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Abstract
Learning optimal policies in real-world domains
with delayed rewards is a major challenge in Re-
inforcement Learning. We address the credit as-
signment problem by proposing a Gaussian Pro-
cess (GP)-based immediate reward approximation
algorithm and evaluate its effectiveness in 4 con-
texts where rewards can be delayed for long trajec-
tories. In one GridWorld game and 8 Atari games,
where immediate rewards are available, our results
showed that on 7 out 9 games, the proposed GP-
inferred reward policy performed at least as well as
the immediate reward policy and significantly out-
performed the corresponding delayed reward pol-
icy. In e-learning and healthcare applications, we
combined GP-inferred immediate rewards with of-
fline Deep Q-Network (DQN) policy induction and
showed that the GP-inferred reward policies outper-
formed the policies induced using delayed rewards
in both real-world contexts.

1 Introduction
A large number of tasks in science and engineering, from
robotics to game playing, tutoring systems, medical treat-
ment design and beyond, can be characterized as sequential
decision-making under uncertainty. Many interesting sequen-
tial decision-making tasks can be formulated as reinforce-
ment learning (RL) problems [Sutton and Barto, 2018]. In
an RL problem, an agent interacts with a dynamic, stochastic,
and incompletely known environment, with the goal of find-
ing a policy that optimizes some long-term reward. RL ap-
proaches are typically learned either online, where the agent
learns while interacting with the environment; or offline,
where the agent learns the policy from pre-collected data.
Online RL algorithms are generally appropriate for domains
where interacting with simulations and actual environments is
computationally cheap and feasible. Offline RL is generally
appropriate for domains such as e-learning and healthcare,
where building accurate simulations or simulated students is
especially challenging because both human learning and dis-
ease progression are complex, poorly understood processes.
Moreover, learning RL policies while interacting with stu-
dents or patients can be unethical or illegal. Therefore, we

focus on offline RL approaches. Just as supervised models
depend heavily on accurate labels for the training dataset, the
effectiveness and robustness of RL approaches depend heav-
ily on an accurate reward function. Applying offline RL to
such domains, however, often faces two challenges related to
rewards: one is delayed rewards, and the other is uncertainty.

First, delayed rewards can limit the potential of RL appli-
cations, especially when data is limited. Immediate rewards
are generally more effective than delayed rewards for offline
RL because it is easier to assign appropriate credit or blame
when the feedback is tied to a single decision. The more we
delay rewards or punishments, the harder it becomes to as-
sign credit or blame properly. However, the most appropri-
ate rewards in e-learning and healthcare are student learning
performance and patient outcomes, which are typically un-
available until the entire trajectory is complete. This is due to
the complex natures of both learning and disease progression,
which make it difficult to assess students’ learning or patient
health states moment by moment. More importantly, many
instructional or medical interventions that boost short-term
performance may not be effective over the long-term.

Second, the uncertainty in real-world domains such as e-
learning and healthcare often comes from incomplete or im-
perfect observations of underlying true reward mechanisms.
Different from delayed rewards in classic mouse-in-the-maze
situations where agents receive insignificant rewards along
the path and a significant reward in the final goal state (the
food), in e-learning and healthcare, there are immediate re-
wards along the way but they are often unobservable. There-
fore, the challenge is how to infer these unobservable, im-
mediate rewards from the delayed rewards, while taking the
noise and uncertainty in the data into account.

We proposed and applied a Gaussian Processes (GP)-based
approach to infer unobservable “immediate rewards” from
the delayed rewards and then induced policies based on
the inferred rewards. Much recent research focuses on the
principled handling of uncertainty for modelling in environ-
ments that are dynamic, noisy, observation-costly and time-
sensitive. Gaussian Processes have shown to be a robust, sta-
ble, computationally tractable and principled approach that
naturally accommodates these real-world challenges [Ras-
mussen, 2003]. A GP is a generative model of Bayesian infer-
ence that can be used for function approximation, and it can
provide a consistent and principled probabilistic framework
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for inferring the expected value and the point-wise variance
of a hypothesis even with noisy observations [Rasmussen,
2003]. A GP is fully defined by a mean and a kernel func-
tion that defines prior function correlations, which is crucial
for obtaining good posterior estimates with just a few obser-
vations. More specifically, when applying GP to inferring re-
wards from the delayed rewards, we assume that the inferred,
unobservable rewards and the observed delayed rewards fol-
low some prior probabilistic distributions, such as Gaussian
distributions, and we incorporate information from our train-
ing data into the model using standard rules of Bayesian in-
ference. We can then determine the rewards’ corresponding
posterior probabilistic distributions. By assuming a prior dis-
tribution on the value function and the parameters defining
our reward functions, we avoid the trap of letting a few data
points steer us away from the true parameters. Additionally,
by explicitly modelling the distribution over unknown sys-
tem parameters, combining GP with RL provides a principled
Bayesian approach for handling uncertainty.

