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Abstract

In implicit feedback-based recommender systems,
user exposure data, which record whether or not a
recommended item has been interacted by a user,
provide an important clue on selecting negative
training samples. In this work, we improve the
negative sampler by integrating the exposure data.
We propose to generate high-quality negative in-
stances by adversarial training to favour the diffi-
cult instances, and by optimizing additional objec-
tive to favour the real negatives in exposure data.
However, this idea is non-trivial to implement since
the distribution of exposure data is latent and the
item space is discrete. To this end, we design a
novel RNS method (short for Reinforced Negative
Sampler) that generates exposure-alike negative in-
stances through feature matching technique instead
of directly choosing from exposure data. Opti-
mized under the reinforcement learning framework,
RNS is able to integrate user preference signals in
exposure data and hard negatives. Extensive exper-
iments on two real-world datasets demonstrate the
effectiveness and rationality of our RNS method.
Our implementation is available at: https://github.
com/dingjingtao/ReinforceNS.

1 Introduction

The prevalence of implicit feedback has boosted the research
and development of implicit feedback-based recommender
systems [Bayer er al., 2017; Yang et al., 2018]. The key
challenge in learning from implicit feedback lies in the nat-
ural scarcity of negative signal, known as one-class prob-
lem [Pan et al., 2008]. To address this issue, negative sam-
pling has been widely adopted in previous works [Rendle
et al., 2009], where the common approach is to uniformly
sample negative instances from the missing data (i.e., the un-
observed interactions) [Jiang et al., 2018; He et al., 2018;
Lin ef al., 2019]. This process, with no doubt, plays a critical
role in training recommender models from implicit feedback.

Given the importance of designing a quality negative sam-
pler for implicit recommender models, two types of methods
have been proposed in previous works. The first is heuristic-
based methods, including dynamic negative sampling (DNS)
that oversamples the hard negative instances during the train-
ing process [Zhang et al., 2013; Rendle and Freudenthaler,

2014], and frequency-based sampling that subsamples fre-
quent instances [Caselles-Dupré et al., 2018]. The other
type is auxiliary information-based methods, which focus on
choosing more reliable negative instances by leveraging the
auxiliary data such as clicked but non-purchased items in E-
commerce websites [Ding er al., 2018al.

In real-world scenarios, platforms can easily collect
whether the recommended (i.e., exposed) item has been inter-
acted by a user. These records, also referred to as the exposure
data, contain rich information about the negative preference
of users. However, due to the inaccessibility of such data by
the third parties, previous academic research exploits the in-
teraction data only to build the negative sampler. As a result,
the reliability of the generated negative instances is question-
able. Nevertheless, it is non-trivial to integrate the exposure
data into the negative sampler design because of the following
challenges:

¢ Incompleteness of negative preference in exposure data.
The exposed items are typically selected by a recommen-
dation engine. Besides the exposed but non-interacted
items, other non-exposed items can also be the negative
preference for a user. If the sampler simply generates
negative instances according to the exposure data, it will
cause selection bias, making the model under-trained and
resulting in suboptimal performance [Lian er al., 2017,
Ding et al., 2018al.

o Difficulty of optimizing the negative sampler. Due to
the discrete sampling process on item IDs, the objective
function is non-differentiable. As such, it cannot be opti-
mized with traditional gradient-based techniques that can
only deal with continuous functions.

In this work, we design a novel embedding-based sam-
pler model named Reinforced Negative Sampler (RNS) that
learns to generate informative and effective negative sam-
ples. Specifically, the sampler collaborates with another
embedding-based recommender model, supplying negative
instances for the recommender to do pairwise learning. The
sampler has two goals — generating hard and real nega-
tive instances. The hard goal is achieved through adversarial
training between the recommender and the sampler. Simul-
taneously, the sampler is also rewarded to generate negative
instances that overlap with the non-interacted instances in the
exposure data. Corresponding to aforementioned two chal-
lenges, here the “reinforced” has two-fold meaning. First, the
generation of real negative instances is reinforced by a feature
matching technique, which forces the empirical distribution
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of the generated and the exposed negative instances to have
matched moments in the latent feature space. Second, we
consider a reinforcement learning setting in the sampler so
as to receive gradient information from the recommender and
optimize the non-differentiable exposure-based objective.
We summarize the contributions of this paper as follows.

