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Abstract

Latent variable graphical models are an extension
of Gaussian graphical models that decompose the
precision matrix into a sparse and a low-rank com-
ponent. These models can be learned with theo-
retical guarantees from data via a semidefinite pro-
gram. This program features two regularization
terms, one for promoting sparsity and one for pro-
moting a low rank. In practice, however, it is not
straightforward to learn a good model since the
model highly depends on the regularization param-
eters that control the relative weight of the loss
function and the two regularization terms. Select-
ing good regularization parameters can be modeled
as a bi-level optimization problem, where the up-
per level optimizes some form of generalization er-
ror and the lower level provides a description of the
solution gamut. The solution gamut is the set of
feasible solutions for all possible values of the reg-
ularization parameters. In practice, it is often not
feasible to describe the solution gamut efficiently.
Hence, algorithmic schemes for approximating so-
lution gamuts have been devised. One such scheme
is Benson’s generic vector optimization algorithm
that comes with approximation guarantees. So far
Benson’s algorithm has not been used in conjunc-
tion with semidefinite programs like the latent vari-
able graphical Lasso. Here, we develop an adaptive
variant of Benson’s algorithm for the semidefinite
case and show that it keeps the known approxima-
tion and run time guarantees. Furthermore, Ben-
son’s algorithm turns out to be practically more ef-
ficient for the latent variable graphical model than
the existing solution gamut approximation scheme
on a wide range of data sets.

1 Introduction

Multivariate Gaussians N (1, ¥2) with mean . and covariance
matrix X are still among the most popular probabilistic mod-
els. The mean vector and the covariance matrix need to be
estimated from data. The covariance matrix of an n-variate
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Gaussian has (";1) free parameters which is fairly large al-

ready for moderately high dimension n. This large number
of parameters may lead to overfitting, or even worse, to non-
regular estimates of the covariance matrix if there are fewer
than n data points.

Factor analysis, developed by [Spearman, 1904], can be
used to address the problems of overfitting and non-regular
covariance matrices of standard multivariate Gaussians. In
a Gaussian factor model the dimensions are subdivided into
observed and a small number of latent dimensions. The joint
density for all dimensions is assumed to be a multivariate
Gaussian. Hence, also the marginals for the observed and
latent dimensions, respectively, are multivariate Gaussians.
The marginal for the latent dimensions is assumed to be
N(0,1) and the marginal for the observed dimensions is as-
sumed to be (1, ¥ + I'T'T), where ¥ is a diagonal matrix
with non-zero diagonal entries and I' is a rectangular matrix
that maps from the latent to the observed dimensions. The
covariance matrix ¥ +'T'T has only n + kn free parameters,
where 7 is now the number of observed and & the number of
latent dimensions. The non-zero diagonal of ¥ ensures the
regularity of the covariance matrix.

A different approach for dealing with the overfitting prob-
lem is the assumption of a graphical model structure. In the
case of multivariate Gaussians a graphical model structure is
defined by the zeros in the inverse covariance matrix (preci-
sion matrix). The structure, i.e., the precision matrix A, of a
Gaussian graphical model can be learned consistently through
the graphical Lasso [Yuan and Lin, 20071, which is given by
the following optimization problem

min  £(A) + A AL, (GL)

where ¢(A) = trace (Af)) — log det(A) is the negative log-
likelihood with empirical covariance matrix S and regular-
ization parameter A > 0 for the sparsity promoting ;-
regularization term. The learned graphical model structure
of course depends on )\ that has to be chosen carefully.
[Chandrasekaran et al., 2012] observed that it is possible
to combine the ideas of Gaussian factor models and Gaus-
sian graphical models. As in factor analysis, they assume
that the observed dimensions along with a small number of
latent dimensions are jointly multivariate Gaussian. The ef-
fect of the latent dimensions on the precision matrix of the
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observed dimensions can be computed from the Schur com-
plement A, — AolAl_lAlo, where A = /XO AKZ ) is the
lo l

precision matrix of the joint distribution. Hence, the preci-
sion matrix for the observed dimensions is the difference of
the two matrices S = A, and L = AolAl_lAlo, where L
has low rank, if there are much fewer latent than observed
dimensions. In the spirit of Gaussian graphical models, the
matrix S is assumed to be sparse. Thus, the precision ma-
trix of the observed dimensions is the difference of a sparse
and a low-rank matrix. [Chandrasekaran et al., 2012] show
that these matrices can be learned consistently through the
semidefinite program (latent variable graphical Lasso)