We have conducted a series of evaluations on our proposed
GP-based immediate reward algorithm using two simulated
environments and two real-world applications. In a total of 9
games including a simulated GridWorld testbed and 8 Atari
games, where immediate rewards are available for compari-
son and online evaluation is feasible, our results showed that
in 7 out 9 games, the proposed GP-inferred reward policy per-
formed at least as well as the immediate reward policy, and
significantly outperformed the corresponding delayed reward
policy. In both e-learning and healthcare applications, where
only delayed rewards are available, we combined GP-inferred
immediate rewards with offline Deep Q-Network (DQN) and
showed that in both real-world contexts, the GP-inferred re-
ward policies outperformed the delayed reward policies.

2 Related Work
While GP has been widely and successfully applied with var-
ious RL algorithms, prior work has focused mainly on policy
induction. For example, several works directly estimated the
value function using a GP regression model [Engel et al.,
2003; Kuss and Rasmussen, 2004; Engel et al., 2005]. In
those works, the rewards were immediately available along
the trajectories, and the SARSA [Sutton and Barto, 2018]
algorithm was used to learn the Markov Decision Process
(MDP) policy.

In most RL practice, on the other hand, reward functions
were assumed to be known or manually defined based on ex-
pert knowledge, without considering the underlying true re-
ward mechanisms and potential bias in the pre-assigned re-
wards. Under this circumstance, Russell [1998] presented
Inverse Reinforcement Learning (IRL), which tries to solve
a problem to determine the reward function that the agent
optimizes by observing the environment and the agent’s be-
haviors [Abbeel and Ng, 2004]. In his pioneering work,
Ng et al. [1999] proposed potential-based reward shaping
where the agent could be guided by the reshaped reward func-
tion with the potential difference between states and substan-
tially reduced the learning time. Since a large set of reward
functions could be found through reward shaping, Ng and

Russell [2000] proposed a reward function-selecting algo-
rithm that maximally differentiates the observed policy from
other sub-optimal policies. In its extensions, Wiewiora et al.
[2003] employed reward shaping based on both states and
actions while the potential values only consider states, and
Gao and Toni [2015] incorporated the potential-based reward
shaping into hierarchical RL. Motivated by the psycholog-
ical difference between a supplied reward and a motivated
behavior, Barto [2013] and Kulkarni et al. [2016] devel-
oped intrinsically-motivated agents capable of exploring new
behavior for their own sake. More recently, several online
methods for reward shaping have been introduced; Grzes and
Kudenko [2010] showed that without prior knowledge, the
potential function can be learned online in parallel with the
RL process, and Gimelfarb et al. [2018] devised a Bayesian
reward shaping method that performs online updates of the
weights of different hypotheses from multiple experts. How-
ever, none of these methods were evaluated in offline envi-
ronments derived from real-world applications.

3 Gaussian Processes to Infer Immediate
Rewards from Delayed Rewards

We apply Gaussian Processes (GP) to learn the distribution
function for the expected values and the standard deviations
of the immediate rewards for a historical dataset of trajecto-
ries with delayed rewards. To do this, a prior probability is
given to each possible function, where higher probabilities
are given to functions that we expect to observe given the de-
layed rewards. In context of GP, such functions are specified
by their mean and covariance function (kernel). Generally
speaking, there are two derivations for the GP, where the cor-
relation between samples is represented as a covariance func-
tion or variogram. Covariance-based GP is commonly used
in machine learning [Rasmussen, 2003; Nychka et al., 2015;
Azizsoltani and Sadeghi, 2018] and variogram-based GP is
generally used in spatial statistics and Kriging [Cressie, 1992;
Azizsoltani and Haldar, 2018]. We defined the prior proba-
bility as the covariance matrix Cr on the immediate rewards,
which is equivalent to using an appropriate kernel function.
Since the set of acceptable functions is uncountably infinite
before observing any data, the proposed formulation will give
a higher probability to the functions for which the summa-
tions of the immediate rewards are closer to the delayed re-
wards. The combination of this additional information and
the prior will give the posterior distribution over the function.

