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Abstract
We study the approximation of a description logic
(DL) ontology in a less expressive DL, focussing
on the case of Horn DLs. It is common to construct
such approximations in an ad hoc way in practice
and the resulting incompleteness is typically nei-
ther analyzed nor understood. In this paper, we
show how to construct complete approximations.
These are typically infinite or of excessive size and
thus cannot be used directly in applications, but our
results provide an important theoretical foundation
that enables informed decisions when constructing
incomplete approximations in practice.

1 Introduction
There is a large number of description logics (DLs) that vary
considerably regarding their expressive power and computa-
tional properties [Baader et al., 2017] and despite prominent
standardization efforts, many different DLs continue to be
used.1 As a result, it can be necessary to convert an ontol-
ogy formulated in a DL LS , the source DL, into a different
DL LT , the target DL. For example, this happens in ontology
import when an engineer who designs an ontology formu-
lated in LT wants to reuse content from an existing ontology
formulated in LS . A particularly important case is that LT

is a fragment of LS , in which case the described problem
is ontology approximation, a form of knowledge compilation
[Selman and Kautz, 1996; Darwiche and Marquis, 2002].

In this paper, we are interested in approximating an ontol-
ogy OS formulated in a DL LS by an ontology OT formu-
lated in a fragment LT of LS , aiming to preserve all informa-
tion fromOS that is expressible inLT ; this is called a greatest
lower bound in knowledge compilation [Selman and Kautz,
1996]. Formally, for every LT concept inclusion C v D
that is formulated in the signature Σ of OS , we require that
OS |= C v D if and only if OT |= C v D, and likewise
for role inclusions and any other type of ontology statement
supported by LT . We say that OT is sound as an approxima-
tion if it satisfies the “if” part of this property and complete
if it satisfies the “only if” part. We consider the case that

1See, for example, the BioPortal repository at https://bioportal.
bioontology.org/.

OT must be formulated in Σ (non-projective approximation)
and the case that additional symbols are admitted (projective
approximation).

In practice, approximations are often constructed in an ad
hoc way that is sound but not complete. In fact, it is common
to simply drop all statements from OS that are not express-
ible in LT , or at least inexpressible parts thereof. This easily
leads to incompleteness, as illustrated by the following ex-
ample extracted from the Galen ontology2, slightly simplified
for presentation purposes. Let PathoPhen stand for “patho-
logical phenomenon”, isConOf for “is consequence of”, and
hasCon for “has consequence”. Galen contains the following
statements formulated in the DL ELHI , the first three being
concept inclusions and the fourth one a role inclusion:

Hyperhidrosis v PathoPhen u ∃hasCon.ClammySkin
∃isConOf.PathoPhen v PathoPhen

∃hasCon.PathoPhen v PrecipitatingFactor

hasCon v isConOf−.

These imply as a consequence

Hyperhidrosis v PrecipitatingFactor. (1)

Assume that this ontology has to be approximated in the frag-
ment ELH of ELHI that does not admit inverse roles. A
typical ad hoc approach would be to simply drop the role in-
clusion in the fourth line, resulting in an incomplete approx-
imation that no longer has Consequence (1). This, however,
can easily be fixed by further adding the concept inclusion

Hyperhidrosis u ∃hasCon.> v
∃hasCon.∃isConOf.Hyperhidrosis. (2)

as a (partial) substitute of the dropped role inclusion.
The aim of this paper is to systematically study the struc-

ture of complete ontology approximations. There is, however,
a major caveat. As we show, complete approximations must
be infinite even in rather simple cases. Moreover, while fi-
nite approximations exist when the depth of the concept in-
clusions to be preserved is bounded by a constant, the result-
ing approximations are still of non-elementary size. There is
no miraculous way around these facts and thus the approxi-
mations constructed in this paper cannot be directly used in

2http://www.opengalen.org/
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applications. However, they provide an important theoretical
foundation that enable and guide informed decisions when
constructing incomplete approximations in practice. In the
above example taken from Galen, for instance, concept in-
clusion (2) is part of the complete approximation proposed in
this paper and thus an explicit candidate for inclusion also in
approximations constructed in practice.