1. We are the first to consider generating exposure-alike neg-
ative instances for implicit recommendation. The proposed
RNS model is general in optimizing any recommender
models, with the potential of large impact.

2. We propose two specific designs to generate high-quality
negative instances, including the adversarial training for
hard negatives and the feature matching for generating
exposure-alike negatives that are more reliable.

3. We conduct extensive experiments on two real-world
datasets to demonstrate the effectiveness of RNS. More ab-
lation studies verify the efficacy of the two designs and the
utility of feature matching in leveraging exposure data.

2 Methodology

We start by introducing some basic notations. For a specific
user u, C,, denotes the set of items that are interacted by u,
while &, refers to those non-interacted items within u’s ex-
posure history. We represent matrices, vectors, and scalars as
bold capital letters (e.g., X), bold lower-case letters (e.g., X),
and normal lower-case letters (e.g., x), respectively. We use
symbols o and ® to denote the sigmoid function and element-
wise production, respectively.

Our proposed recommender-sampler framework is illus-
trated in Figure 1. The sampler (S) calculates a probabil-
ity distribution over a set of candidate negative instances,
then samples one of them as the output. Next the recom-
mender (R) is optimized to learn the pairwise ranking relation
between a ground truth instance and a generated negative one.
After receiving the multiple reward signals, .S is encouraged
to generate both hard (w,;) and real (w}; /w3 ;) negative in-
stances. During training process, R can benefit more from
the better quality negative instances and thus perform better
on predicating user preference.

2.1 The Recommender Model (R)

To learn recommender models from implicit feedback, Ren-
dle et al. [Rendle et al., 2009] proposed the Bayesian Person-
alized Ranking (BPR) method, which assumes that a positive
instance should be predicted with a much higher score over
the negative one. Based on BPR, the training objective of R
can be formulated as minimizing the following loss function:

Lrp= Y _ —Ino(f,i(0)—ry;(0)), where j ~ Wg(jlu). (1)
(u,i)eC

In (1), for each user u, the predicted preference score on items
is denoted as 7,6 (©), where © refers to the model parame-
ters. The negative instance j is generated by the sampler (.5)
according to a conditional distribution Wg(-|u), while the
positive instance ¢ is randomly chosen from ground truth set
C,. Minimizing Lp is equivalent to maximizing the margin
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Figure 1: Our proposed recommender-sampler framework.

between 7; and 7,;, which encourages R to learn the pair-
wise ranking relation of user preference between 7 and j.

To calculate 7,4 (©), we adopt the Generalized Matrix Fac-
torization (GMF) [He et al., 2017] model that allows dif-
ferent dimensions of the embedding space to have different
weights. Specifically, it first uses an element-wise product
to obtain an interacted feature vector, and then project the
feature vector to an output score with a weight vector as fol-
lows, 7,;(©) = h"Tf,; = h"" (p” © q7), where h" € RE*!
denotes the learnable weight vector and f,,; denotes the inter-
acted feature vector. The K -dimensional user embedding and
item embedding are represented as p;, and q;, respectively.
Based on GMEF, the model parameters © is {p],,q},h"}.

2.2 The Sampler Model (S)

We first introduce two specific design of our proposed rein-
forced negative sampler (RNS), corresponding to generating
hard and real negative samples. Then we train RNS through
policy gradient in reinforcement learning (RL) setting.

Adversarial Sampler

Intuitively, .S can generate adversarial negative instances that
have high scores 7o, Which are hard for R to rank correctly.
Therefore, the objective of this adversarial sampler is formu-
lated as maximizing the expectation of j-related part in Lg:

Las= Y. B, g.giml-0(-74©)]. @

i)eC
(wi)€ denoted as ‘*’111]'

Note that we have left out the logarithm to control its val-
ues within [—1, 0]. By this means, the generated negative in-
stances are given higher prediction scores by R, being more
close to those of positive instances, which provides larger gra-
dients and more information for R.

