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Abstract
Classical axiomatizations of belief revision include
a postulate stating that if new information is con-
sistent with initial beliefs, then revision amounts to
simply adding the new information to the original
knowledge base. This postulate assumes a conser-
vative attitude towards initial beliefs, in the sense
that an agent faced with the need to revise them will
seek to preserve initial beliefs as much as possible.
In this work we look at operators that can assume
different attitudes towards original beliefs. We pro-
vide axiomatizations of these operators by varying
the aforementioned postulate and obtain represen-
tation results that characterize the new types of op-
erators using preorders on possible worlds. We also
present concrete examples for each new type of op-
erator, adapting notions from decision theory.

1 Introduction
Belief revision models rational changes of an agent’s epis-
temic state triggered by the availability of new, trusted infor-
mation. In the standard logical approach, an agent’s epistemic
state is represented by propositional formulas, while the stan-
dards of rationality a revision operator is expected to abide
by are encoded as logical axioms [Alchourrón et al., 1985;
Gärdenfors, 1988; Katsuno and Mendelzon, 1992; Fermé and
Hansson, 2018]. Notably, the classical set of revision postu-
lates turn out to define a class of operators that can be looked
at in two ways: on the one hand as change, guided by log-
ical postulates, of propositional theories in response to new
data; and on the other hand as choice functions over possible
worlds exploiting plausibility rankings over such interpreta-
tions. This correspondence tells us that an agent faced with
revision of its initial beliefs acts as if it chooses from a set of
feasible possible worlds the ones it considers most plausible.

A distinguishing feature of revision operators, as typically
axiomatized, is that they can be assumed to adopt a partic-
ular attitude towards initial beliefs, enforced through what
are called the Inclusion and Vacuity postulates in the AGM
formulation [Fermé and Hansson, 2018], or through a sin-
gle postulate equivalent to their conjunction in the KM ax-
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iomatization [Katsuno and Mendelzon, 1992]. This attitude
articulates the policy by which the agent’s prior information
behaves with respect to new data: thus, in the KM axiomati-
zation, the postulate in question states that if new information
µ is consistent with existing beliefs κ, then the result of revi-
sion is simply κ∧µ. In other words, the agent retains its initial
beliefs and simply supplements them with the new item of in-
formation, if it can do so in a consistent way. This is in line
with a view of revision where the information κ with which
the agent starts off represents the possible worlds the agent
finds most plausible, information not to be given up unless
challenged by conflicting new data, and spells out a conser-
vative attitude towards initial beliefs, guided by the desire to
preserve them as much as possible.

In the current work we view such a conservative attitude as
one among many that an agent can have towards its initial be-
liefs. By varying the postulate responsible for enforcing this
attitude we are able to axiomatize revision operators that em-
body a wider range of attitudes towards prior information,
and characterize these operators in terms of the types of pre-
orders they induce on the set of possible worlds. To illustrate
these principles we provide concrete operators, constructed
using two ingredients: a notion of distance between possible
worlds and an aggregation function that ranks possible worlds
depending on the initial beliefs. We also show, in each case,
how these operators fit into the landscape of new postulates
introduced. Without the theoretical apparatus of the new pos-
tulates, the concrete operators put forward would be merely
classified as deviant, since they do not satisfy the traditional
blend of Inclusion and Vacuity. But through the present anal-
ysis they can be viewed as encoding distinct and characteriz-
able stances an agent can take towards its beliefs.

Alternatives to the classical revision postulates have been
considered since as far back as the original publications in
the field [Gärdenfors, 1988; Katsuno and Mendelzon, 1991;
Herzig and Rifi, 1999]. However, we believe that a systematic
analysis of the intuition underlying the KM postulate corre-
sponding to Inclusion and Vacuity, as we perform here, sheds
new light on familiar topics.

2 Preliminaries
We assume a finite set P of propositional atoms, from which
the set Prop of propositional formulas is generated using the
usual propositional connectives. A propositional knowledge
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base κ is a finite set of propositional formulas, which we typ-
ically identify with the conjunction of its formulas

∧
µ∈κ µ.

The set of all propositional knowledge bases is 2Prop. The
universe U is the set of all possible interpretations (also called
possible worlds) for formulas in Prop. The models of a propo-
sitional formula µ are the interpretations which satisfy it, and
we write [µ] (respectively, [κ]) for the set of models of µ (re-
spectively, for

⋂
µ∈κ[µ]). If there is no danger of ambiguity,

we write models as words where the letters are the atoms as-
signed to true, e.g., {{a, b}, {b, c}} is written as {ab, bc}. For
µ1, µ2 ∈ Prop, we say that µ1 entails µ2, written µ1 |= µ2, if
[µ1] ⊆ [µ2], and that they are equivalent, written µ1 ≡ µ2, if
[µ1] = [µ2]. A formula µ (a knowledge base κ) is consistent
if [µ] 6= ∅ ([κ] 6= ∅), and complete if it has exactly one model.
The set of consistent knowledge bases is 2Propcons . If κ is a propo-
sitional knowledge base, then the dual κ of κ is obtained by
replacing every literal appearing in κ with its negation. If w is
an interpretation, the dual interpretation w is P \w. If W is a
set of interpretations, its dual W is defined as {w | w ∈W}.
Example 1. If P = {a, b, c} and κ = {a, a → b}, then
κ = {¬a,¬a→ ¬b}. We have that [κ] = {ab, abc}, the dual
of the interpretation ab is ab = c and [κ] = {c, ∅}.

In Example 1 we obtain that [κ] = [κ]. Though we do not
provide a formal proof, we mention here that this holds more
generally, i.e., for any κ ∈ 2Prop, it holds that [κ] = [κ].

