariant autoencoder
(AEAE) to learn features that are equivariant to the affine
transformation in an unsupervised manner. We first derive an
objective to directly satisfy the definition of the equivariance.
Then we relax the objective to avoid instability. The resulting
objective consists of three parts: 1) self-reconstruction of the
original example, 2) self-reconstruction of the affine trans-
formed example, and 3) approximation of the affine transfor-
mation function. The first two parts ensure the content infor-
mation is captured by the encoder network. The third part in-
corporates the equivariance property to the encoder. We con-
duct experiments to validate the equivariance of the learned
features both quantitatively and qualitatively. We also per-
form clustering and classification on the learned features to
prove that the feature is discriminative.

Our main contributions are summarized as follows.

• We propose an affine equivariant autoencoder (AEAE)
to learn deep features that are equivariant to the affine
transformation. To the best of our knowledge, this is the
first work to explicitly learn equivariant features in an
unsupervised manner.

• We design experiments to validate the equivariance of
the learned features both quantitatively and qualitatively.

• Our model achieves the state-of-the-art clustering per-
formance by simply running spectral clustering on the
learned features.

2 Affine Equivariant Autoencoder
2.1 Equivariance and Invariance
Given two setsX andZ , and a mapping function f : X → Z .
Formally, the mapping f is equivariant to a family of trans-
formations T , if for any transformation T ∈ T there exists
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a corresponding transformation T ′, such that

f(T (x)) = T ′(f(x)), ∀x ∈ X . (1)

And the mapping f is invariant to T , if for all T ∈ T the
following equation holds:

f(T (x)) = f(x), ∀x ∈ X . (2)

In this paper, we only consider image datasets and the
affine transformation. Specifically, let X ⊂ Rc×w×h be an
image dataset in which each element x is an image repre-
sented by a c × w × h matrix where c, w, h are channels,
width and height, respectively. The Z ⊂ Rd is comprised
of d-dimensional feature vectors of images in X . Let Tσ be
parameterized by σ ∈ R5 where σ0 represents the degree of
rotation anticlockwise, σ1 the pixels of translation rightward,
σ2 the pixels of translation downward, σ3 the scaling factor,
and σ4 the degree of shear transformation.

To disentangle affine parameters from feature vectors, we
force the transformation T ′ to be parameterized by σ and to
take a simple form:

T ′(z) = T ′σ(z) = z + t(σ), (3)

where t linearly transforms the elements in σ to a reasonable
range and expands the size of σ from 5 to d by padding zeros.
Therefore, we aim to find a feature extractor f that satisfies

f(Tσ(x)) = T ′σ(f(x)) = f(x) + t(σ), ∀x ∈ X . (4)

2.2 Model Description
To find a feature extractor f that satisfies (4), we implement
f by a deep neural network. Given a dataset with n examples
X = {xi}ni=1 ⊂ X ⊂ Rc×w×h. We define an encoder net-
work fw(·) to transform each example xi to zi ∈ Z ⊂ Rd
and a decoder network gu(·) to map zi back to xi where w,u
are the sets of trainable weights in encoder and decoder net-
works, respectively.

We need to make sure that the autoencoder can reconstruct
all x and Tσ(x) in order to extract their features by fw. There-
fore, the ideal objective is:

min
w,u

n∑
i=1

(
‖xi − gu(fw(xi))‖2

+ ‖Tσ(xi)− gu(fw(Tσ(xi)))‖2

+ ‖fw(Tσ(xi))− (fw(xi) + t(σ))‖22
)
,

(5)

where ‖ ·‖2 denotes the sum of squared errors and ‖ ·‖2 is the
`2 norm. The first two terms enable fw to be a valid feature
extractor for both x and Tσ(x), and the last term makes fw
equivariant to affine transformation T . If the above condi-
tions are met, z = fw(x) is called affine equivariant feature.