Exposure-matching Sampler

As both users’ interaction and non-interaction are explicitly
recorded in the exposure data, it is reasonable to generate real
negative samples based on the exposed but not interacted in-
stances. Therefore, our second design of RNS is introducing
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an exposure-matching sampler that learns a probability distri-
bution to match negative signal in exposure data. Given u’s
exposed itemset £, a direct design is to maximize the overlap
between the set of generated instances and &,. Specifically,
we consider the following objective:

LOE'S: Z ij\i}g(j\u)[lgu(uvj):la
(u,3)€C

3)
where 1¢, (u,j) = {

1,j€é&,
0, else ’

where the binary indicator function 1¢, serves as a guiding
signal, encouraging S to generate a set of negative instances
that has a big overlap with exposed itemset &,,.

However, for the set of generated negative instances and
the set of exposed instances, L% ¢ measures their distance by
the size of overlapping set, i.e., a simple scalar, which does
not provide information in latent feature level and thus be
suboptimal. Consequently, the sampler trained with this ob-
jective may tend to choose exactly the same instances from
the exposure data, which will harm the performance as not all
of the exposed instances are beneficial.

Therefore, we further measure the similarity in the la-
tent feature space. As we adopt GMF to calculate pref-
erence scores in R, for a user-item pair denoted as (u,1),
the interacted feature vector f,; is the corresponding rep-
resentation in the latent feature space. Consider a subset
of generated negative instances G, for each (u,j) € G,
we sample a (u, k) from &, and group all these sampled
instances into a subset denoted as &. Then, to measure
the distance between G, and &,, we consider the maximum
mean discrepancy (MMD) between the empirical distribu-
tion of feature vectors in these two subsets [Li et al., 2015;
Zhang et al., 2017]. Concisely, MMD measures the mean
squared difference between two sets of samples over a univer-
sal reproducing kernel Hilbert space. In our case, the MMD
for two empirical distributions of f in G5 and &; is given by

Buwpr =15 S Y HE5(©).15,(0)

(u,5)€Gs (u',5")€Gs

D DD DI A R AT R

(u,§)E€Gs (v,k)EEs

o Y Y KE(O).5,.(0)),

(v,k)EE (v/ k') EES

where L is the size of two sets and k(- -) : RE x RE - R is
the kernel function. Here we use a universal Gaussian kernel,
ie.,, k(x,x') = exp(—||x — x'||?/27) with bandwidth 7, and
minimize MMD to match all moments of two distributions.

From the above considerations, we design the exposure-
matching sampler with a weighted sum of overlap-based ob-
jective and MMD-based objective. Mathematically, it can be
formulated as maximizing

L = E; 1- 1 7‘ M 7. 75
Bs (u%jec s [(1=8) e, (u, ) +8 M(u,5)],(5)

2 3
denoted as Wi denoted as W
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where [ controls the importance of MMD-based objective
M (u, j) that aims to match the feature distribution. As the
MMD is calculated between two sets, i.e., G, and &, for each
u and u’s generated negative instance j, M (u, j) only refers
to those corresponding terms in (4), which is given by

2
M(uj) =731 D k@G E0) — D kEG.E0,0]- )
(v,k)€Es (u’,j")€Gs
Training with Reinforcement Learning
Finally, combining the above two specifically designed sam-
pler together, we obtain the following objective for the nega-
tive sampler (S):

Ls=Las+alLgs

- Z E; isju [Way + (1= B)wi; + afwy; ], (D)
(u,i)€C

denoted as wy,;

1,2
where {w,,;, w

W w3 ;  refer to adversarial objective, overlap-
based objective and MMD-based objective, respectively (See
(2) and (5)). By maximizing Lg, S is encouraged to generate
both hard and real negative samples with exposure data.