As the source DL LS , we consider the expressive Horn DL
Horn-SRIF and fragments thereof. As the target DLLT , we
consider ELR⊥ and corresponding fragments thereof, where
ELR⊥ denotes the extension of the more widely known DL
ELH⊥ with role inclusions of the form r1 ◦ · · · ◦ rn v r.
Subsumption is EXPTIME-complete in all considered source
DLs and PTIME-complete in all cosidered target DLs [Baader
et al., 2005; Krötzsch et al., 2013]. While our approximations
do not aim at efficient reasoning, we thus support ontology
designers who build an ontology in a tractable DL and want
to import in a well-understood way from an existing ontology
formulated in a computationally more expensive DL.

We provide the following results. In Section 3, we con-
struct ELF -to-EL approximations, thus approximating away
functional roles. We then proceed to ELHI-to-ELH, approx-
imating away inverse roles, where the I typeset in small font
means that inverse roles are admitted only in role inclusions
of the form r v s− but not in concept inclusions. This is
a very common way to use inverse roles in practice, for ex-
ample more than 96% of the ontologies in BioPortal that use
inverse roles at all use them only in this form and this is sim-
ilar for other ontology repositories. We next treat ELHIF⊥-
to-ELH⊥ under a certain syntactic assumption that restricts
the interplay of role inclusions, functional roles, and inverse
roles in OS . This covers also other relevant subcases such
as ELHF -to-ELH, without syntactic restrictions. All ap-
proximations constructed in Section 3 are non-projective and
also provide finite approximations in the depth bounded case.
The completeness proofs are non-trivial and use a version of
the chase that is specifically tailored to our approximation
schemes.

In Section 4, we present ELRIF⊥-to-ELR⊥ approxima-
tions. The presented approximations are non-projective when
OS is inverse closed, meaning that for every role name r
inOS , there is a role name r̂ that is defined via role inclusions
to be the inverse of r. This also yields projective approxima-
tions for the case where inverse closedness is not assumed
and for the Horn-SRIF -to-ELR⊥ case through a well-
known normalization procedure. The completeness proof is
again non-trivial, but based on a different approach, namely
a novel connection between ontology approximation and the
axiomatizations of quasi-equations valid in classes of semi-
lattices with operators (SLOs) [Sofronie-Stokkermans, 2013;
Sofronie-Stokkermans, 2017; Kikot et al., 2017].

We then proceed to study ELI⊥-to-EL⊥ approximations
in Section 5. In contrast to the cases considered before, where
(after normalization) both LS and LT are based on the con-
cept language EL⊥, here the concept language of LS is dif-
ferent from the one of LT . We present non-projective ap-
proximations for unrestricted ontologies OS and for ontolo-
gies OS which are in the well-known normal form for ELI⊥
ontologies that avoids syntactic nesting of concepts. The two

approximation schemes are remarkably different.
In Section 6, we show that finite approximations are not

guaranteed to exist and that there are cases where depth
bounded approximations must be non-elementary in size.

Proof details are available in the appendix, which is avail-
able at http://www.informatik.uni-bremen.de/tdki/.