I;lij{l S — L)+ XS], + ptrace(L)
st. S—L=0, L>=0.

Two examples for such a sparse + low-rank decomposition of
the precision matrix can be seen in Figure 1.
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Figure 1: Two alternative sparse (left) + low-rank (right) decomposi-
tions of the precision matrix as learned by our bi-level optimization
approach for the latent variable graphical Lasso with the LSVT data.

In a comment that was published together with the original
work on latent variable graphical models it was pointed out
by [Giraud and Tsybakov, 2012] that “Proposing a reason-
able data-driven selector for [...the regularization parame-
ters A and p ...] would be very helpful for the practice”.
Choosing a good value for the regularization parameter is al-
ready an issue for the graphical Lasso since the statistical per-
formance of the resulting model is highly dependent on this
choice. The problem is aggravated for latent variable graph-
ical models, where two instead of only one parameters need
to be explored, compare Figure 1.

The problem of choosing a good value for a single regu-
larization parameter has received a lot of attention, see for
example [Giraud et al., 2012] who study the special case of
the graphical Lasso. The case of two or more regulariza-
tion parameters has received less attention and is addressed
rigorously only in [Blechschmidt er al., 2015] and recently
in [Giesen et al., 2019].

Especially in the higher-dimensional case, i.e., for two or
more regularization parameters, we found it very convenient
to model the parameter-selection task as a bi-level optimiza-
tion problem (Stackelberg game [von Stackelberg, 2010]).
The two levels in such an approach are mostly referred to
as upper and lower level, but are also known as leader and
follower in game theoretic settings. Any solution or decision
taken by the leaders on the upper level to optimize their goals
is affected by the response of the followers on the lower level,
who will seek to optimize their own outcomes. Here, on the
upper level a measure of generalization error is minimized,
for instance a cross validation error in a supervised setting or
a likelihood value in an unsupervised setting. On the lower
level the set of feasible solutions for all combinations of reg-
ularization parameters, the so called solution gamut, is de-
scribed.

Typically, it is not feasible to provide a description of the
full solution gamut and thus schemes for approximating it
have been devised. [Blechschmidt ef al., 2015] provided the
definition of an approximate solution gamut, devised an algo-
rithm for computing it, and proved that the algorithmic com-
plexity of their algorithm is asymptotically optimal. Recently,
[Giesen et al., 2019] revisited the problem and showed that
Benson’s vector optimization algorithm [Benson, 1998] can
be adapted for approximating the solution gamut. So far, Ben-
son’s algorithm has been used only for regularized problems
on standard vector domains but not for semidefinite problems.

Benson’s algorithm avoids many of the practical issues of
the original solution gamut approximation algorithm. These
issues include choosing a sufficiently fine grid, evaluating
the objective function on this grid, and solving dual prob-
lems next to the primal ones. The derivation of the dual
problem is necessary for providing a stopping criterion in
form of a small duality gap, in terms of a prescribed ac-
curacy € > 0, at every point of the solution gamut. Ben-
son’s algorithm uses a slightly different stopping criterion,
but nevertheless comes with strong approximation guaran-
tees. Here, we adapt and extend Benson’s algorithm to the
semidefinite programming setting and apply it to the regular-
ization parameter selection problem for latent variable graph-
ical models. It should be noted, however, that Benson’s algo-
rithm, in contrast to the traditional approach, can be used out-
of-the-box for regularization parameter optimization for any
other machine learning problem that is cast as a regularized
semidefinite program like for instance [Candes et al., 2011;
Candes and Recht, 2009; Chen et al., 2017; Chen et al., 2011,
Song et al., 20071