However, unlike the optimization of R that can be achieved
by the stochastic gradient descent (SGD), training S has
following two problems. First, it involves a discrete sam-
pling step, which makes simple differentiation infeasible.
Second, the exposure-aware indicator function 1¢, is non-
differentiable. Therefore, for .S with model parameters @,
we use the policy gradient based RL [Sutton ez al., 2000] to
derive its gradient:

VoLs =Ve Z Ej i () [Wui]
(u,3)€C

= > B [wus Ve log Us(j[u)]
(u,3)€C

1
~ > )
(u,3)€C

G s (jlu) t<T

®)

[wujth;. log \ils(jtlu)} y

N

where we approximate the expectation with sampling in the
last step. With the RL terminology, the agent, i.e., the sam-
pler S, follows a policy Wg(j|u) and takes an action as gen-
erating a negative instance j for a certain user u. Then, for
each action (u, j), the environment, i.e., the reccommender R,
will return a reward w,; to S that guides the direction of op-
timization. In this way, S is iteratively optimized towards
maximizing the returned reward, i.e., generating the negative
instances that are both hard and real.

To produce the probability distribution for sampling neg-
ative instances, i.e., \ifs(j |u), S first calculates the scores
for a set of negative candidate instances and then obtain
their corresponding softmax probability. Similar to R, S
also uses GMF to calculate the score with model parameters
® = {p?,q?,h*}. Mathematically, ¥ 5 (j|u) is modeled as

exp 55 (P)
> irens, XD ujr (P)’

where 3,4(®) denotes the score and N, denotes u’s candi-
date set for the generated negative instances. Intuitively, N,

Us(jlu) =

9
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should contain all the instances that are not interacted by u,
i.e., C,,. However, as the hard negative instances are very
likely to be those unobserved positive instances, we generate
N, by uniformly preselecting N; instance from C,,.

The overall training process is summarized in Algorithm 1.
Both R and S require pre-training, which is achieved by train-
ing the GMF model with BPR objective. The learning process
is carried out in mini-batch mode, where R and S alterna-
tively update their parameters.

Algorithm 1: The RNS algorithm.

Data : Interaction data C = {(u, )}, exposure data &;

Input : Pre-trained recommender Ry with parameters
O, Pre-trained sampler Sy with parameters ®;

Output: The final recommender R for prediction;

1 while Stopping criteria is not met do

2 Sample a mini-batch of data Cg from C

3 for (u,i) € C5 do

4 Uniformly sample N, negative instances as No;

5 Obtain their sampling probability {\i/} by (9);

6 S generate a negative instance j € N, with {¥};

7 Gr + Gr+VeLg(u,i,j); /!l R’s gradients

8 Gs.add((u, j)); // the set of generated instances

9 Sample one exposed instance j’ from &,
Es.add((u, j")); // used for calculating MMD

10 end

u for (u,j) € G5 do

12 Calculate reward w,,; by (2)-(7);

13 Gg <+ Gg+wy;Valog W (jlu); /1 S°s gradients

14 end

15 O <+ O+ ArGR, ® + & + \sGg; // update R, S

16 end

2.3 Discussion

Our proposed recommender-sampler framework follow the
general design of Generative Adversarial Networks [Good-
fellow et al., 20141, which contains two parts, the generator
and the discriminator. In recommendation fields, the previous
GAN-based models, such as IRGAN [Wang er al., 2017], CF-
GAN [Chae et al., 2018] and AdvIR [Park and Chang, 20191,
focuses on training a better generator to deceive the discrim-
inator. In this sense, their generator is optimized to gener-
ate the positive instance and thus can predict user preference.
However, in our work, the sampler generates the negative in-
stances to train a better recommender as prediction model.
The most related work is KBGAN [Cai and Wang, 2018] that
generates hard negative instances to train better knowledge
graph embeddings. However, our RNS model not only has
an adversarial sampler, but also tries to generate real negative
instances with exposure data.

3 Experiments

3.1 Experimental Settings

Datasets. We perform experiments on two real-world
datasets with both interactions and exposure:
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e Beibei! is one of the largest Chinese E-commerce web-
sites. We sample a subset of data that contains item clicks and
exposure within the time period from 2017/06 to 2017/07.

e Zhihu? is the largest question-and-answer website in
China, where users click articles of interest to read. Here we
use a public benchmark released in CCIR-2018 Challenge’.