However, from the perspective of optimization, the error
signal of the last term can hardly back-propagate to the en-
coder’s layers through two paths. The typical solution is to
block one path and back-propagate through another. But we
find this solution is unstable and sometimes leads to diver-
gence of the objective. To solve this problem, we propose an
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Figure 1: Affine equivariant autoencoder. The autoencoders at top
and bottom share the same parameters w and u. There are three data
flows denoted by blue, green, and red dashed lines, making the en-
coder fw a valid feature extractor for clean example x, affine trans-
formed example Tσ(xi), and equivariant to affine transformations,
respectively. In the red flow, the affine parameter σ ∈ R5 is scaled
by element and then added to the last five elements of the feature
vector fw(x).

alternative objective:

min
w,u

n∑
i=1

(
‖xi − gu(fw(xi))‖2

+ ‖Tσ(xi)− gu(fw(Tσ(xi)))‖2

+ ‖Tσ(xi)− gu(fw(xi) + t(σ))‖2
)
.

(6)

We prove (6) is approximately equivalent to (5) under the
condition that t(σ) is in a small range near zero. When (6)
reaches the minimal value 0, we have{

xi = gu(fw(xi)),

Tσ(xi) = gu(fw(xi) + t(σ)).
(7)

Apply fw to both sides, we get{
fw(xi) = fw(gu(fw(xi))),

fw(Tσ(xi)) = fw(gu(fw(xi) + t(σ))).
(8)

The first equation in (8) implies fw(gu(·)) is an identity map-
ping for fw(xi) ∈ Z . If we restrict t(σ) to a small range near
0, we have

fw(Tσ(xi)) = fw(gu(fw(xi) + t(σ))) ≈ fw(xi) + t(σ), (9)

which means the equivariance of fw can be approximately
satisfied by optimizing (6). This completes the proof.

Another benefit of (6) is that the affine transformation
Tσ(xi) is explicitly approximated by gu(fw(xi) + t(σ)). So
we can validate whether the feature vector disentangles the
affine factors by adding turbulence to the feature and observ-
ing the reconstructed image.

Finally, we depict the proposed model in Figure 1. There
are three data flows denoted by blue, green, and red dashed
lines, corresponding to three terms in (6). The blue data flow
represents a standard autoencoder which takes an example x
as input and tries to reconstruct x. The green data flow also
defines a standard autoencoder with the input and target are
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Figure 2: The detailed structure of the affine equivariant autoencoder
(AEAE). The model consists of eight fully connected layers. The
number of neurons in each layer is listed at top, where c, w, h are
the number of channels, width, and height of the input image.

the affine transformed example Tσ(x). The blue and green au-
toencoders share the same weights {w,u}, enabling the en-
coder fw to be a valid feature extractor for both x and Tσ(x).
The red data flow tries to reconstruct Tσ(x) with the clean
example x and affine parameter σ as inputs. The affine pa-
rameter σ ∈ R5 is scaled by element and then added to the
last five elements of the feature vector fw(x). The resulting
feature is fed to the decoder to construct Tσ(x). This red flow
learns an approximate mapping for the affine transformation
Tσ and ensures the equivariance of fw to affine transforma-
tions T .

2.3 Implementation
The autoencoder’s structure can either be fully connected or
convolutional in theory. However, convolutional networks,
especially those including pooling layers, are known to be in-
variant to local transformations, which is harmful to our goal
of learning an equivariant mapping. Therefore, we implement
the encoder fw and decoder fu by using fully connected lay-
ers instead of convolutional layers. The detailed structure is
as shown in Figure 2. There are total eight fully connected
layers with number of neurons D − 500 − 500 − 2000 −
15− 2000− 500− 500−D, where D = cwh is the dimen-
sion of the vectorized input image. Given an image example
x ∈ Rc×w×h which can be optionally transformed by affine
transformation Tσ , we flatten it to a vector with length cwh
and then feed it into the proposed model. The output is also a
vector with length cwh which is finally reshaped to c×w×h
in order to compute the distance ‖ · ‖ with x. Except the em-
bedding (with 15 neurons) and output layers are followed by
linear and sigmoid activations, respectively, all internal layers
are activated by ReLU [Glorot et al., 2011].