If M is a set, then Bin(M) is the set of binary relations
on M. We write < for the strict part of ≤, i.e., x < x′ if
x ≤ x′ and x′ 6≤ x; moreover, x ≈ x′ if x ≤ x′ and x′ ≤ x.
The ≤-minimal elements ofM with respect to ≤ are defined
as min≤M = {x ∈ M | @x′ ∈ M such that x′ < x}.
An assignment from M1 to M2 is a function α : M1 →
Bin(M2). We write ≤κ instead of α(κ) if there is no dan-
ger of ambiguity. If W is a set of interpretations, we denote
by ϕW a propositional formula such that [ϕW ] =W .

3 Revision: Axioms and Characterizations
A propositional revision operator is a function ◦ : 2Propcons ×
Prop → Prop. The intention is that κ ◦ µ encodes changes
brought to existing held beliefs κ such that new, trusted infor-
mation µ is accepted. A sensible revision operator is expected
to resolve inconsistencies between κ and µ and to satisfy cer-
tain rationality criteria, presented below.

3.1 Basic Postulates
If κ, κ1, κ2 ∈ 2Propcons and µ, µ1, µ2 ∈ Prop, we first single
out a core set of axioms. Note that R2 as we write it does
not coincide with the second KM postulate. The second KM
postulate shows up in the latter part of this section.

(R1) κ ◦ µ |= µ.

(R2) If µ is consistent, then κ ◦ µ is consistent.

(R3) If κ1 ≡ κ2 and µ1 ≡ µ2, then κ1 ◦ µ1 ≡ κ2 ◦ µ2.

(R4) (κ ◦ µ1) ∧ µ2 |= κ ◦ (µ1 ∧ µ2).

(R5) If (κ◦µ1)∧µ2 is cons., then κ◦ (µ1 ∧ µ2) |= (κ◦µ1)∧
µ2.

Postulates R1−5 are part of the standard set of KM postu-
lates [Katsuno and Mendelzon, 1992], saying that a revision
operator incorporates new information µ (R1), returns a con-
sistent output if µ is consistent (R2), performs its task irre-
spectively of how beliefs are written down (R3) and satisfies
some coherence constraints when the revision formula is var-
ied (R4−5). A revision operator is basic if it satisfies R1−5.
Throughout the paper, we work only with basic operators.

3.2 Basic Assignments
Reflection on postulates R1−5 reveals that an operator ◦ sat-
isfying them chooses among models of µ and, in doing so,
behaves as if it has preferences over units of information.
Formally, this is cashed out by assigning to each consistent
knowledge base κ in 2Propcons a binary relation ≤κ on interpre-
tations in U : to revise κ by µ, then, becomes equivalent to
choosing the best models of µ in ≤κ. And, in the same way
that revision operators are expected to satisfy a set of basic
properties (postulates R1−5), rankings on U must satisfy a set
of properties, to be introduced in the following, that are con-
ducive to rational choice.

For an assignment α : 2Propcons → Bin(U), a revision operator
◦ and κ, κ1, κ2 ∈ 2Propcons , w1, w2 ∈ U , we first consider the
following properties:
(o1) ≤κ is reflexive.
(o2) ≤κ is transitive.
(o3) If κ1 ≡ κ2, then ≤κ1

=≤κ2
.

(o4) ≤κ is total.
(o5) [κ ◦ µ] = min≤κ [µ], for any propositional formula µ.

An assignment is basic if it satisfies properties o1−4. Notice
that properties o1−2 imply that≤κ is a preorder on U . Adding
property o4 makes ≤κ total, and o3 adds an independence of
syntax aspect to the assignment. If, on top of this, ≤κ satis-
fies o5, we say that the assignment α represents the revision
operator ◦ (and that ◦ is represented by α). The overloading
of the term ‘basic’ is intentional: as Theorem 1 shows, prop-
erties o1−5 define a class of rankings on interpretations that
fully characterize revision operators satisfying axioms R1−5.
Theorem 1. A revision operator satisfies postulates R1−5 iff
there exists an assignment α : 2Propcons → U representing it such
that, for any κ ∈ 2Propcons , ≤κ satisfies properties o1−5.

Proof. (“⇒”) The proof amounts to checking, one by one,
that axioms R1−5 are satisfied by operator ◦. The argument
is not new, and can be extracted from classical works on the
subject [Katsuno and Mendelzon, 1992].

(“⇐”) Ifw1,. . . ,wn are interpretations, we write ϕ1,...,n for
a propositional formula such that [ϕ1,...,n] = {w1, . . . , wn}.

Assume, now, that we are given a revision operator ◦ that
satisfies axioms R1−5. For any base κ and w1, w2 ∈ U ,
we define the assignment α : 2Propcons → U by saying that
w1≤κw2 if w1 ∈ [κ ◦ ϕ1,2]. We now show that ≤κ, thus
defined, satisfies properties o1−5.