Preprocessing. In the raw data of Beibei and Zhihu, each
user’s records are grouped into different sessions, during
which the user is recommended with a fixed number of items
and only clicks some of them. Therefore, we consider a
session-based data preprocessing with three steps. First, we
filter out the repetitive clicks after the earliest one, as we
aim to recommend novel items. Second, we only retain
those unclicked items in the exposure data. Third, we filter
out users and items with less than 4 (Beibei) and 6 (Zhihu)
sessions to overcome the problem of high sparsity of raw
datasets.

Dataset| User# | Item# | Train# | Val.#
Beibei [66,450(59,290(1,617,541| 73,906
Zhihu

Test# |Exposure#
73,208 29,694,415
16,015 |45,782(2,433,969|410,736 440,029 6,711,820

Table 1: Statistics of the evaluation datasets.

Evaluation methodology. As the exposure and clicks are
grouped into sessions, we adopt an evaluation protocol sim-
ilar to leave-one-out [Rendle et al., 2009], where the click
interactions in the latest session of each user are held out for
testing. For hyper-parameters tuning we further hold out the
latest session from each user’s training data as the validation
set. Table 1 summarizes the statistics of experiment datasets.
For the metrics, we employ Area Under the Curve (AUC)
and Normalized Discounted Cumulative Gain (NDCG) on the
ranking of a list of testing items for a user. We fix the list
length as L and newly add some unclicked items into a user’s
list if it is less than L, and it is set as 40 and 160 for Beibei and
Zhihu, respectively, which are the same as those in raw data.
In this way, both AUC and NDCG equal to 1 when all the
clicked items are ranked higher than other unclicked items.
Finally we report the average score of all users.

Baselines. We compare our proposed RNS method with
three groups of the baselines.

First we consider two common baselines:

e ItemPop. This method ranks items base on their popu-
larity, as judged by the number of click interactions.

e BPR-GMF [Rendle et al., 2009]. BPR optimizes the
MF-based model with a pairwise ranking loss to learn from
implicit feedback.

For methods related to the adversarial sampler, we choose:

e BPR-DNS [Zhang et al., 2013]. Dynamic Negative Sam-
pling (DNS) selects the item with the highest prediction score
among X randomly sampled negatives.

e KBGAN [Cai and Wang, 2018]. With the generator serv-
ing as an adversarial sampler, KBGAN can be considered as a

soft version of DNS. Here we combine it with BPR objective.

"http://www.beibei.com/
Zhttps://www.zhihu.com/
*https://biendata.com/competition/CCIR2018/
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e IRGAN [Wang et al., 2017]. This method is a GAN-
based IR model that aims to obtain a better generator through
adversarial training, which is used to predict user preference.

Finally, we consider two exposure-enhanced samplers:

e BPR-EN. This method selects negatives only from ex-
posure data. We use it to investigate the impact of selecting
negatives from an incomplete candidate set.

e EBPR. Similar to [Ding er al., 2018al, we consider to
weight those exposed but unclicked items differently (com-
pared with other unexposed items) when choosing negatives.

Parameter settings. For above baselines, we use GMF as
scoring model and explore hyper-parameters similarly as the
original paper. The mini-batch size and embedding size for all
methods are set as 1024 and 32, respectively. We search Lo
regularizer and learning rate in [107°%,107°,1074,1073,1072]
and [0.0001, 0.0005, 0.001, 0.05, 0.1], respectively, and use
Adam optimizer for learning. In addition, the size of negative
candidate set, i.e., Ny, is set as 100 and 30 in Beibei and
Zhihu, respectively, which is optimal among [10, 20, ..., 150].