Let H := (s0, a0, r0, s1, a1, r1, · · · ) be a trajectory of
states, actions, and rewards, and the delayed reward for the
trajectory is R =

∑n−1
i=0 γ

iri where n is the length of the
trajectory and γ ∈ (0, 1] is the reward discount factor for an
episodic finite horizon problem. Furthermore, the historical
data D consists of m trajectories with various lengths: n1,
... nm. Each trajectory has a single delayed reward at the
final state: R1, ... Rm. We define a reward transformation
matrix D ∈ Rm×l where l =

∑m
i=1 ni is the number of the

immediate rewards to be inferred. In D, each row represents
a trajectory, and for trajectory i, we will have ni non-zero en-
tries, one for each inferred reward in the trajectory. Here, D
is the linear combiner of the delayed rewards and unknown
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immediate rewards as:

D =


n1︷ ︸︸ ︷

1 γ γ2 . . .

n2︷ ︸︸ ︷
0 . . . 0

0 . . . 0 1 γ . . . 0 . . . 0

0 . . . . . .
. . .

 (1)

By adding noise to the summation of the unobserved imme-
diate rewards, we can represent the delayed reward as a func-
tion of immediate rewards using matrix form as R = Dr+ ε
where R ∈ Rm is the delayed reward vector of size m,
ε ∈ Rm is the white noise vector, or reward error vector,
of size m, and r ∈ Rl is the vector of unknown immediate
rewards which needs to be estimated.

We assume that the immediate rewards follow a Gaussian
Process defined as r ∼ N (µr,Cr) where µr is the a pri-
ori mean and Cr is the a priori covariance which can be any
positive-definite kernel function. The a priori mean and the a
priori covariance on the immediate rewards are set based on
our prior knowledge about the expected value and the covari-
ance of the immediate rewards. We further assume that the
reward error vector follows an Independent, Identically Dis-
tributed Gaussian distribution with zero mean and variance
σ2
R. Therefore, it is defined as ε ∼ N

(
0, σ2

RI
)
.

Considering the column vector r as a vector of ran-
dom variables, the expected value of the delayed rewards is
E [R] = DE [r] +E [ε] = Dµr, and the covariance matrix of
the immediate rewards, Crr, is equal to Crr = Cr.

Since r and ε are independent, by substitution of expected
value of the delayed rewards into the definition of the covari-
ance matrix for the delayed reward, CRR, is calculated as:

CRR = E
[
(Dr+ ε−Dµr) (Dr+ ε−Dµr)

T
]

= DCrD
T + σ2

RI.
(2)

Since E [rε] = 0 and E [µrε] = 0, the cross-covariance be-
tween the delayed reward vector and the vector of unknown
immediate rewards is calculated as:

CrR = E
[
(r− µr) (Dr+ ε−Dµr)

T
]
= CrD

T. (3)

Following the theorem of conditional probability density
functions for a multivariate Gaussian, the conditional distri-
bution of immediate rewards given delayed rewards is pro-
posed as (r|R) ∼ N (E [r|R] ,C [r|R]) where the posterior
mean and posterior covariance of inferred immediate rewards
given delayed rewards is defined as:

E [r|R] = E [r] + CrRC−1
RR (R− E [R])

= µr +CrD
T
(
DCrD

T + σ2
R

)−1

(R−Dµr)
(4)

C [r|R] = Crr − CrRC−1
RRCRr

= Cr −CrD
T
(
DCrD

T + σ2
R

)−1

DCT
r .