Property o1 (reflexivity) follows using axioms R1 and R3.
For property o2 (transitivity), take w1, w2 and w3 such that
w1≤κw2 and w2≤κw3. First we show that w1 ∈ [κ ◦ ϕ1,2,3].
Notice that, by axioms R1 and R2, we have that ∅ ⊂ [κ ◦
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ϕ1,2,3] ⊆ [ϕ1,2,3]. We now do a case analysis. Case 1. Ifw1 ∈
[κ ◦ ϕ1,2,3], the conclusion is immediate. Case 2. If w2 ∈
[κ◦ϕ1,2,3], then (κ◦ϕ1,2,3)∧ϕ1,2 is consistent. Using axioms
R4−5 and R3, this implies that (κ ◦ ϕ1,2,3) ∧ ϕ1,2 ≡ κ ◦
(ϕ1,2,3 ∧ ϕ1,2) ≡ κ ◦ ϕ1,2. Since w1 ∈ [κ ◦ ϕ1,2] (because
w1≤κw2), we have that w1 ∈ [κ ◦ ϕ1,2,3]. Case 3. If w3 ∈
[κ◦ϕ1,2,3], then (κ◦ϕ1,2,3)∧ϕ2,3 is consistent. Using axioms
R4−5 and R3 again, we get thatw2 ∈ [κ◦ϕ1,2,3]. Reproducing
the reasoning from Case 2, we conclude thatw1 ∈ [κ◦ϕ1,2,3].
Once we have that w1 ∈ [κ ◦ ϕ1,2,3], it follows that (κ ◦
ϕ1,2,3) ∧ ϕ1,3 is consistent. So, by axioms R4−5 and R3, we
have that: (κ ◦ ϕ1,2,3) ∧ ϕ1,3 ≡ κ ◦ (ϕ1,2,3 ∧ ϕ1,3) ≡ κ ◦
ϕ1,3. Since w1 ∈ [κ ◦ ϕ1,2,3] and w1 ∈ [ϕ1,3], we conclude
that w1 ∈ [κ ◦ ϕ1,3]. This implies that w1≤κw3. Property
o3 follows from the fact that the definition of ≤κ does not
depend in any way on the syntax of κ. Property o4 follows by
axioms R1−2. For property o5, we show the double inclusion.
(“⊆”) Take w1 ∈ [κ ◦ µ], and w2 ∈ [µ]. We get that w1 ∈
[(κ◦µ)∧ϕ1,2] and, by axioms R4 and R3, it follows thatw1 ∈
[κ◦ (µ ∧ ϕ1,2)] and then that w1 ∈ [κ◦ϕ1,2]. Thus, w1≤κw2

and hence, w1 ∈ min≤κ [µ]. (“⊇”) Take w1 ∈ min≤κ [µ] and
suppose thatw1 /∈ [κ◦µ]. Since it follows that µ is consistent,
we have, by axioms R1−2, that there exists w2 ∈ [κ ◦ µ]. By
axiom R5, we have that (κ ◦ µ) ∧ ϕ1,2 |= κ ◦ (µ ∧ ϕ1,2).
By axiom R3, we have that κ ◦ (µ ∧ ϕ1,2) ≡ κ ◦ ϕ1,2. Since
w1 /∈ [κ ◦ µ], it follows that w1 /∈ [κ ◦ ϕ1,2], and hence
w2 <κ w1. But we also have that w1 ∈ min≤κ [µ], implying
that w1≤κw2, which is a contradiction.

Theorem 1 tells us that an agent revising beliefs along the
lines of postulates R1−5 behaves as if it ranks interpreta-
tions in U in a total preorder ≤κ that depends on initial
beliefs κ, and always picks the minimal models of µ ac-
cording to ≤κ. Such an agent, then, behaves like a ratio-
nal agent, in the sense of rational choice theory [Sen, 1984;
French, 1988], choosing the best elements from a given menu
of options: the menu, here, would be the models of µ, i.e., the
possible worlds the agent is allowed to believe in light of new
information, while the best elements are decided with refer-
ence to ≤κ. Thus, a revision operator can be seen as a choice
function over sets of interpretations: accordingly, Theorem 1
aligns with standard choice theoretic results [Arrow, 1959;
Sen, 1984; Moulin, 1991]. That a similar mathematical for-
malism underlies both belief revision and rational choice is,
by itself, not a new insight, the topic having been studied un-
der various guises [Rott, 2001; Bonanno, 2009]. The main
difference is one of interpretation, with ≤κ usually thought
of in revision as a plausibility ranking, i.e., the agent’s assess-
ment as to which possible worlds are more or less plausible.

Example 2. A doctor knows that the patient has been diag-
nosed with asthma (a), finds out that the patient is suffering
from shortness of breath (b) and infers that chest pain (c) is
also present: the two often go together in asthma, and such
stereotypical examples are more salient in the doctor’s mind
than less frequent, more exotic examples. In other words,
the doctor has initial information κ = a and a plausibility
ranking ≤κ over possible worlds (with respect to the alpha-
bet P = {a, b, c}) depicted in Figure 1. The doctor then re-
vises by µ = b and settles on a possible state of affairs that

≤κ
abc

ab

b, bc

[κ]

[µ]

Figure 1: Revision scenario of Example 2, showing the relevant sec-
tion of the preorder ≤κ on the basis of which the revision result is
constructed: only models of µ = b are depicted; the models of κ
among this set are highlighted in grey.

is most plausible according to their plausibility ranking ≤κ,
i.e., [κ◦µ] = min≤κ [µ] = {abc}. Note that the doctor, in this
case, takes the situation represented by a ∧ b ∧ c to be more
likely than a ∧ b ∧ ¬c.
One way of thinking of postulates R1−5 is that they axioma-
tize total preorders on interpretations. These preorders nomi-
nally depend on κ, but nothing in postulates R1−5 touches on
how models of κ should influence these preorders. In other
words, there is as yet no information about the attitude of
an agent towards its initial epistemic state, and postulates
R1−5 are consistent with arbitrary attitudes towards κ. How
should the models of κ stand in relation to all other interpreta-
tions? Example 2 offers a glimpse into one possible answer:
the agent starts off with some information κ and differenti-
ates among possible worlds consistent with κ: some of these
worlds are more plausible than others, perhaps as a result of
being more salient, or because of a systematic bias [Kahne-
man et al., 1982]. Still, as a whole, models of κ are more
plausible than any other interpretations consistent with the
new information µ. In other words, the agent is biased to-
wards the possible worlds consistent with κ. Are there, now,
other ways of arranging the models of κ in≤κ, ways that span
the space of possible such attitudes? We study this question
through the lens of additional axioms.