Related Work
Approximation in a DL context was first studied in [Sel-
man and Kautz, 1996] where FL concepts are approxi-
mated by FL− concepts and in [Brandt et al., 2002] where
ALC concepts are approximated by ALE concepts. In both
cases, the approximation always exists, but ontologies are
not considered. An incomplete approach to approximat-
ing SHOIN ontologies in DL-LiteF is presented in [Pan
and Thomas, 2007] and complete (projective) approxima-
tions of SROIQ ontologies in DL-LiteA are given in [Boto-
eva et al., 2010]. Such approximations are guaranteed to
exist due to the limited expressive power of DL-LiteA. In
[Lutz et al., 2012], approximation of ELU ontologies in
terms of EL ontologies is studied, the main result being that
it is EXPTIME-hard and in 2EXPTIME to decide whether
a finite complete approximation exists. An incomplete ap-
proach to approximating SROIQ ontologies in EL++ is
in [Ren et al., 2010]. There are also approaches towards
efficient DL reasoning that involve computing approxima-
tions which are intentionally incomplete to avoid compromis-
ing efficiency [Schaerf and Cadoli, 1995; Groot et al., 2005;
Carral et al., 2014]. Related to approximation is the problem
whether a given LS ontology can be equivalently rewritten
into the fragment LT of LS , either non-projectively [Lutz et
al., 2011] or projectively [Konev et al., 2016]; note that this
asks whether we have to approximate at all.

2 Preliminaries
Let NC and NR be disjoint and countably infinite sets of con-
cept and role names. A role is a role name r or an inverse
role r−, with r a role name. A Horn-SRIF concept inclu-
sion (CI) is of the form L v R, where L and R are concepts
defined by the syntax rules

R,R′ ::= > | ⊥ | A | ¬A | R uR′ | ¬L tR | ∃ρ.R | ∀ρ.R
L,L′ ::= > | ⊥ | A | L u L′ | L t L′ | ∃ρ.L

with A ranging over concept names and ρ over roles. The
depth of a conceptR or L is the nesting depth of the construc-
tors ∃ρ and ∀ρ. For example, the concept ∃r.B u ∃r.∃s.A is
of depth 2. A Horn-SRIF ontology O is a set of
• Horn-SRIF concept inclusions,
• functionality assertions func(ρ), and
• role inclusions (RIs) ρ1 ◦ · · · ◦ ρn v ρ.

We adopt the standard restriction that if n ≥ 2, then nei-
ther O |= func(ρ) nor O |= func(ρ−). The semantics of
Horn-SRIF is standard, see [Baader et al., 2017]. While
ontologies used in practice have to be finite, in this paper we
shall frequently consider also infinite ontologies. W.l.o.g,, we
generally assume that the⊥ concept occurs only in CIs of the
form C v ⊥, where C does not contain ⊥.
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We briefly introduce the relevant fragments of Horn-
SRIF , for details see [Baader et al., 2017]. An ELI⊥
concept is built according to the syntax rule for L above,
but omitting disjunction. An ELRIF⊥ ontology is a Horn-
SRIF ontology in which both the left- and right-hand sides
of CIs are ELI⊥ concepts. ELHIF⊥ is defined likewise,
but admitting only role hierarchies instead of role inclusions,
which take the form r v s. Fragments of ELRIF⊥ and
ELHIF⊥ can obtained by dropping expressive means that
are identified by a standard naming scheme: H indicates role
hierarchies, R role inclusions, I inverse roles, F functional-
ity assertions, and ·⊥ the bottom concept. It should thus be
understood, for example, what an ELI⊥ ontology is and what
an EL concept is. Among these DLs, ELR⊥ is maximal with
a tractable subsumption problem. In all of the above DLs
not contained in ELR⊥, subsumption is EXPTIME-complete
[Baader et al., 2005; Baader et al., 2008].

A signature Σ is a set of concept and role names, uniformly
referred to as symbols. When speaking of EL(Σ) concept,
we mean EL concepts that only use symbols from Σ, and
likewise for other DLs. We use sig(O) to denote the set of
symbols used in ontology O.

We now define the central notions of this paper.
Definition 1 Let OS be a Horn-SRIF ontology with
sig(OS) = Σ and let LT be any of the fragments of Horn-
SRIF introduced above. A (potentially infinite) LT ontol-
ogy OT is an LT approximation of OS if

OS |= α iff OT |= α

for all concept inclusions, role inclusions, and functionality
assertions α that fall within LT and use only symbols from Σ.
We say that OT is non-projective if sig(OT ) ⊆ Σ and pro-
jective otherwise.