(5)

The components of Eqs. 4 and 5 can be viewed in the con-
text of the general GP. The term µr is an a priori estimate of
the immediate rewards, CrD

T is the cross-correlation term,

(
DCrD

T + σ2
rI
)−1

is the relative quality of the immediate
and delayed rewards, R−Dµr is the reward prediction error,
Cr is the a priori covariance of the immediate rewards, and
the rest of Eq. 5 is the reduction of covariance based on ob-
servations of the data. In short, the proposed GP can estimate
the mean and pointwise variance of the inferred immediate
rewards given the observed delayed reward.
Numerical calculation and computational complexity.
The Cholesky factorization is used to decompose a symmet-
ric positive definite matrix such as CRR into the product
of a lower triangular matrix, L, and its conjugate transpose,
LT, where LLT = DCrD

T + σ2
rI. The lower triangular

equations β = L\ (R−Dµr) are solved by the forward-
substitution while the upper triangular equations α = LT\β
are solved by the back-substitution. By introducing the inter-
mediary variables k = DCT

r and v = L\k, we can calcu-
late the posterior mean and posterior covariance of inferred
immediate rewards introduced in Eqs. 4 and 5 as E [r|R] =

µr + k
T
α and C [r|R] = Cr − vTv. The computational

complexity of the Cholesky factorization is O
(
m3
)

where m
is the number of trajectories. The computational complex-
ity of forward-substitution and back-substitution algorithms
are both O

(
m2
)
. One potential caveat of the proposed algo-

rithm is the asymptotic computational complexity ofO
(
m3
)
.

However, it may not be a major concern for offline RL.

4 Two Simulated Environments
Our simulated environments include a grid world game and
8 Atari games, and for each game, we collected trajectories
with immediate rewards; for each trajectory, we summed up
all immediate rewards to be the final delayed rewards; and
then we applied our GP-based algorithm to infer rewards us-
ing the delayed reward trajectories. Finally, we applied differ-
ent offline RL approaches to induce policies using the imme-
diate (Imm), the inferred (Inf), and the delayed (Del) rewards.

4.1 Experimental Settings
GridWorld Game
Figure 1 (Left) shows our simple benchmark: a GridWorld
testbed. Here the agent (small circle) starts from the start state
(bottom right corner), explores the 2D space and eventually
finishes at the end state (upper left corner). Several walls are
designed in the GridWorld, and the agent bounces back to its
original state after hitting the walls. The agent can take 3
actions (UP, Down, Left) and collects +1, 0, or -1 rewards.
The goal is to maximize the rewards. We explored two types
of reward functions: 1) a state-based, R(s) and 2) a state-
action-state based, R(s, a, s′).

Atari Games
The OpenAI Gym toolkit [Brockman et al., 2016] was used
to simulate eight Atari games. We first randomly played the
games and collected 200,000 steps per game, where each
step consists of a (s, a, r) tuple. To induce policies, we used
the offline Double-DQN algorithm [Van Hasselt et al., 2016]
with prioritized experience replay [Schaul et al., 2015]. We
repeated this process for immediate, inferred, and delayed
rewards. The OpenAI Baselines was used for training the
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Figure 1: Left: GridWorld. Right: RMSE for GridWorld.

Figure 2: Avg. reward on GridWorld. Left:R(s). Right:R(s, a, s
′
).

models. The Double-DQN model architecture and training
procedure followed those by Mnih [Mnih et al., 2015], e.g.
the input is a 84x84 pixel image, and the last 4 frames are
stacked.The main difference was that we did not clip the pos-
itive and negative rewards to 1 and -1, respectively; we kept
the rewards provided by the environment to capture more ac-
curate delayed rewards, to better estimate inferred rewards.

4.2 Game Simulation Results
GridWorld Game
We used three evaluation metrics: first Root Mean Square Er-
ror (RMSE) was used to estimate how close the inferred im-
mediate rewards were to the ground truth immediate rewards.
Figure 1 (Right) shows the RMSE decreases as the number
of trajectories increases for both the state reward function
(Reward S) and the state-action-next state reward function
(Reward SAS). RMSE stabilizes after 100 trajectories. The
asymptotic RMSE constants 0.14 RMSE for Reward S and
0.08 for Reward SAS are due to the presence of some states
with only one deterministic action, where there is not enough
evidence to distribute the reward accordingly. The second
metric, the average collected reward, was used with online
policy induction using Watkin’s Q(λ = 0.7) [Sutton and
Barto, 2018] and online evaluation for the Imm, Inf, and Del
policies. Figure 2 shows the comparison of using greedy Q-
learning as policy induction with three policies forR(s) (left)
and R(s, a, s′) (right). Here we report the average perfor-
mance over 200 randomly initiated rounds using the sample-
average technique. For each round, we explored the perfor-
mance of the induced policy by increasing the number of tra-
jectories from 1 up to 250. The results show that the Imm
and Inf policies performed much better than the Del policies.
Indeed, by considering the noise and uncertainty in the data,
the Inf policies performed even better than the Imm policy.
Finally, GP temporal difference learning [Engel et al., 2003]
was used for offline policy induction and its online evaluation
is shown in figure 4, along with the Atari games.