3.3 Attitudes Towards Initial Beliefs
If κ, κ′ ∈ 2Propcons , µ ∈ Prop, consider the following postulates:
(R6) If κ ∧ µ is consistent, then κ ∧ µ |= κ ◦ µ.
(R7) If κ ∧ µ is consistent, then κ ◦ µ |= κ ∧ µ.
(R8) If κ ◦ µ |= κ, then κ ◦ µ ≡ µ.
(R9) If µ 6|= κ, then (κ ◦ µ) ∧ κ is inconsistent.

(R10) If κ′ is complete and κ′ |= κ◦µ, then κ′ |= (κ ∨ κ′)◦µ.
Each of these postulates encodes a particular type of attitude
towards initial beliefs, and they are intended to be thought of
in conjunction with the basic set of postulates R1−5. Some
clarification is in order. Postulate R6 models an agent that in-
corporates all information in κ ∧ µ, and possibly extends this
to cover more ground. Postulate R7 models an agent that re-
serves the right to drop information from κ if it so sees fit,
even if that information is consistent with µ: we may imag-
ine this is done on the basis of certain preferences over the
information encoded by κ, i.e., the agent is partial towards
certain parts of κ to the detriment of others. Taken together,
postulates R6−7 imply that κ ◦ µ is equivalent to κ∧ µ, when
κ∧µ is consistent. This property models an agent who wants
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to preserve as much of κ as it can, and does not have any
bias towards either of the models of κ. Postulate R6 can be
equated with the Inclusion postulate in the AGM formulation
and R7 corresponds to Vacuity [Fermé and Hansson, 2018],
while in the KM axiomatization R6 and R7 are packaged to-
gether in one postulate (i.e., KM postulate R2) and presented
alongside R1−5 as the default set of rational properties for
revision [Katsuno and Mendelzon, 1992].

Postulates R8−9 focus on the dual knowledge base κ ob-
tained by replacing every literal in κ with its negated version.
If κ is a conjunction of literals, or if it is a complete (i.e., with
exactly one model) formula, then κ will be a formula whose
models are complements of the models of κ.

Example 3. If P = {a, b, c} and κ = {a∧ b} is a knowledge
base over the alphabet P , then κ = {¬a ∧ ¬b}, and we have
that [κ] = {ab, abc}, while [κ] = {∅, c}
Thus, if κ is very specific (e.g., is a conjunction of literals),
then κ can be thought of as the point of view opposite to
that of κ, and situations can be imagined in which it is de-
sirable to put bounds on the revision function in terms of
how it treats information encoded by κ. This is the case if
the agent has, or is required to have, a definite opinion on
every item from an agenda, as is typically the case in Judg-
ment Aggregation [Endriss, 2016]; if κ is a ‘vivid’ knowl-
edge base [Levesque, 1986]; or, if it encodes something like
an agent’s preferred bundle from a set of available items. In
all these cases κ can be required to be a conjunction of literals
or a complete formula.

Postulate R8 says that if κ undergoes revision by a formula
µ embodying such an adverse perspective, then the agent
must adopt µ: in other words, the agent has no room for ma-
neuvering towards a more amenable middle ground. Such a
revision policy makes more sense when considered along-
side postulate R9, which specifies that if the agent has the
option of believing states of affairs not compatible with κ,
it should wholeheartedly adopt those as the most plausible
stance. Taken together, postulates R8−9 inform the agent to
believe states of affairs compatible with κ only if it has no
other choice in the matter: the models of κ should be part
of a viewpoint one is willing to accept only as a last resort.
Postulate R10 is best understood through an example.

Example 4. An agent intends to go to an art museum, the
beach and a concert, i.e., κ = {a∧ b∧ c}, with P = {a, b, c}.
The agent then learns that it only has time for one of these
activities and chooses the art museum, i.e., κ◦µ ≡ a∧¬b∧¬c.
If the agent’s initial intentions were less specific, for instance
that it would either go to all three places or only to the art
museum (i.e., κ = {(a∧ b∧ c)∨ (a∧¬b∧¬c)}), then, faced
with the same new information µ, a ∧ ¬b ∧ ¬c should still
feature as one of its most preferred options.

A clearer view of postulates R6−10 emerges when looking at
how they situate the models of κ in a total preorder ≤κ, for
κ, κ′ ∈ 2Propcons , w1, w2, w

′ ∈ U :

(o6) If w1 ∈ [κ], then w1≤κw2.

(o7) If w1 ∈ [κ] and w2 /∈ [κ], then w1<κw2.

(o8) If w1 ∈ [κ], then w2≤κw1.

(o9) If w1 ∈ [κ] and w2 /∈ [κ], then w2<κw1.
(o10) If w′≤κw and [κ′] = {w′}, then w′ ≤κ∨κ′ w.
Properties o6−10 turn out to characterize axioms R6−10 on the
semantic level, as per the following representation result.
Theorem 2. If ◦ is a basic revision operator and α : 2Propcons →
U is a basic assignment that represents it, then, for any κ ∈
2Propcons and µ ∈ Prop, the following equivalences hold:

(1) ◦ satisfies axiom R6 iff ≤κ satisfies property o6;
(2) ◦ satisfies axiom R7 iff ≤κ satisfies property o7;
(3) ◦ satisfies axiom R8 iff ≤κ satisfies property o8;
(4) ◦ satisfies axiom R9 iff ≤κ satisfies property o9;
(5) ◦ satisfies axiom R10 iff ≤κ satisfies property o10.