We limit the parameters σ of affine transformations to a
reasonable range as shown in Table 1. The function t is de-
fined as

t(σ) =
[
0, . . . , 0,

σ0
100

,
σ1
10
,
σ2
10
, σ3 − 1,

σ4
100

]
, (10)

in order to keep t(σ) in a small range near 0 which is a neces-
sary condition of the equivalence of (5) and (6) as described
in Section 2.2.

Meaning of σi Range of σi Range of t(σi)

Rotation degree [-20, 20] [-0.2, 0.2]
Translation rightward [-3, 3] [-0.3, 0.3]
Translation downward [-3, 3] [-0.3, 0.3]
Scaling factor [0.9, 1.1] [-0.1, 0.1]
Shear degree [-20, 20] [-0.2, 0.2]

Table 1: Allowed range of affine parameters σ ∈ R5 and t(σ)

Dataset # Examples Original size New size

MNIST-full 70,000 28× 28 32× 32
MNIST-test 10,000 28× 28 32× 32
USPS 9,298 16× 16 20× 20
Fashion 70,000 28× 28 32× 32

Table 2: Dataset statistics. The new size is used in our experiment.

We initialize all weights by following [He et al., 2015].
The AEAE is trained in an end-to-end manner by using
Adam [Kingma and Ba, 2014] optimizer with initial learn-
ing rate 0.001, β1 = 0.9, and β2 = 0.999. The maximum
number of epochs is set to 100 for large datasets (n > 10000)
and 500 for small ones (n <= 10000). The mini-batch size
is fixed to 256. The source code is publicly available on
https://github.com/XifengGuo/AEAE.

3 Experiments
We conduct extensive experiments to validate the effective-
ness of the proposed AEAE. First, we demonstrate the equiv-
ariance property quantitatively and qualitatively. Then we as-
sess the quality of features learned by our AEAE according
to the clustering and classification performances. Four image
datasets are used in our experiments:
• MNIST-full: A popular handwritten digit dataset with

70,000 examples [LeCun et al., 1998].
• MNIST-test: A dataset that only contains the test set of

MNIST-full, with 10,000 examples. We consider this a
separate dataset because the number of examples may
affect the clustering performance, by following [Yang et
al., 2016; Dizaji et al., 2017].
• USPS1: A dataset contains 9298 gray digit images with

size of 16x16 pixels divided into 10 categories.
• Fashion: A dataset of Zalando’s article images [Xiao et

al., 2017], sharing the same statistics with MNIST-full
but more challenging for machine learning algorithms.

Table 2 shows the statistics of these datasets. All image
examples in these datasets are padded two pixels of zeros in
each of four directions to avoid information loss during the
affine transformation. The pixel values are scaled to [0, 1].

3.1 Equivariance Validation
We empirically validate the equivariance of the encoder map-
ping fw on MNIST-full and Fashion datasets. We directly

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Figure 3: Equivariance validation by directly comparing the
original example’s feature fw(x) and affine transformed exam-
ple’s feature fw(Tσ(x)). The first row shows the average dif-
ference in one element of fw(x) and fw(Tσ(x)). The sec-
ond row depicts the average distances between features, i.e.,
1
n

∑n
i=1 ‖fw(Tσ(xi))− (fw(xi) + t(σ))‖22.

check if (4) is satisfied after optimizing (6). To this end, we
first compute the difference between features of original and
affine transformed examples:

∆i = fw(Tσ(xi))− fw(xi). (11)

The σ is restricted to have only one element active, i.e, only
one of rotation, horizontal translation, vertical translation,
scaling, and shear transformations is applied to all original
examples. According to the definition of equivariance and
invariance, if ∆i = 0 for all i, fw will be invariant to the
affine transformation. However, we observe ∆i changes lin-
early with the affine parameter σ. As shown in the first row
in Figure 3, the jth element of the average ∆ =

∑n
i=1 ∆i

is positively correlated to the kth element of σ where j =
10+k, k = 0, 1, . . . , 4. To be exact, ∆ is close to its expecta-
tion t(σ). On the other hand, we record the average value of
‖fw(Tσ(xi))− (fw(xi) + t(σ))‖22 over i in the second row
in Figure 3. For all transformations, this value is close to 0.
To conclude, (4) is approximately satisfied when σ is limited
by Table 1. That is, the empirical quantitative evidence sup-
ports that fw is equivariant to the affine transformation.