Figure 3: Evaluation during training. Left: Amidar. Right: Berzerk.

Atari Games
Given space limits, we will only report the online evaluations.
The evaluation on each of the Atari games was done by train-
ing a neural network for 25 iterations, playing the game once,
and storing the reward obtained on that episode. We repeated
this for 20,000 episodes (which means we trained the algo-
rithm for around 80 epochs). Figure 3 shows the rewards
collected per episode during the training process on two dif-
ferent Atari games. Figure 4 shows the normalized perfor-
mance of using each type of reward on several Atari games
after the algorithm has converged. The black horizontal line
shows the performance obtained when training DQN using
immediate rewards and is indicated as 100%. This allows us
to compare the three types of rewards, after normalizing the
performance for each game. Overall, the DQN Inf performed
much better than DQN Del across all games and the excep-
tions are Alien and ChopperCommand. Note that on 5 out
of 8 games, DQN Inf performed close to the DQN using the
immediate rewards and on the first two games, DQN Inf per-
formed even better than the policy using immediate rewards.
It is likely that DQN Inf performed poorly on ChopperCom-
mand because 200,000 steps of random play are not enough
data to learn the optimal policy.

5 Real-World Environments
We describe our experiments and results in two real-world
domains: e-learning and healthcare.

5.1 Experimental Settings
E-learning
Grounded in artificial intelligence concepts and cognitive the-
ory, Intelligent Tutoring Systems (ITSs) are computer sys-
tems that provide students with customized and individual-
ized learning experiences by guiding them through each step
of a problem solution and providing adaptive hints and feed-
back as needed. We used a logic ITS where students solve
problems by applying logic rules to derive new logical state-
ments. Each problem in the tutor can be presented as a
worked example (WE) or problem solving (PS). In WE, the
student observes how the tutor solves a problem; in PS, the
student solves the problem. The logic tutor problems are or-
ganized into six strictly ordered levels; in each level students
complete 3–4 problems. The last problem on each level is
used to calculate a level score, as students must solve this last
level problem (PS) without tutor help. When inducing RL
policies, our rewards were based on the difference between
the student’s current and prior level scores.
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Our training corpus contains 786 student-tutor interaction
logs collected over five years. On average, students spent
about 2 hours on the tutor and each trajectory contains more
than 19 decisions. Because both WE and PS are always
considered to be reasonable educational interventions in this
learning context, we refer to such a policy as a random yet
reasonable policy or random. From student-system interac-
tion logs, we extracted a total of 142 state features including:
10 Autonomy features describing the amount of work done
by the student; 29 Temporal features such as the average time
per step or the total time so far; 35 Problem Solving features
such as the difficulty of the current problem; 57 Performance
features such as the percent correct; and 11 Hints related fea-
tures such as the total number of hints requested.

We induced policies by applying DQN [Mnih et al., 2015]
with two Long Short-Term Memory (LSTM) layers [Hochre-
iter and Schmidhuber, 1997] of 100 LSTM units each, fol-
lowed by the fully-connected output layer and ReLU as the
activation function. To evaluate our GP-based algorithm,
DQN is applied to induce DQN policies for both the delayed
rewards (DQN-Del) and inferred rewards (DQN-Inf).