Proof. Recall that we denote by ϕ1,2 a propositional formula
such that [ϕ1,2] = {w1, w2}. For equivalence 1, we show
each direction in turn. (“⇒”) Take an assignment α satisfying
property o6, and the revision operator ◦ represented by it. We
assume that κ ∧ µ is consistent, and show that for any w ∈
[κ ∧ µ], it holds that w ∈ [κ ◦ µ] as well. By property o5, this
is equivalent to showing that w ∈ min≤κ [µ]. Take w′ ∈ [µ].
Since w ∈ [κ], we can apply property o6 to get that w≤κw′.
Hence w ∈ min≤κ [µ]. (“⇐”) Take a basic revision operator
◦ satisfying R6. and the assignment α which represents it. To
show that ≤κ satisfies property o6, take two interpretations
w1 and w2 such that w1 ∈ [κ]. Then, by axiom R6, we have
that κ ∧ ϕ1,2 |= κ ◦ ϕ1,2. By property o5, it holds that [κ ◦
ϕ1,2] = min≤κ [ϕ1,2] and, since w1 ∈ [κ ∧ ϕ1,2], it follows
that w1 ∈ min≤κ [ϕ1,2]. Thus, w1≤κw2.

Equivalence 2 uses similar reasoning, and equivalences 3
and 4 are analogous to 1 and 2, respectively. For equivalence
5, assume first that axiom R10 holds, and take interpreta-
tions w and w′ and a knowledge base κ′ such that w′≤κw
and [κ′] = {w′}. To show that w′ ≤κ∨κ′ w, we must show
that w′ ∈ [(κ ∨ κ′) ◦ ϕw,w′ ], where ϕw,w′ is a formula such
that [ϕw,w′ ] = {w,w′}. This follows immediately by apply-
ing axiom R10. Conversely, suppose [κ′] = {w′}, and take
w ∈ [κ ◦ µ]. Then, we get that w′≤κw, and we can apply
property o10 to derive the conclusion.

Theorem 2 is better understood through an illustration of how
such preorders treat models of κ. Property o6 says that models
of κ are minimal elements in κ, i.e., the agent considers possi-
ble worlds satisfying its beliefs among the most plausible pos-
sible worlds, though possibly not uniquely so (Figure 2-(a)).
Property o7 states that there are no counter-models of κ more
plausible than the models of κ, but the models of κ them-
selves may not be equally plausible (Figure 2-(b)). Properties
o8−9 say that models of the dual knowledge base κ are the
least plausible interpretations in ≤κ (Figure 2-(c,d)), while
property o10 says that if w′ is more plausible than w when
the initial beliefs are κ, then w′ would still be more plausible
than w if it were part of the initial beliefs (Figure 2-(e)).

Together, properties o1−7 define what is more commonly
known as a faithful assignment, placing all and only models
of κ on the lowest level of ≤κ. This corresponds to an agent
that holds its initial beliefs to be the most plausible states
of affairs [Katsuno and Mendelzon, 1992]. Consequently,
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≤κ
• • • •

. . .

. . .

(a) o6

≤κ
• •
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. . .

(b) o7

≤κ

• • • •
. . .
. . .

(c) o8

≤κ

• •
• •
. . .

(d) o9

≤κ

. . .
• •
• •
w′
w

⇒

≤κ∨κ′

. . .
• •
w′ •
w

(e) o10

Figure 2: Schematic view of prototypical preorders satisfying each
of the properties o6−10; models of κ are in the light gray area, mod-
els of κ are in the dark gray area.

Theorem 1 plus equivalences 1-2 from Theorem 2 make up
the classical representation result for belief revision opera-
tors [Katsuno and Mendelzon, 1992]. Here we have opted
for a more fine-grained approach to the placement of mod-
els of κ in ≤κ, which allows a more diverse representation of
the different types of attitudes an agent can have towards ini-
tial beliefs. Though operators that do not satisfy the classical
KM postulate R2 have been considered before [Ryan, 1996;
Benferhat et al., 2005], the idea that such deviations corre-
spond to possible epistemic attitudes and can be axiomatized
is, to the best of our knowledge, new.

3.4 Indifference to Already Held Beliefs
One particular consequence of weakening the KM axiom R2

(axioms R6−7 in the current context) is that the following
property is not guaranteed to hold anymore:
(RIDF) κ ◦ κ ≡ κ.
This property, called here RIDF (for indifference to already
held beliefs), says that revising with information the agent al-
ready believes does not change the agent’s epistemic state.
More generally, the KM standard set of postulates implies
that revising by any formula µ such that κ |= µ results in
κ. It quickly becomes apparent that axiom R6 implies RIDF,1
but R7 does not. Thus, if an agent is allowed to rank models
of κ unequally, then RIDF is not guaranteed to hold.
Example 5. If P = {a, b}, take κ = {a ∨ b} and a revi-
sion operator that satisfies axiom R7, and which orders in-
terpretations as follows: a ≈κ b <κ ab <κ ∅. We get that
[κ ◦ κ] = {a, b}, i.e., κ ◦ κ ≡ (a↔ ¬b) 6≡ κ.
This points to a more graded view of what it means to believe
κ. Thus, an agent might have a certain threshold of plausi-
bility, along the lines of what is known in epistemology as
the Lockean thesis [Foley, 1993], according to which it cali-
brates its beliefs: anything above the threshold counts as part
of the belief κ and anything below counts as disbelief. This
fits with the idea that an agent might assign different degrees
of plausibility to states of affairs consistent with its belief κ:
indeed, this is the point of view we endorse here, in contrast
to more standard approaches, which consider that an agent
assigns equal degrees of plausibility to all items of its belief.
Thus, incoming information that confirms an agent’s belief

1The converse is not true: RIDF enforces only that models of κ
are equally plausible, but not where they are placed in ≤κ.

might have the effect of reinforcing parts that are given more
plausibility at the expense of parts that are given less, and this
is the kind of situation we take to be modeled by Example 5.