For ` ∈ N ∪ {ω}, (non-projective and projective) `-
bounded LT approximations are defined in the same way ex-
cept that only concept inclusions α = C v D are considered
where C and D are of depth bounded by `.
Note that ω-bounded approximations are identical to un-
bounded approximations, we use the term only for unifor-
mity. Trivially, infinite (non-projective and projective) ap-
proximations always exist: take as OT the set of all inclu-
sions and assertions from LT that are entailed by OS . One
can show that there are ELI ontologies OS that have a finite
projective EL approximation, but no finite non-projective EL
approximation; details are in the appendix.
Example 1 Consider the ELF ontology

OS = {∃hasSupervisor.> v Employee,

func(reportsTo)}.

There is no finite EL approximation since for all n,m ≥ 1,
OS entails the EL concept inclusion

∃reportsTo.∃hasSupervisorn.> u ∃reportsTom.>
v ∃reportsTo.(∃hasSupervisorn.>

u ∃reportsTom−1.>).

In practice, it clearly does not make sense to include all these
CIs in the approximation. Similarly to the example in the

introduction, though, it may pay off to include some of them.
Choosing the right ones requires a careful inspection of the
ontology and application at hand.

With LS-to-LT approximation, LS an ontology language and
LT a fragment thereof, we mean the task of approximating an
LS ontology in LT . We call LS the source DL and LT the
target DL.

An alternative definition of approximations is obained by
dropping the restriction that α can use only symbols from
Σ. We do not use that definition because then even in the
1-bounded case, finite approximations might not exist.

Example 2 Take the ELI ontology OS = {∃r−.A v B}.
Then O |= Au ∃r.X v ∃r.(B uX) for each of the infinitely
many concept names X ∈ NC. Thus, every (projective or
non-projective) 1-bounded EL approximation of OS must be
infinite under the alternative definition of approximation.

We now make some basic observations regarding approxima-
tions. The proof is straightforward.

Lemma 1 Let OS be a Horn-SRIF ontology with
sig(OS) = Σ and LT a fragment of Horn-SRIF . Then

1. OT is an LT approximation ofOS iffOS |= OT and for
every LT ontology O with OS |= O and sig(O) ⊆ Σ,
OT |= O;

2.
⋃

i≥0O` is an LT approximation of OS if for all ` ≥ 0,
O` is an `-bounded LT approximation of OS; the same
is true for projective LT approximations provided that
sig(O`) ∩ sig(O`′) ⊆ Σ when ` 6= `′.

Point 1 may be viewed as an alternative definition of (non-
projective) approximations. Point 2 is important because it
sometimes allows us to concentrate on bounded approxima-
tions in proofs. The following is well-known, see for exam-
ple [Bienvenu et al., 2016].

Lemma 2 Given a Horn-SRIF ontology OS with
sig(O) = Σ, one can construct in polynomial time an
ELRIF⊥ ontology O′S with sig(O′S) ⊇ Σ that entails the
same Horn-SRIF(Σ) concept inclusions, role inclusions,
and functionality assertions.

The construction of the ontology O′S from Lemma 2 re-
quires the introduction of fresh concept names. Still, every `-
bounded LT approximation of O′S is a projective `-bounded
LT approximation of OS .

3 Depth Bounded Approximation
The goal of this section is to study non-projective approxi-
mations in various DLs, both in the unbounded case and in
the depth bounded case. We start with approximating away
functionality assertions, then inverse roles, and finally their
combination (assuming a certain syntactic restriction), also
admitting role hierarchies and the bottom concept. This step-
by-step approach aims to facilitate presentation and in fact the
final theorem in this section subsumes the earlier ones and is
the only one that we prove explicitly.