Healthcare
Our ultimate goal is to learn an “optimal” treatment pol-
icy for septic shock patients. Our electronic health records
(EHR) were collected from Christiana Care Health System
from July, 2013 to December, 2015 consisting of 210, 289
visits and 9, 029, 493 events. By combining the International
Classification of Diseases, Ninth Revision (ICD-9) and clin-
ician rules, we sampled 2, 964 positive septic shock trajecto-
ries and 2, 964 negative trajectories (no shock), keeping the
same distribution of age, gender, race, and the length of hos-
pital stay as in the original dataset. Twenty-two sepsis-related
features including vital signs, lab results, and oxygen con-
trols were extracted. The average rate of missing data was
83.2%, and we imputed the missing values using the expert
imputation rules as described in [Kim and Chi, 2018], which
forward-fills 8 hours for vital signs and oxygen control and
24 hours for lab results, combined with mean imputation for
the remaining missing values. After cutting off the positive
septic shock trajectories after the onset of septic shock, the
data were aggregated with 1-hour time windows, and we ex-
tracted mean, min, and max value in the time window. The
final number of features was 66, and the final dataset includes
5, 928 visits and 210, 494 aggregated events where the aver-
age length of trajectories is about 34 and can go up to 507.

To approximate patients’ hidden states and state-action (Q)
values, we leveraged 4 layers of fully connected neural net-
works with 128 hidden units for each layer. We extracted
three types of actions: antibiotic, vasopressor, and oxygen
control, and thus our action space is 23 because these actions
were often combined during the aggregation process. To de-
fine rewards, five septic stages were defined based on the clin-
ical rules, and the delayed reward for each stage was set as
follows: Infection (±1), Inflammation (±50), OrganFailure
(±100), Shock (±1000), and Death (±10000). The desig-
nated negative reward was given when a patient enters into
the corresponding stage, and its positive reward was given
back when the patient recovers from the stage. In this way,

Figure 4: Performance of Atari games and GridWorld. The black
line shows the immediate reward, normalized to show 100%.

an optimal policy should keep patients from getting negative
rewards and help them stay in non-negative states.

We compared two types of policies for the EHR data. The
physician policies were induced using SARSA, which fol-
lowed the recorded physician actions, and the agent policies
were induced using the dueling double DQN with prioritized
experience replay [Raghu et al., 2017]. The data was split
into 80% for training and 20% for test. To evaluate the in-
ferred rewards, we compared the physician policies with de-
layed and inferred rewards: Phys Del and Phys Inf respec-
tively with the two DQN policies with delayed and inferred
rewards: DQN Del and DQN Inf respectively.

5.2 Real World Results
E-learning
The effectiveness of DQN-Del and DQN-Inf were evaluated
theoretically using Expected Cumulative Reward (ECR) and
empirically through two controlled experiments. Figure 5
(Left) shows that DQN-Inf converged faster and had higher
ECR than DQN-Del.

Two empirical studies were performed to evaluate the ef-
fectiveness of DQN-Del in Spring 2018 and DQN-Inf in Fall
2018, respectively. They were conducted in an undergraduate
Discrete Mathematics course as a regular homework assign-
ment. In each study, the effectiveness of the corresponding
RL-induced policy was compared against the Random pol-
icy. The students were randomly assigned into the two con-
ditions while balancing their incoming competence. Overall,
the results from both experiments showed no significant dif-
ference between the DQN-Del and Random in Spring 2018
and between the DQN-Inf and Random in Fall 2018 on any
measures of learning performance. Therefore, despite the fact
that our theoretical results showed that the ECRs of the two
RL induced policy look very reasonable, our empirical results
showed they are no better than the Random policy.

There are two potential explanations for such findings.
First, while random policies are normally bad in many RL
tasks, in the context of WE vs. PS, our random policies can
be pretty strong baselines. Indeed, a lot of learning literature
suggests that the best instructional intervention is to alternate
WE and PS [Renkl et al., 2002; Schwonke et al., 2009]. Sec-
ond, there may be an aptitude-treatment interaction (ATI)
effect [Cronbach and Snow, 1977; Snow, 1991], where cer-
tain students achieve similar learning performance regard-
less of the induced policies whereas other students’ learn-
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Figure 5: ECR value during the training process of real environ-
ments. Left: E-learning. Right: Septic Treatment Policies.

ing is highly dependant on the effectiveness of the policies.
Thus, we divided the students into High vs. Low based on
their incoming competence and investigated the ATI effect.
While no ATI effect was found between DQN-Del and Ran-
dom for Spring 2018, a significant ATI effect was found be-
tween DQN-Inf and Random in Fall 2018. Based on their in-
coming competence, the students were split into four groups:
DRL-Inf-High (n = 20), DRL-Inf-Low (n = 21), Random-
High (n = 22), Random-Low(n = 21). As expected, no
difference was found between the two High groups or be-
tween the two Low groups on the incoming competence. A
two-way ANCOVA test on the post-training performance, us-
ing Condition {DRL-Inf, Random} and Competency {High,
Low} as factors and incoming competence as a covariate,
showed a significant interaction effect, F (1, 79) = 4.687,
p = 0.033. More specifically, while no difference was
found between the two Low Competency groups, a signifi-
cant difference was found between the two High Competency
groups: F (1, 39) = 5.513, p = 0.024 in that DRL-Inf-High
scored significant higher than the Random-High group.