What would be worrying would be a revision policy that
makes an agent cycle between different viewpoints when con-
fronted repeatedly with the same type of information: we will
see that for revision operators satisfying R7 this concern is
unwarranted, but we must first introduce some new notation.
We write κi for the knowledge base obtained by revising κ by
itself an i number of times. Thus, κ0 = κ and κi+1 = κi ◦ κ.
Consider now the following property:
(RSTB) There is n ≥ 1 such that κm ≡ κn, for every m ≥ n.
A revision operator ◦ is stable if it satisfies property RSTB.
Stability implies that repeated revision by κ ultimately settles
(or stabilizes) on a set of models that does not change through
subsequent revisions by κ. The following result proves rele-
vant to the issue of stability.
Proposition 3. If a revision operator ◦ satisfies axioms R1

and R7, then κi+1 |= κi.

Proof. By axiom R1, we have that κ ◦ κ |= κ, and thus κ1 |=
κ0. Applying axiom R7, we have that (κ ◦ κ) ◦κ |= (κ ◦κ)∧
κ |= κ ◦ κ. Thus, κ2 |= κ1, and it is straightforward to see
how this argument is iterated to get the conclusion.

If the operator ◦ also satisfies axiom R2 (which, here, says
that if the revision formula is consistent, then the revision
result is also consistent), it follows that if κ is consistent,
then κi is consistent, for any i ≥ 0. Thus, combining this
fact and Proposition 3, we get that repeated revision by κ
leads to a chain of ever more specific knowledge bases, i.e.,
∅ ⊂ · · · ⊆ [κi+1] ⊆ [κi] ⊆ · · · ⊆ [κ0]. Since a knowledge
base has a finite number of models, it falls out immediately
from this that there must be a point at which further revision
by κ does not change anything.
Corollary 4. A basic revision operator ◦ satisfying axiom R7

is stable.
Unfortunately, axioms R8−9 do not guarantee stability. Since
these axioms require only that the agent places the models of
κ as the least plausible interpretations, it becomes possible
that an agent’s plausibility ranking does not hold on to a core
set of interpretations through successive revisions by κ.
Example 6. If P = {a, b}, take κ = {¬b} and a revi-
sion operator satisfying R8−9, which orders interpretations
as shown in Figure 3. We have that [κ0] = [κ] = {∅, a},
[κ1] = [κ◦κ] = {a}, and [κ2] = [κ1◦κ] = {∅}. By R3, subse-
quent revisions by κ cycle between {a} and {∅} ([κ3] = {a},
[κ4] = {∅}), thus never settling on a stable answer.
The issue of stability suggests another dimension along which
revision operators can be analyzed, with Corollary 4 and Ex-
ample 6 showing that a revision operator does not satisfy it
trivially. Example 6, in particular, shows that there is inter-
play between ≤κ and ≤κ′ , if κ′ |= κ, which is relevant to
the question of whether an operator is stable. This interplay
is reminiscent of topics like iterated revision and kinetic con-
sistency [Darwiche and Pearl, 1997; Peppas and Williams,
2016], but pursuing it further would take us too far afield of
the aims of the current work.
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Figure 3: Repeated revision by κ cycles between {a} and {∅}.

4 Concrete Operators with Varying Attitudes
We now ask: what is a natural way to construct operators with
such varying attitudes towards initial information? Our an-
swer builds on ideas found in belief merging [Konieczny et
al., 2004; Konieczny and Pérez, 2011], i.e., it defines rank-
ings on interpretations by appeal to two main ingredients.
The first is a distance d : U × U → R≥0 between interpre-
tations, defined such that d(w1, w2) = 0 iff w1 = w2 and
d(w1, w2) = d(w2, w1). Given w ∈ U and κ ∈ 2Propcons such
that [κ] = {w1, . . . , wn}, the vector of distances from w to κ
is d(w, κ) = (d(w,w1), . . . , d(w,wn)). For brevity we will
omit commas and simply write d(w, κ) as a string of num-
bers. We recall two prominent examples of distance: drastic
distance dD works by the all-or-nothing rule: dD(w1, w2) = 0
if w1 = w2, and 1 otherwise; Hamming distance dH, counts
the number of atoms on which two interpretations differ. The
second ingredient is an aggregation function (more precisely,
a family of functions) f : Rn → R, for n ∈ N, mapping
a distance vector d(w, κ) to a number, and used to compare
distance vectors. We write

−−−−→
d(w, κ) and

←−−−−
d(w, κ) for the vec-

tors of distances from w to κ ordered in ascending order and
descending order, respectively. The lexicographic order be-
tween two vectors is denoted by ≤lex. The minimal and max-
imal elements of d(w, κ) are min d(w, κ) and max d(w, κ),
respectively, and

∑
d(w, κ) =

∑
wi∈[κ] d(w,wi). The cen-

trality of w with respect to κ is cen(w, κ) = max d(w, κ) −
min d(w, κ). The displacement of w with respect to κ is
dis(w, κ) = min d(w, κ)−min d(w∗, κ), where w∗ is an in-
terpretation such that min d(w∗, κ) is minimal among all the
interpretations w′ for which cen(w′, κ) = cen(w, κ). Finally,
the agreeability index of w with respect to κ is agr(w, κ) =
min{min d(w, κ), cen(w, κ) + dis(w, κ)}, while the dis-
agreeability index of w with respect to κ is dagr(w, κ) =
n− agr(w, κ), where n = |P|.