In addition to the direct validation of the equivariance prop-
erty, we give an indirect evidence as follows. As shown
in the last term of (6), we attempt to reconstruct the affine
transformed example Tσ(x) from the original example x with
affine parameters σ added to the embedding feature of x.
Therefore, if (6) is successfully optimized, the output of our
model will be continuously transformed when adding turbu-
lence to the last five elements of the feature of x. To cover the
range of affine parameters σ as listed in Table 1, we sample a
value from {−0.4,−0.3, . . . , 0.4} and add it to one or all of
the last five elements (corresponding to rotation, horizontal
translation, vertical translation, scaling, and shear) of fw(x).
The reconstructed images under different configurations are
shown in Figure 4. The input examples are shown in the
first row, denoted by “Input”. The corresponding pure recon-
structions are list in row “0”. From row “-0.4” to “+0.4”, the
images are transformed continuously, even though the model
only sees examples that are transformed in a range smaller
than [−0.3, 0.3]. The last column “Affine” denotes adding
noise to all the last five elements, which is an extreme test

but still reflects the affine transformation. The result provides
qualitative evidence that the encoder mapping fw is equivari-
ant to the affine transformation.

3.2 Clustering
This subsection focuses on evaluating the equivariant fea-
tures by performing unsupervised clustering task. After train-
ing the AEAE, we extract all features {zi = fw(xi)}ni=1
from the embedding layer. Then we perform k-means and
spectral clustering (SC) on the extracted features, denoted by
AEAE+k-means and AEAE+SC, respectively. We run each
method for five times and record the average performance in
terms of clustering ACCuracy (ACC) and Normalized Mutual
Information (NMI). The baseline methods include conven-
tional shallow clustering and state-of-the-art deep clustering.
We report the results by excerpting from the corresponding
papers or by running their released code when available.

The results on four datasets are reported in Table 3. Our
AEAE+k-means is comparable to deep clustering algorithms
and AEAE+SC achieves the best performance. This demon-
strates the AEAE can learn more discriminative features. It
is possible to further improve the performance by jointly op-
timizing the clustering model and encoder network, as does
existing deep clustering method.

We also compare with other autoencoders including vanilla
autoencoder (AE) and denoising autoencoder (DAE). They
share the same network structure (number of layers, number
of neurons in each layer, activation function, etc.) and opti-
mization setting (learning rate, batch size, maximum epochs,
etc.) with our model. The only difference is the objective: AE
tries to reconstruct x from x and DAE attempts to reconstruct
x from x̂ where x̂ is the corrupted version of x by applying
Dropout [Srivastava et al., 2014] with probability 0.2. We re-
port the SC result on the features of different autoencoders in
Table 4. Our AEAE outperforms the other autoencoders by a
large margin in terms of ACC and NMI. This proves that it is
the proposed objective (6), not network structure, that leads
to the better discriminative features.

As validated in Section 3.1, the affine factors are encoded
in the last five neurons of the embedding layer. So the dis-
criminative features are supposed to be captured by the rest
neurons. To validate this point, we extract features from the
first ten neurons of the embedding layer and report the SC
result (appended by “-10”) in Table 4. Our AEAE-10 is com-
parable to AEAE, but AE-10 and DAE-10 are much worse
than AE and DAE, respectively. This well validates the above
claim. This also provides guidance in how to select a part of
features for the task at hand.

3.3 Classification
We further evaluate the quality of AEAE’s features by per-
forming classification task. Each dataset is divided into train-
ing and testing set by the ratio of 6 : 1. The features are
normalized to zero mean and unit variance. The SVM clas-
sifier with RBF kernel is used. We select the best penalty
parameter C of the error term from [20, 21, . . . , 29] by cross
validation. We compare with the vanilla autoencoder (AE)
and denoising autoencoder (DAE) which share the same net-
work structure and optimization parameters with our AEAE.
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Figure 4: Reconstructions based on the sum of original example’s feature and turbulence. By adding turbulence to one element of the
embedding layer, the reconstruction behaves like being transformed by rotation, translation, scaling, or shear. This implies that affine factors
are disentangled and encoded by different neurons of the embedding layer, and validates the equivariance property.