In Section 2, we provide the details on our bi-level op-
timization approach and our extension of Benson’s algo-
rithm. We also discuss how to implement the traditional so-
lution gamut approximation algorithm for the latent variable
graphical model. That includes deriving the dual of Prob-
lem (LVGL)—a maximum entropy problem that is interesting
in itself. In Section 3, we experimentally compare Benson’s
algorithm to the original solution gamut approximation algo-
rithm on a range of data sets from various domains. It turns
out that Benson’s algorithm that, in contrast to the original
algorithm, can be used out-of-the-box is also more efficient
in practice.
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2 Regularization Parameter Selection by
Bi-Level Optimization

By rescaling the objective of Problem (LVGL), one can see
that the latent variable graphical Lasso is an optimization
problem of type

min  f,(X) = wo l(X) + Zwl 7i(X) (Pw)
i=1

XeC

with convex feasible set C C R"*". The functions ¢
and r;, ¢ = 1,...,q, are assumed to be convex. The ob-
jective f,, is weighted by the regularization parameters w =
(wo, w1, ..., w,) €S C R where

S={weR™™ |w; >0foralli, }7 jw; =1}

defines the ¢-dimensional standard simplex. By X*, we de-
note a global optimal solution to Problem (P,,) for some
given weight combination w € S.
Remark 2.1. Let us emphasize that next to constraints of type
9(X) < 0 with some convex function g, in particular, also
positive semidefinite matrix constraints of type X > 0 are
allowed for defining the feasible set C. o
Choosing good weight parameters w is typically done in a
two-step procedure:

(1) Solve (P,,) for “every” w > 0 on training data.

(2) Choose “the best” w, such that X minimizes some type
of generalization error GE(w) on validation data.

From the viewpoint of optimization theory, Steps (1) and (2)

can be combined and also be understood as a bi-level opti-

mization problem
min GE(w)

w :
min s.t. X% € argmin (Py,).

(BiP)
In this hierarchical optimization problem, the upper level
aims for optimizing the objective GE with variable w. On
the lower level, for each choice of w one has to find a solu-
tion X% of Problem (P,,). It is known (cf. [Dempe, 2002])
that, in general, problems of type (BiP) are non-convex—
even if (P,,) is a convex problem and GE is a convex ob-
jective. This can be observed practically in Figure 3, where
several local minima for GE exist. Indeed, bi-level program-
ming is known to be NP-hard [Hansen ez al., 1992].

For solving Problem (BiP), one has to deal with its fea-
sible set, which is given by the set of solutions of the lower
level problem (P,,), depending on the upper level variable w.
Since, in most cases, it is not possible to give a closed formula
for X, we use an approximation based on the definition of
the solution gamut for Problem (P,,), cf. [Blechschmidt et
al., 2015].

Definition 2.2. Let ¢ > 0 be given. We call some func-

tion X: S — R™™ an e-approximative solution gamut of
Problem (P,,), if forall w € S

X(w)eC and fo(X(w)) — fu(X¥)<e. o

In the following, we will briefly present two methods for
the computation of such an e-approximative solution gamut.

The first one is the algorithm presented in [Blechschmidt et
al., 2015], which we just call solution gamut method. The
second one is a variant of Benson’s dual algorithm, an estab-
lished method from the area of vector optimization.

Since both algorithms yield a flnite representation of the e-

approximative solution gamut X, minimization of the upper
level objective GE just boils down to function evaluations.