Given a distance d between interpretations and aggregation
function f , we write ≤d, fκ for the ranking generated using
d and f , and ◦d, f for the revision operator represented by
the assignment generated using d and f , i.e., [κ ◦d, f µ] =
min≤d, fκ

[µ]. We then define the following types of rankings:
w1≤d,min

κ w2 if min d(w1, κ) ≤ min d(w2, κ),
w1≤d, lmin

κ w2 if
−−−−−→
d(w1, κ) ≤lex

−−−−−→
d(w2, κ),

w1≤d, agrκ w2 if agr(w1, κ) ≤ agr(w2, κ),
w1≤d,max

κ w2 if max d(w1, κ) ≤ max d(w2, κ),
w1≤d, lmax

κ w2 if
←−−−−−
d(w1, κ) ≤lex

←−−−−−
d(w2, κ),

w1≤d, dagrκ w2 if dagr(w1, κ) ≤ dagr(w2, κ),
w1≤d, sumκ w2 if

∑
d(w1, κ) ≤

∑
d(w2, κ).

∅ a b abc
−−−−−→
dH(w, κ)

←−−−−−
dH(w, κ) min max

∑
∅ 0 1 1 3 (0113) (3110) 0 3 5
a 1 0 2 2 (0122) (2210) 0 2 5
b 1 2 0 2 (0122) (2210) 0 2 5
c 1 2 2 2 (1222) (2221) 1 2 7
ab 2 1 1 1 (1112) (2111) 1 2 5
ac 2 1 3 1 (1123) (3211) 1 3 7
bc 2 3 1 1 (1123) (3211) 1 3 7
abc 3 2 2 0 (0223) (3220) 0 3 7

Table 1: Table of Hamming distances for κ from Example 7

Example 7. If P = {a, b, c}, take κ = {(¬(a ∧ b) ∧ ¬c) ∨
(a ∧ b ∧ c)}, for which we get that [κ] = {∅, a, b, abc}. For
the interpretation w = ∅, we get that

−−−−−→
dH(w, κ) = (0113),

←−−−−−
dH(w, κ) = (3110), min dH(w, κ) = 0, max dH(w, κ) = 3
and

∑
dH(w, κ) = 5. The distances and aggregated distances

for each interpretation are depicted in Table 1. Notice how
the models of κ are distributed when the interpretations are
ranked according to the different aggregation functions used:
we have ∅≈H,min

κ a, since min dH(∅, κ) = min dH(a, κ) = 0,
but ∅<H, lmin

κ a, since (0113) ≤lex (0122). Also, we have that
c<H,max

κ abc, c<H, lmax
κ abc and ab<H, sum

κ abc, i.e., models of
κ are not minimal in ≤H,max

κ , ≤H, lmax
κ and ≤H, sum

κ . In par-
ticular, ≤H,max

κ makes the models of κ (i.e., abc, bc, ac and
∅) the least plausible interpretations.
The agreement and disagreement operators (◦d, agr and
◦d, dagr) are simpler than they appear: the idea behind ◦d, agr
is to allow interpretations other than the models of κ as the
minimal elements of the preorder ≤κ. Notice that the score
of an interpretation in ≤d, agrκ is 0 if it is either a model of κ,
or it is equidistant from every model of κ (i.e., its centrality is
0) and it is the ‘closest’ interpretation to κ with this property.
The disagreement operator ◦d, dagr works in similar fashion,
by making models of κ and interpretations minimally equidis-
tant to them the least plausible interpretations in ≤d, dagrκ .
Example 8. If P = {a, b, c}, take κ such that [κ] = {a, b, c},
and notice that dH(∅, κ) = (111) and dH(abc, κ) = (222),
i.e., they are both equidistant to κ, hence their centrality is 0.
However, ∅ is closer to κ than abc (its displacement is 0, com-
pared to abc’s displacement of 1), and agr(∅, κ) = 0. Thus,
what ≤H, agr

κ does is to give a minimal score to models of κ
and to the minimally equidistant interpretation ∅. By contrast,
≤H, dagr
κ gives a maximal score to the models of κ and to the

maximally equidistant interpretation abc.
All operators proposed generate a total preorder ≤κ over in-
terpretations, but differ in how they arrange models of κ in
≤κ: this corresponds to the different attitudes an agent can
have towards κ prior to any revision. The operator ◦H,min,
known as Dalal’s operator [Dalal, 1988], considers all mod-
els of κ as the most plausible elements in ≤κ and is the
only operator for which κ ◦ µ is equivalent to κ ∧ µ when
κ ∧ µ is consistent. Similarly, ◦H, lmin also ranks models of κ
as more plausible than any other interpretation, but discrimi-
nates among models of κ. The operators≤H,max

κ and≤H, lmax
κ

push away models of κ, under the assumption that they are
the most implausible possible worlds. They difference be-
tween them is that ≤H,max

κ considers models of κ equally
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R6 R7 R8 R9 R10 RIDF RSTB

◦H,min X X × × X X X
◦H, lmin × X × × X × X
◦H, agr X × × × X X X
◦H,max × × X X × × X
◦H, lmax × × × X × × X
◦H, dagr × × X × × X X
◦H, sum × × × × X × X
◦dr X X × × X X X
◦fg X × X × X X X

Table 2: Satisfaction of axioms

implausible, whereas≤H, lmax
κ uses the more fine-grained lex-

icographic approach. The operator ◦H, agr makes models of κ
the most plausible elements in ≤κ but also allows other in-
terpretations on that position, in particular certain interpreta-
tions that are equidistant to κ as per Example 8. The intuition
is that an interpretation equally distanced from models of κ
is like a compromise point of view, with good chances of be-
ing correct if it is close to κ. The operator ◦H, dagr is the dual
of ◦H, agr and, finally, operator ◦H, sum evokes utilitarian ap-
proaches by choosing interpretations that minimize the sum
of the distances to each model of κ.