Method MNIST-full MNIST-test USPS Fashion
ACC NMI ACC NMI ACC NMI ACC NMI

k-means [MacQueen, 1967] 0.532 0.500 0.546 0.501 0.668 0.627 0.474 0.512
SC [Shi and Malik, 2000] 0.656 0.731 0.660 0.704 0.649 0.794 0.508 0.575
AC [Jain, 2010] 0.621 0.682 0.695 0.711 0.683 0.725 0.500 0.564
NMF-LP [Cai et al., 2009] 0.471 0.452 0.479 0.467 0.652 0.693 0.434 0.425
RCC [Shah and Koltun, 2017] N/A 0.893∗ N/A 0.828 N/A 0.742 N/A 0.614
DCN [Yang et al., 2017] 0.830∗ 0.810∗ 0.802 0.786 0.688 0.683 0.501 0.558
DKM [Fard et al., 2018] 0.840∗ 0.796∗ N/A N/A 0.757∗ 0.776∗ N/A N/A
DEC [Xie et al., 2016] 0.863 0.834 0.856 0.830 0.762 0.767 0.518 0.546
IDEC [Guo et al., 2017] 0.881∗ 0.867∗ 0.846 0.802 0.761∗ 0.785∗ 0.529 0.557
CSC [Peng et al., 2017] 0.872∗ 0.755∗ 0.865∗ 0.733∗ N/A N/A N/A N/A
SR-k-means [Jabi et al., 2018] 0.939∗ 0.866∗ 0.863∗ 0.873∗ 0.901 0.912 0.507 0.548
VaDE [Jiang et al., 2017] 0.945 0.876 0.287 0.287 0.566 0.512 0.578 0.630
ClusterGAN [Mukherjee et al., 2019] 0.950∗ 0.890∗ N/A N/A N/A N/A 0.630∗ 0.640∗
JULE [Yang et al., 2016] 0.964∗ 0.913∗ 0.961∗ 0.915∗ 0.950 0.913 0.563 0.608
DEPICT [Dizaji et al., 2017] 0.965∗ 0.917∗ 0.963∗ 0.915∗ 0.899 0.906 0.392 0.392
AEAE+k-means (ours) 0.943 0.882 0.939 0.876 0.939 0.878 0.616 0.639
AEAE+SC (ours) 0.971 0.940 0.974 0.941 0.978 0.941 0.632 0.701

Table 3: Clustering performances of different algorithms. All results of baseline algorithms are reported by running their released code except
those marked by (∗) on top which are excerpted from the corresponding paper. N/A denotes that the result is unavailable from the paper or
the code. The first group is traditional shallow clustering method, the second deep clustering, and the last our method.
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Method MNIST-full MNIST-test USPS Fashion
ACC NMI ACC NMI ACC NMI ACC NMI

AE 0.832±0.002 0.893±0.002 0.791±0.003 0.814±0.005 0.716±0.043 0.775±0.016 0.602±0.010 0.682±0.003

DAE 0.824±0.002 0.883±0.004 0.790±0.002 0.817±0.006 0.773±0.067 0.829±0.019 0.605±0.010 0.680±0.003

AEAE 0.971±0.002 0.940±0.005 0.974±0.005 0.941±0.007 0.978±0.001 0.941±0.002 0.632±0.002 0.701±0.002

AE-10 0.650±0.043 0.701±0.039 0.620±0.073 0.590±0.035 0.627±0.020 0.620±0.039 0.575±0.016 0.582±0.041

DAE-10 0.656±0.024 0.721±0.033 0.621±0.015 0.602±0.028 0.639±0.058 0.653±0.023 0.569±0.021 0.591±0.020

AEAE-10 0.971±0.002 0.939±0.005 0.974±0.006 0.942±0.008 0.977±0.001 0.939±0.002 0.631±0.002 0.701±0.002

Table 4: Clustering performances of different autoencoders. AE, DAE, and AEAE denote the result of performing spectral clustering (SC)
on the full features extracted from different autoencoders. That appended by “-10” is SC result on the first 10 dimensions of features.