2.1 Solution Gamut Method

The algorithm described in [Blechschmidt er al., 2015,
Sec. 4] computes a piecewise linear e-approximative solution
gamut for Problem (P,,). For that, the regularization parame-
ter domain S is covered by a sufficiently fine grid. The spac-
ing of this grid depends on the objective and the problem data,
and thus is difficult to choose in practice. For the initializa-
tion, the method computes the optimal solution X to Prob-
lem (P,,) for w = 0441, as well as the optimal solution to the
dual problem of (P,,) which has to be derived first. Then, for
every grid point, i.e., every weight w € S, the duality gap of
this primal-dual solution pair is computed. The duality gap
serves as upper bound to the optimality gap used in Def. 2.2.
In the iterative process, the algorithm now chooses the grid
point w € S with the maximal stored duality gap. Then, the
primal and dual solutions for Problem (P,,) with w = w are
computed, and the duality gaps are updated at all grid points,
where the stored duality gap is larger than €. The algorithm
stops as soon as the duality gap is smaller than ¢ for every
grid pointw € S.

2.2 Adaptive Benson Algorithm

In a recent work [Giesen et al., 2019], it turned out that the
so-called Benson algorithm is well-suited for the compu-
tation of an e-approximative solution gamut of Problem (P,,).

Vector Optimization

To apply Benson’s algorithm, Problem (P,,) has to be stud-
ied in the context of vector optimization. Thereby, Prob-
lem (BiP) becomes a semi-vectorial bi-level optimization
problem, where the scalar objective GE has to be minimized
over the Pareto set of the following convex vector optimiza-
tion problem

min

min  F(X) = [600), 71 (X), .7y (X)

wrt <pg41 .

(VP)

The objective function F': R™® — R9*! is vector-valued and
minimized w.r.t. the component-wise partial ordering

Y1 <ge+1 y2 ifandonlyif y, —y; € R‘i‘*‘l 7
+

where Rfl ={ye R |y, >0,i=1,...,q+ 1}
Problem (P.,) is the weighted sum scalarization of (VP).

In [Giesen et al., 2019, Sec. 2] it has been observed that the
full solution gamut (Def. 2.2 with ¢ = 0) coincides with the
set of weak minimizers to Problem (VP).
Definition 2.3. A point X* € C is called a weak minimizer of
Problem (VP) if ({F(X*)} — int RZ") N F(C) = 0, where
F(C) = {F(X) € R | X € C} is the image of the
feasible set. o

2380



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

—> K(X)

Figure 2: Upper image P with an inner polyhedral approxi-
mation P. which is obtained by computing a weak e-solution
(Def. 2.4). The red points are weak minimizers of (VP) (Def. 2.3).

Since, in general, the set of weak minimizers is infinite, we
have to consider finite e-solutions. Therefore, it is important
to understand the geometry of Problem (VP)—especially its
upper image defined by

P = closure(F(C) + RL™).

The practical computation of an e-approximation of P is mo-
tivated by the following definition.

Definition 2.4. Let ¢ € int ]R(fl be arbitrary but fixed and
assume that Problem (VP) is bounded, i.e., P C {y} + Rfl

holds for some y € R4"1. Then a non-empty finite set C* C C
is called an e-infimizer if

conv F(C*) + R —ecD P,

An e-infimizer C* of (VP) is called a weak e-solution to (VP)
if it only consists of weak minimizers. o

By setting P. = conv F'(C *)—i—R‘fl, such an e-solution C*
provides an inner polyhedral approximation of the upper im-
age P by finitely many minimizers, see Figure 2. Follow-
ing the arguments in [Giesen et al., 2019], a weak e-solution
to Problem (VP) coincides with an e-approximative solution
gamut for Problem (P,,).

Adaptive Benson Algorithm

For the computation of a weak e-solution for Problem (VP),
we develop an adaptive variant of Benson’s dual algorithm.
The class of dual Benson algorithms aims for approximat-
ing the upper image P by iteratively generating a growing
sequence of inner approximating polyhedra until some pre-
scribed accuracy is reached. Since polyhedra play a cru-
cial role in this method, remember that they are either given
in H-representation (intersection of half spaces) or in V-
representation (set of vertices and directions). The conver-
sion between both representations is done by vertex and facet
enumeration, resp. [Bremner et al., 1998].