3.2 Performance Comparison

Table 2 displays the recommendation performance w.r.t. AUC
and NDCG on two datasets, where we perform paired t-test
between RNS and each of baselines over 10-round results.

find more reliable negative instances, which explains the
above performance improvement. Besides, we observe
that BPR-DNS with a rather straightforward design con-
sistently outperforms KBGAN and IRGAN, which may
be due to the difficulty of learning an accurate distribu-
tion within a large item space (10* ~ 10°).

e RNS better leverages negative preference signal in
exposure data. Corresponding to our aforementioned
challenge, we observe the significant performance
degradation with a naive exposure-enhanced sampler.
For BPR-EN that, as a common practice in most compa-
nies, selects negative instances only from the exposure,
RNS outperforms it by 17.55% and 23.74% in AUC and
NDCG for Beibei and similarly for Zhihu. As for EBPR,
the relative improvement of RNS is 3.02% and 4.24%
in AUC and NDCG for Beibei and 1.45% and 1.47%
in AUC and NDCG for Zhihu. With our designed fea-
ture matching scheme, RNS can generate exposure-alike
negatives from a much larger space that are not limited to
exposure data, avoiding the incompleteness of negative
preference in exposure data. This explains the observed
outperformance of RNS.

To summarize, these comparisons verify that our proposed

RNS model can effectively generate both hard and real nega-
tive instances to train a better implicit recommender model.

Datasets Beibei Zhihu
Group [ Methods | AUC [NDCG/p-value| AUC [NDCG[p-value| 3.3 Hard Negative v.s. Real Negative
Com ItemPop [0.6694/0.3668| le-44 [0.6500(0.6203 | 8e-47 In RNS, we combine the adversarial sampler (AS) and
" |[BPR-GMF|0.7065[0.3950| 1e-22 [0.6903|0.6443| 2¢-26 exposure-matching sampler (ES) together so as to improve
BPR-DNS[0.7125[0.4013| 3e-24 [0.6939]0.6499| 7e-35 the quality of generated negative instances. An intuitive ques-
AS [ KBGAN [0.7109/0.3995| 6e-25 |0.6934]/0.6486]| 1e-33 tion is whether the designed two parts can really help?
IRGAN |0.7091{0.3963| 5e-26 |0.6686|0.6272| 6e-21 __ _
g | BPREN [0.6098(0.3282| 9¢-38 [0.6196]0.5697 | 3c-40 Datesets Beibei Zhihu
EBPR |0.6958]0.3896| 1c-28 [0.6975]0.6527| 2¢-19 Methods | o | 8 | AUC [NDCG| a [ 3 [ AUC [NDCG
AS+ES| RNS [0.7168|0.4061 - 0.7076|0.6623 - BPR-GMF| - - 10.7065(0.3950 | - - 10.69030.6443
RNS-AS [0.00| - |0.7106]0.3985 [0.00| - [0.7002{0.6570
Table 2: Performance comparison between all the methods, signifi- RNS-ES |- 0.3010.716010.4055 | - [0.9010.7066]0.6605
cant test is based on AUC. RNS  [2.00]0.20[0.7168[0.4061 |2.50[0.75|0.7076|0.6623

From above results, we have the following observations:

e RNS significantly improves the recommendation per-
formance by training with the high quality negative
instances. Compared with ItemPop and BPR-GMF, our
proposed RNS outperforms the best of them by 1.46%
and 2.81% in AUC and NDCG for Beibei and by 2.51%
and 2.79% in AUC and NDCG for Zhihu. It demon-
strates that generating better quality negative instances is
vital for learning user preference among different items.

o RNS further improves the generation of hard neg-
ative instances by integrating exposure information.
We can observe that our proposed RNS achieves the
best performance compared to those using the adversar-
ial sampler. For Beibei, it improves the AUC and NDCG
by 0.60% and 1.20%, while the improvement is much
larger for Zhihu, i.e., 1.97% and 1.91%. Compared
with these baselines that simply choose hard negative
instances based on the model’s own inference, RNS use
previous exposure information as the guiding signal to
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Table 3: Impact of AS and ES in RNS.

To answer it, we conduct experiments on two degenerative
methods of RNS, in which only the adversarial objective L 45
and the exposure-matching objective Lgg are considered in
sampler, respectively. We adopt the same evaluation method
with above experiments, and the performance comparison is
shown in Table 3, along with the value of weighting param-
eters for Lpg and MMD-based objective, i.e., & and 3. By
comparing with BPR-GMEF, we observe that both AS part and
ES part play an essential role in RNS. Comparatively, gener-
ating negative instances that matches the exposure data (RNS-
ES) is more helpful than generating hard negative instances
through adversarial learning (RNS-AS). As these two sam-
plers capture different signals, our experiments demonstrate
that unifying them can achieve further improvement.