Quick reflection shows that operators obtained with drastic
distance dD collapse into two main categories. To get a grasp
on this fact, consider first the drastic revision operator ◦dr
defined, for κ ∈ 2Propcons and µ ∈ Prop, as κ ◦dr µ = κ ∧ µ, if
κ∧µ is consistent, and µ otherwise, and the forgetful revision
operator ◦fg defined as κ ◦fg µ = µ.

Proposition 5. For any knowledge base κ and formula µ,
it holds that κ ◦D,min µ ≡ κ ◦D, lmin µ ≡ κ ◦D, lmax µ ≡
κ ◦D, sum µ ≡ κ ◦dr µ. Moreover, κ ◦D, agr µ ≡ κ ◦fg µ and

κ ◦D,max µ ≡ κ ◦D, dagr µ ≡
{
κ ◦dr µ, if κ is complete,
κ ◦fg µ, otherwise.

With Hamming distance the landscape is more diverse, as the
different attitudes the operators assume towards models of κ
lead to genuinely different revision strategies. Nonetheless,
certain relationships between the operators still hold, with
lexicographic operators being the most discriminating, in the
sense that they pick formulas with fewer models.

Proposition 6. For any κ ∈ 2Propcons and µ ∈ Prop, we have that
κ ◦H, lmin µ |= κ ◦H,min µ |= κ ◦H, agr µ and κ ◦H, lmax µ |=
κ ◦H,max µ |= κ ◦H, dagr µ.

All operators generate total preorders over interpretations, so
by Theorem 1 they all satisfy axioms R1−5. Satisfaction with
respect to the newly introduced postulates is clarified below.

Proposition 7. For d ∈ {D,H} and f ∈
{min, lmin,max, lmax, agr, dagr, sum}, the operators
◦d, f satisfy postulates R6−10, IDF, STB as per Table 2.

Proof. It is already known that≤H,min
κ (known as Dalal’s op-

erator [Dalal, 1988; Katsuno and Mendelzon, 1991]) satisfies
axioms R5−6. Operator ◦H, lmin satisfies R7 (via property o7)
because if w1 ∈ [κ] and w2 /∈ [κ], then min dH(w1, κ) = 0,
while min dH(w2, κ) > 0; hence

−−−−−−→
dH(w1, κ) <lex

−−−−−−→
dH(w2, κ)

and w1<
H, lmin
κ w2. For ◦H, lmin and axiom R6, take [κ] =

{a, b, ab} and [µ] = {a, b, ab}. We get that [κ ◦H, lmin µ] =
{ab}. The operator ◦H, agr satisfies axiom R6 because it
makes all models of κ, and potentially other interpretations as
well (which is the reason why it does not satisfy axiom R7),
as the equally most plausible interpretations in ≤H, agr

κ . Since
all these operators place the models of κ on the lowest levels
of≤κ, they all satisfy axiom R10. Postulates R8−9 are not sat-
isfied by ◦H,min, ◦H, lmin and ◦H, agr because these operators
do not make models of κ the least plausible interpretations
in ≤κ: if κ = a ∨ b, then κ shares models with κ, yet these
(along with all other models of a ∨ b) are among the most
plausible interpretations in≤H,min

κ ,≤H, lmin
κ and≤H, agr

κ . The
case for ◦H,max, ◦H, lmax and ◦H, dagr is analogous to the one
for ◦H,min, ◦H, lmin and ◦H, agr, as they can be seen as duals of
each other. For the operator ◦H, sum, take [κ] = {a, b, c} and
[µ] = {∅, a, b, c}. We get that [κ ◦H, sum µ] = {∅}, as ∅ min-
imizes the sum of the Hamming distances to the models of
κ: this is a counter-example to axioms R6−7. For R8−9, take
[µ′] = {∅, ab, ac, bc}. For ◦H, sum and R10, notice that adding
w′ to [κ] creates a new column forw′ in the table of distances,
in which the distance corresponding to w′ is 0, i.e., the score
assigned to w′ in ≤H, sum

κ∨κ′ does not increase with respect to
≤H, sum
κ . For the operators defined with dD, we use Proposi-

tion 5. In particular, operators ◦D,max and ◦D, dagr satisfy a
postulate if and only if both ◦dr and ◦fg satisfy it. Satisfaction
of RIDF and RSTB is straightforward, keeping in mind how
the various operators arrange the models of κ in the gener-
ated preorders.

5 Conclusion
We have looked at the classical revision axioms from the
point of view of what they assume about an agent’s attitude
towards its initial beliefs, and argued that this attitude is em-
bedded in a specific axiom (the KM postulate correspond-
ing to Inclusion and Vacuity). By varying this axiom we were
able to put forward and characterize a wide range of revi-
sion operators, and refine previously entangled intuitions in
the process. Analysis of the new operators also uncovered the
principles of indifference to already held beliefs (RIDF) and
stability (RSTB). Further work is needed to link these notions
to the other axioms, to map out their interplay and to provide
them with semantic characterizations.

At the same time, the more fine grained view on the types
of attitudes an agent can have towards its initial beliefs raises
the question of what these attitudes are good for, i.e., whether
they can be used for tasks such as learning [Kelly, 1998;
Baltag et al., 2011]. The idea here is to view revision as part
of an ongoing process by which the agent continuously re-
fines its representation of the outside world, with the aim of
settling on stable, correct information. Such a task, we think,
provides a natural benchmark for revision operators, and it
has the potential to connect belief revision to other topics of
importance to the field of AI.
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