While the standard Benson algorithm requires the choice
of an approximation accuracy € beforehand, we devise a vari-
ant which works adaptively, since the choice of € cannot be
done generically in practice. Our Algorithm 1 starts with a
coarse accuracy €9 > 0 and calculates an eg-approximation
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770 of the upper image P. Then the accuracy is successively
refined by setting £;1 = 5 until the resulting approximation
of P satisfies some stopping criterion. This leads to a growing

sequence of inner approximation polyhedra given by
I CI"C...CI"C...CP.

To calculate an (intermediate) inner approximation Z°%, a hy-
perplane w'x = b from the H-representation of the current
inner approximation is moved outwards until it becomes a
supporting hyperplane of the upper image P. A contact point
of this supporting hyperplane and P is given by F(X%),
where X is the solution to the scalarized Problem (P,,).
The distance the hyperplane is moved outwards in a given
direction c is tracked and calculated by

cTw

de(XY) = 7——F—r—

) = e Tl
If d.(X™) > e, the vertex F'(X™) is added to the work-
ing V-representation followed by an update of the working
H-representation, done by facet enumeration. If otherwise
d.(X") < ¢€;, we continue by checking the next hyper-
plane. The procedure is repeated until the ¢;-approximation
of P is complete. For the next iteration, we refine the accu-
racy €;41 and initialize the working V-representation with all
vertices F'(X™) where d.(X") > e;41, since the inner ap-
proximation in the neighborhood of those vertices may need
further improvement.

The initialization of Algorithm 1 itself can be done with a
V-representation that consists of a single point F'(X*?) for
some initial weight wq. For instance, one can choose wg =
(qT11a . qlﬁ) € R and set Z,5; = {F(X™°)}.

Stopping criteria can be (i) attaining a target e-approxima-
tion of P, (ii) completing a maximum number of iterations,
or (iii) improving the generalization error by a certain degree.

(b—w F(XY)).

Algorithm 1 Adaptive Dual Benson Algorithm

Input: Problem data (F, C), initialization Zp,.;, chosen
weights T' = {wyg }, direction c¢, initial accuracy € = &¢
Output: V-representation Z,;

1: function ADAPTIVEBENSONALGORITHM
2: repeat
3: Lo < {F(X™) € Ipoi | de(X™) > €}
4: compute H-representation Z¢ of Z7 ;
5: repeat
6: choose w € Z°\ T
7: X" « argmin(P,)
8: if d.(X") > ¢ then
9: I}ioi — Igoi U {F(Xw)}
10: update H-representation % of Z; ;
11: end if
12: T+ TU{w}
13: until Z\ 7' =0
14: Ipoi «— ng)oi U Ipoi
15: e+ ¢/2

16: until Stopping Criterion
17: end function
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Complexity. Surprisingly, it seems that Benson’s algorithm
has never been used for semidefinite programs before. In
[Lohne er al., 2014], the authors only allow convex con-
straints for Problem (VP) defined by polyhedral cones. By
adding semidefinite constraints, their proof of convergence
still works, since by [Lohne ef al., 2014, Rem. 3 (Sec. 4.3)]
one only has to assume that (i) int C # ) (Slater’s condi-
tion) and (ii) Problem (P,,) has a solution for all w € S.
Thereby, Algorithm 1 returns a weak e-solution on termina-
tion. It is known from [Blechschmidt et al., 2015] that the
lower bound for the number of optimization problems that
need to be solved for an e-approximative solution gamut is
Q(¢9/2). An upper bound for the complexity of Benson-
type algorithms can be found in [Kamenev, 1994, Theorems 3
and 4]. This bound is given by O(¢~%) and O(£~9/2), resp.,
where for the sharp second bound a twice continuously dif-
ferentiable boundary of the upper image P is assumed.