MNIST-full USPS Fashion

AE 0.989±0.001 0.977±0.000 0.889±0.002
DAE 0.988±0.000 0.982±0.002 0.886±0.001

AEAE 0.990±0.001 0.989±0.001 0.879±0.001

AE-10 0.941±0.009 0.907±0.022 0.840±0.011

DAE-10 0.943±0.013 0.929±0.020 0.840±0.006

AEAE-10 0.990±0.001 0.988±0.001 0.874±0.001

Table 5: Classification accuracy of SVM on the embedding features
of different autoencoders. “X-10” denotes the accuracy on the first
10 dimensions of X’s features.

We run all methods for five times and report the average and
standard deviation of the classification accuracies.

The results are shown in Table 5. First, our AEAE outper-
forms AE and DAE, which validates that the AEAE can learn
discriminative features. Second, by comparing AE-10 (DAE-
10) with AE (DAE), the classification performance drops dra-
matically when removing the last five dimensions of the fea-
tures. Third, AEAE-10 is comparable to AEAE in terms of
accuracy, which implies that the discriminative features are
mainly encoded by the first ten dimensions. These conclu-
sions are consistent with that drawn in the last subsection.

4 Related Work
The proposed AEAE is closely related to the transform-
ing autoencoder [Hinton et al., 2011] which can also
reconstruct the affine transformed image from the origi-
nal image and affine parameters. However, there exists
large differences between them as follows. The transform-
ing autoencoder aims to solve the optimization problem of
minw,u

∑n
i=1 ‖Tσ(xi)− gu(fw(xi) + σ)‖2 where fw(xi)

and σ have the same number of dimensions. It can only learn
a mapping to approximate the transformation T and can not
make fw a valid feature extractor for xi and Tσ(xi). Further-
more, the direct addition of fw(xi) and σ disables the repre-
sentation fw(xi) to be discriminative, even if it is a valid fea-
ture of xi. By contrast, our AEAE can learn discriminative
features by forcing the encoder fw to be equivariant to affine
transformations. The network structure is also different. The
transforming autoencoder only consists of one hidden layer,
leading to the lack of capacity. While our multi-layer model
has powerful ability to transform data.

Another related model is the capsule network [Sabour et

al., 2017] which extends the transforming autoencoder by in-
corporating dynamic routing mechanism. The capsule net-
work also avoids to learn local transformation invariant fea-
tures by encoding the instantiation parameters into a group of
neurons termed capsule. However, the capsule network re-
quires supervision provided to accomplish this goal. While
our AEAE takes advantage of the affine transformation. In
other words, our model is trained in an unsupervised man-
ner. Another difference is that our model explicitly encodes
the affine factors into specified neurons while the capsule net-
work implicitly learns the instantiation parameters which are
uncontrollable.

The rotation equivariant network [Li et al., 2018] fo-
cuses on the rotation transformation which is only a specific
type of affine transformation. Three new types of convolu-
tional layers (cycle layer, isotonic layer, and decycle layer)
were proposed in [Li et al., 2018] to implement rotation
equivariance. The rotation equivariant network is trained in
supervised manner while our model is unsupervised. It can
only learn rotation equivariant features and is hard to adapt
to other affine transformations like translation, scaling and
shearing. Our AEAE is easy to implement other transforma-
tion equivariance if the transformation can be manipulated in
a known way.

5 Conclusion
The proposed affine equivariant autoencoder (AEAE) can
learn a mapping that is equivariant to the affine transforma-
tion in an unsupervised manner. The mapping can serve as
a valid feature extractor for images and the resultant features
are proved to be very discriminative by performing clustering
and classification tasks. The affine factors are disentangled
and encoded by the specified neurons of the embedding layer,
making the features more interpretable. Future work includes
investigating other form of the transformation T ′σ in the fea-
ture space, incorporating the equivariance to more transfor-
mations other than the affine transformation, and extending
our unsupervised model to semi-supervised scenario.
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