We start with ELF -to-EL approximation. Let C be an EL
concept and k ≥ 0. A leaf occurrence of a concept name
A in C means an occurrence of A inside a conjunction that
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does not contain conjuncts of the form ∃r.D. For example,
all occurrences of A in A u B and in B u ∃r.(A u B) are
leaf occurrences, but the occurrence of A in A uB u ∃r.> is
not. By decoratingC with subconcepts fromOS at leaves, we
mean to replace any number of leaf occurrences of a concept
name A by a concept A uD1 u · · · uDk where D1, . . . , Dk

are concepts that occur in OS , possibly as subconcepts.
Theorem 1 Let OS be an ELF ontology, Σ = sig(OS),
and ` ∈ N ∪ {ω} a depth bound. Define OT to be the EL
ontology that contains:

1. all CIs from OS;
2. all CIs ∃r.C1 u ∃r.C2 v ∃r.(C1 u C2) such that

func(r) ∈ OS and C1, C2 are EL(Σ) concepts of depth
bounded by max{0, ` − 1} decorated with subconcepts
of OS at leaves.

Then OT is an `-bounded approximation of OS .
Note that the construction of OT is entirely syntactic, that is,
it involves no reasoning. Due to Point 2, OT is infinite when
` = ω. On the other hand, OT is finite when ` < ω and
thus Theorem 1 proves the existence of finite depth bounded
non-projective approximations in the ELF -to-EL case. It is
interesting to remark that Theorem 1 also reproves the upper
bound for subsumption in ELF : first extend the ontology so
that it suffices to decide subsumption between concept names,
then compute the 0-bounded approximation which is of sin-
gle exponential size, and then decide subsumption in EL in
PTIME [Baader et al., 2005]. Note that for ` = 0, the con-
cepts C1, C2 in Point 2 of Theorem 1 are simply conjunctions
of subconcepts from OS .

We next consider inverse roles. Here, the most basic case
is that inverse roles can occur in role inclusions, but not in
concepts. As noted in the introduction, this case actually oc-
curs rather frequently in practice. To indicate the restricted
use of inverse roles, we typeset the I in a smaller font, as in
ELHIF and ELRIF . The most basic case is now that of
ELHI-to-ELH approximation. We assume w.l.o.g. that role
inclusions only take the two forms r v s and r v s−.
Theorem 2 Let OS be an ELHI ontology, Σ = sig(OS),
and ` ∈ N ∪ {ω} a depth bound. Define OT to be the ELH
ontology that contains, for `′ = max{0, `− 1}:

1. all CIs from OS;
2. all RIs r v s such that OS |= r v s and role names r, s

occur in OS;
3. all CIs C1 u ∃r.C2 v ∃r.(C2 u ∃s.C1) such that OS |=
r v s−, ∃s.C1 is a subconcept of OS or an EL(Σ) con-
cept of depth bounded by `, and C2 is an EL(Σ) con-
cept of depth bounded by `′ decorated with subconcepts
of OS at leaves.

Then OT is an `-bounded approximation of OS .
Note that Point 2 is not entirely syntactic, but involves reason-
ing. It is easy to see and well-known, however, that in ELI
deciding whether OS |= r v s is in PTIME.

We now consider the ELHIF⊥-to-ELH⊥ case which
combines functional and inverse roles. It turns out that there
are subtle interactions between functional, inverse roles, and
role hierarchies which we tame by making the following as-
sumption:

(♥) OS |= r v s− implies that neither func(s) ∈ OS nor
func(s−) ∈ OS .

The next theorem is the main result of this section.
Theorem 3 Let OS be an ELHIF⊥ ontology that satis-
fies (♥), Σ = sig(OS), and ` ∈ N ∪ {ω} a depth bound.
Define OT to be the ELH⊥ ontology that contains, for `′ =
max{0, `− 1}:

1. all CIs from OS;
2. all r v s such that OS |= r v s, r, s role names that

occur in OS;
3. all CIs C1 u ∃r.C2 v ∃r.(C2 u ∃s.C1) such that OS |=
r v s−, ∃s.C1 is a subconcept of OS or an EL(Σ) con-
cept of depth bounded by `, and C2 is an EL(Σ) con-
cept of depth bounded by `′ decorated with subconcepts
of OS at leaves;

4. all CIs ∃r1.C1u∃r2.C2 v ∃r1.(C1uC2) such that there
is a role name s with OS |= r1 v s, OS |= r2 v s,
and func(s) ∈ OS , and C1, C2 are EL(Σ) concepts of
depth bounded by `′ decorated with subconcepts of OS

at leaves.
Then OT is an `-bounded approximation of OS .