3 Experiments

We perform regularization parameter selection for Prob-
lem (LVGL) from the introduction using the following data
sets [Tsanas et al., 2014; Higuera et al., 2015; Zhou et al.,
2014; Dua and Karra Taniskidou, 2017]

e GENEL1 with n = 100 features and m = 255 samples,

e TCGA with n = 500 features and m = 801 samples,

e MICE with n = 81 features and m = 552 samples,

e ROSETTA withn = 100 features and m = 301 samples,
e SONAR with n = 60 features and m = 208 samples,

e OR70 with n = 70 features and m = 1059 samples,

e LSVT with n = 310 features and m = 126 samples,

e S&P500 with n = 471 features and m = 60 samples.

These data sets cover a wide range of applications. GENE1,
TCGA, and MICE are biological data sets, ROSETTA and
SONAR are geological data sets, OR70 was recorded for in-
vestigating the geographical origins of music, LSVT is about
voice rehabilitation in psychology, and S&P500 includes
monthly stock return data from major US companies over the
course of 5 years. From S&P500 we removed 29 companies
because their data was incomplete. From the original data
sets GENE1, ROSETTA, and TCGA we selected the n features
with the highest variance, similarly as [Chandrasekaran et al.,
2012] who also used only subsets of GENE1 and ROSETTA.

The Dual of Problem (LVGL). The solution gamut
method requires the dual of Problem (LVGL) that we de-
rive here. [Dudik er al., 2004] have developed a fairly gen-
eral duality theory of discrete maximum likelihood and max-
imum entropy problems. In this theory, regularization terms
on the maximum likelihood side translate themselves into re-
laxations of moment-matching constraints on the maximum
entropy side. The theory can be extended to the continuous
case that we need here, if Shannon entropy is replaced by
differential entropy. In our case, it turns out that the max-
imum entropy solution is a multivariate Gaussian with zero
mean and covariance matrix Y. It follows that the objective
function of the dual of Problem (LVGL) is log det(X) since
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Data Set Adaptive Benson Solution Gamut

# Opt. Time [s] # Opt. Time [s]
GENE1 15 3.9 36 53.8
TCGA 13 91.3 38 842.8
MICE 10 1.6 64 55.1
ROSETTA 10 2.7 30 36.8
SONAR 5 1.0 44 19.2
OR70 4 0.7 12 9.3
LSVT 5 25.0 20 159.5
S&P500 13 127.0 90 1673.5

Table 1: Number of solved optimization problems and CPU time for
computing a solution within 1% of the optimum.

the entropy of a multivariate Gaussian is proportional to the
log determinant of its covariance matrix. The regularization
terms of Problem (LVGL) bg:ome relaxations of the moment-
matching constraint ¥ = 3 in the dual maximum entropy
problem, which reads as

%1354 logdet(X) s.t. ||§—EHOO§/\, i—Eijd.

Experimental Setup

Any algorithm for approximating the solution gamut needs
to guarantee a good solution in terms of the generalization
error GE while being computationally efficient. In our ex-
periments we study both aspects, the quality of the solutions
and the computational efficiency of both approximation al-
gorithms, the solution gamut method and our adaptive Ben-
son algorithm. For solving the optimization problems, we
adapted the ADMM-based algorithm discussed in [Ma et al.,
2013] and used CDD [Bremner et al., 1998] for facet enumer-
ation. All experiments were run on a Linux machine with an
Intel Core 15-2500K (4 x 3.30 GHz) CPU and 16 GB RAM.

Solution quality. We prepared the data sets by splitting
them into training and validation data in a 2:1 ratio. We also
centralized and standardized the data using empirical means
and standard deviations of the training data. The generaliza-
tion error, here the negative log-likelihood function value, is
computed on the validation data.

For the experiments, we reformulated Problem (LVGL)
such that it conforms to the theory in Section 2, where
weights are chosen from a standard simplex.