Healthcare
The four septic treatment policies were evaluated using the
average ECR for each policy every 200 training iterations un-
til reaching 60, 000 iterations, where the agent sampled 32
states every iteration with the prioritized importance weights
on temporal difference errors. Figure 5 (Right) shows the
ECRs of the four policies as the training iteration increases.
Since the patients’ states could get worse as their diseases
progressed, the average rewards at a state of the test set were
negative: Del (-18.8) and Inf (-17.7), and the average ECRs
before training were Del (-267.6) and Inf (-134.3). Note that
the average reward of Inf can be dissimilar from the one of
Del due to the noise factor, and their ECRs can also signifi-
cantly diverge because of the reward distribution and the dis-
count factor, especially with such a large EHR dataset. In
this sense, the ECR metric is unreliable when comparing poli-
cies with different rewards, even though ECR can be supple-
mentary when comparing policies that use the same rewards.
Thus, we used ECR values to evaluate the RL methods (Phys
& DQN) but only considered the convergence rate of ECR
to evaluate the reward types (Del & Inf). In both DQN and
Phys, Inf converged faster than Del, and DQN Inf (23.6) and
Phys Inf (-96.3) achieved higher ECRs than DQN Del (4.5)
and Phys Del (-157), respectively.

To validate the impact of the agent policies with Inf and Del
for septic treatment, we analyzed two qualitative aspects of
the agents’ policies: 1) whether the policy can better prevent

Figure 6: The qualitative analysis of the septic treatment policies.
Left: Shock vs. Non-shock group. Right: Correlation between the
septic shock rate and the policy similarity.

the septic shock progress, and 2) whether the septic shock
rate monotonically decreases as the treatments are more sim-
ilar to the agent policy. Here, the similarity rate metric indi-
cates how close the visit-level treatment in the dataset is to
the agent policy [0:different, 1:same]. Since a hospital visit
consists of multiple temporal events, the similarity rate was
averaged by trajectory. First, Figure 6 (Left) contrasts the
policy similarities to Inf and Del between the shock and the
non-shock group. Overall, 15.2% of trajectories were similar
to Inf and 1.8% of them were to Del, which means Inf better
learned the physician policy than Del. When using Inf, the
non-shock group (20.6%) followed Inf more than the shock
group (9.7%), whereas when using Del, the non-shock group
(1.3%) followed Del less than the shock group (2.4%). Thus,
the more treatments followed Inf, the more effectively they
could reduce the septic shock rate. Next, shown in Figure 6
(Right), the shock rate of Inf almost monotonically decreases
as the similarity rate to Inf increases, while Del’s fluctuates.
This indicates that there is a negative correlation between the
policy similarity and the shock rate when using Inf but no cor-
relation when using Del. In sum, Inf more effectively learned
the optimal treatment policy to prevent septic shock than Del.

6 Conclusions
We proposed a GP-based estimator to infer the posterior
mean and variance of the immediate yet unobservable re-
wards from delayed rewards. Our evaluations using the Grid-
World testbed showed that the proposed framework is capa-
ble of approximating the inferred state-based rewards as well
as state-action-state based rewards. Moreover, we demon-
strated the effectiveness of the proposed framework by in-
ducing policies from inferred rewards that performed as well
as those directly using the immediate rewards and a similar
number of trajectories. Furthermore, we evaluated our pro-
posed algorithm in 8 Atari games and two real-world appli-
cations, e-learning and healthcare, and the empirical experi-
mental results demonstrated that the benefits of the proposed
algorithm were still valid for these tasks. These results con-
firm that our algorithm can be used in domains where online
interaction with the environment is prohibited or impossible,
the collected data is noisy and only the delayed rewards are
available at the end of each trajectory.
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