3.4 Impact of Feature Matching Scheme

Here we investigate whether the designed feature match-
ing scheme helps generating exposure-alike instances, by
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Figure 2: Impact of weight 5 on RNS-ES’s performance.

conducting experiments on RNS-ES that only retain the
exposure-matching objective. Figure 2 shows the recom-
mendation performance with respect to different 5. We
can clearly observe that increasing S from 0.0 to 0.9 can
effectively improve the NDCG. More specifically, it in-
creases from 0.3986 to 0.4060 (+1.86%) and 0.6555 to
0.6605 (+0.76%) on Beibei and Zhihu, respectively. As (3
denotes the weight of MMD-based objective for the feature
matching, a peak with large value (0.8~0.9) highlights the
advantage of our proposed feature matching scheme.

To further illustrate its advantage, we randomly select
two subsets of generated and exposed instances on Beibei,
1000 each, and visualize their interacted feature vectors be-
fore (8 = 0.0) and after (5 = 0.9) feature matching in Fig-
ure 3(a) and (b), respectively, via t-SNE. With red points as
the exposed instances, blue points as the generated instances
and green points as those overlapped ones, we observe a much
more similar distribution in Figure 3(b) . On the one hand,
the generated negatives (blue) are much closer to exposed
ones (red) when 8 = 0.9, while they are densely gathered
in a small area near (0,0) when 3 = 0.0. On the other hand,
the number of overlapped instances (green) decreases signifi-
cantly with g increasing from 0.0 to 0.9. To measure the sim-
ilarity between two sets of generated and exposed instances,
we calculate two metrics of overlap and MMD and illustrate
them in Figure 3(c) and (d), where the smaller value of both
overlap and MMD can be observed with 5 = 0.9. This find-
ing is interesting and insightful, implying that the proposed
feature matching scheme encourages the sampler to focus on
generating the negative instances that are similar to exposed
instances in the feature space, rather than choosing exposed
instances directly. By this means, although the overlap be-
tween generated negatives and exposure data is small, they
are more similar in the distribution perspective (small MMD).

4 Related Work

Generating adversarial samples for recommendation. A
typical approach is the dynamic negative sampling strategy
that generates hard negative instances to construct informa-
tive item pairs during the training process [Zhang er al., 2013;
Zhang et al., 2019a]. Recently, GAN-based approach has also
been adopted in training better recommender models with
adversarial instances [Wang et al., 2017; Chae et al., 2018,;
Park and Chang, 2019]. As we discussed in methodology
section, our RNS model differs from them by generating both
hard and real negative instances with exposure data.

Recommendation with exposure data. There exists no
previous work on training a better negative sampler with user
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Figure 3: 2d t-SNE visualizations of the feature vectors and statistics
of the similarity (overlapMMD), before and after feature matching.

exposure. Most works use probabilistic approach to model
user exposure as a latent variable and infer its value from in-
teraction data [Liang e al., 2016] or social relationship [Chen
et al., 2019]. Previous recommendation works using expo-
sure data are not related to user preference learning. Lee ef
al. [2014] propose a re-ranking approach based on items’ his-
torical exposure. Zhao et al. [2018] investigate reasons be-
hind user inaction. In contrast, our RNS improves the per-
formance by leveraging the negative preference information
existed in exposure data, which cannot be simply integrated
like other auxiliary information in multiple feedback recom-
mendation [Ding et al., 2018b; Gao et al., 2019].

5 Conclusion and Future Work

We study the problem of learning to sample negative in-
stances for recommendation from exposure data, rather than
manually designing sampling heuristics. To generate both
hard and real negatives, we propose a RNS model that
combines adversarial training and feature matching together,
which is trained with RL method. With these designs, RN'S
can not only achieve higher accuracy, but also be applied to
any recommender systems with negative sampling. In the
future, we plan to learn more general negative samplers for
social-aware or context-rich recommender systems [Lin et
al., 2019; Zhang et al., 2019b], and other related fields such
as network embedding and NLP.
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