As a baseline, we used grid search on a fine grid with
more than 5000 points. At the grid points we solved Prob-
lem (LVGL) and computed the corresponding generalization
error, see Figure 3. The interval between the worst and best
solution, in terms of generalization error, serves as our esti-
mate of the range of possible generalization errors. We con-
sider a solution as good, if it is close to the best solution. We
measure closeness as the normalized distance to the optimum,
where the normalization factor is the length of the interval of
possible generalization errors. Then, we let both the solution
gamut method and the adaptive Benson algorithm run until
their solutions were within 1% distance to the optimum from
the grid search. On all data sets, we started Benson’s algo-
rithm with g9 = 219 and fixed direction ¢ = (1,1,1)T.
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Figure 3: The lower figure shows the generalization errors from the
grid search for the LSVT data set. Solutions from running Benson’s
algorithm are marked by circles. The best solutions are highlighted
by stars. The filled star represents the best solution that is also shown
in the first row of Figure 1. Above, the sparsity and rank patterns
of the baseline are shown, where cold colors indicate high sparsity
(left) and low rank (right).

Computational efficiency. It is known that the solu-
tion gamut method asymptotically matches the theoretical
lower bound of §2(1/¢) optimization problems that need to
be solved for an e-approximation. The pessimistic known
theoretical upper bound for Benson’s algorithm is only in
O(1/€?). In practice, however, one also has to consider the
overhead for function evaluations on a fine grid for the so-
Iution gamut method and the overhead incurred by the adap-
tive Benson algorithm for facet enumerations. Hence, in our
experiments we counted not only the number of solved opti-
mization problems, but also measured the elapsed CPU time.

Results

Solution quality. On the LSVT data set, we stopped Benson’s
algorithm at the fairly coarse accuracy of ¢ = 26, This is
already sufficient for finding good solutions with different al-
gebraic properties (sparsity and rank), see Figure 3. Although
the search region for the upper level problem, i.e., minimiz-
ing GE, is non-convex, Benson’s algorithm finds solutions
close to all local minima. Hence, in practice the best solu-
tions returned by Benson’s algorithm should be taken into ac-
count, because they may provide alternatives in terms of their
algebraic properties, see Figure 1.

Computational efficiency. Experimental results for the
comparison of the adaptive Benson algorithm and the solu-
tion gamut method are shown in Table 1. The solution gamut
method requires solving between two and seven times more
optimization problems than Benson’s algorithm. The differ-
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Figure 4: Log-log complexity plot for Benson’s algorithm.

ence becomes even more pronounced when looking at the ac-
tual CPU times—it is a factor between 6 and 34 (median 13),
i.e., about one order of magnitude.

Furthermore, it turns out that the adaptive Benson algo-
rithm experimentally matches the theoretical lower bound of
Q(1/e), see Figure 4. This suggests that the optimistic upper
bound for Benson’s algorithm is realistic in our case.

4 Conclusion

Latent variable graphical models are a sparse + low-rank vari-
ant of multivariate Gaussians that address some of the short-
comings of the latter. Like Gaussian factor models or the
graphical Lasso, this model is less prone to overfitting and
does not suffer from the problem of non-regular covariance
matrix estimates. It is more flexible than both factor mod-
els and the graphical Lasso, which reflects itself in a higher
likelihood value on test data at its optimal solution. A good
solution, though, can only be found by choosing the regular-
ization parameters carefully. In practice, this is mostly done
by either grid, manual, or random search which do not come
with any performance guarantees.

Here, we have modeled regularization parameter selection
as a bi-level optimization problem. The lower level of this
approach entails describing the solution gamut of all feasi-
ble solutions for all combinations of regularization parame-
ters. For approximating the solution gamut, we have adapted
and extended Benson’s vector optimization algorithm. On
data sets from different domains, our bi-level approach with
Benson’s algorithm for the lower level works better than the
standard approach for solution gamut approximation for the
latent variable graphical Lasso. Using Benson’s algorithm
on the lower level is a generic approach that works out-of-
the-box for any other problem that is given in the form of a
regularized semidefinite program. Also, Benson’s algorithm
matches the known lower complexity bound for the solution
gamut approximation problem.
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