It is not hard to see that Theorem 3 implies Theorems 1
and 2. It also settles additional approximation cases such as
ELHF⊥-to-ELH⊥, without syntactic assumptions. Points 2
to 4 require deciding whether OS |= r v s(−), which is
EXPTIME-complete in ELHIF⊥ as can be proved by mutual
reduction with subsumption.

It is straightforward to verify that the ontology OT con-
structed in Theorem 3 is sound as an approximation, that is,
OS |= OT . Completeness is non-trivial. It is established
by first introducing a version of the chase that is closely tai-
lored towards the construction of OT given in Theorem 3,
then showing that the chase is sound and complete regard-
ing the derivation of EL(Σ) CIs of depth bounded by `, and
finally proving that the CIs in OT can simulate derivations
of the chase. With chase, we mean a rule based approach to
constructing (infinite) ‘canonical models’ [Kontchakov and
Zakharyaschev, 2014].

An interesting observation about the proof of Theorem 3 is
that it actually yields a more general result than stated in that
theorem. Instead of `-bounded approximations, one could de-
fine Γ-bounded approximations for any set of EL⊥-concepts
Γ closed under subconcepts, that is, only concepts from Γ are
considered in concept inclusions α in Definition 1. We then
obtain a version of Theorem 3 in which “concept of depth
bounded by ` or `′” is replaced with “concept from Γ” (deco-
rated with subconcepts ofOS at leaves as needed). While one
could choose for Γ the set of all concepts of depth bounded by
some `, other choices of Γ might be natural, too. For example,
if one wants to decide subsumption between compound EL
concepts C and D relative to an ELHI ontology OS without
resorting to concept names, then one can approximate OS in
EL relative to the set Γ of subconcepts of C and D and then
check whether OT entails C v D. While this is clearly not
efficient in practice, it raises the interesting question of how to
identify sets Γ that are tailored towards the actual application
of an ontology.
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We now briefly discuss the case in which the restric-
tion (♥) is dropped. One can prove that we then need to
extend Points 1 to 4 of Theorem 3 with the following:

5. all CIs ∃r.∃s.C v C such that OS |= r v s−,
func(s) ∈ OS , and C is a subconcept of OS or an
EL(Σ) concept of depth bounded by `;

6. all CIs ∃s.∃r.C v C such that OS |= r v s−,
func(s−) ∈ OS , and C is a subconcept of OS or an
EL(Σ) concept of depth bounded by `.

However, this is still not sufficient to obtain a complete ap-
proximation. Consider the ELHI ontology

OS = {A v ∃r1.∃r2.(B u ∃s.>),

s v r1, s v r−2 , func(r−1 ), func(r−2 )}.

It can be verified that OS |= A v B. However, it can also
be proved that even whenOT is the set of all statements from
Points 1 to 6 with ` = 0, OT 6|= A v B. It remains open
whether a transparent (non-projective) approximation is pos-
sible when (♥) is dropped.

4 Unbounded Approximation
We provide a significant extensions of Theorem 3 for the
case of unbounded approximations, using an entirely differ-
ent strategy for the completeness proof. In particular, we do
not assume the (♥) restriction adopted in Theorem 3, ad-
mit inverse roles also in concepts, and add general role in-
lusions both to the source and target DL, that is, we consider
ELRIF⊥-to-ELR⊥ approximation. There is a small price
that we have to pay for this generality: the approximations
constructed here are projective as for every role name from
the original ontology, they contain a (potentially fresh) role
name that represents its inverse. It is remarkable that this
rather mild form of projectiveness overcomes several prob-
lems from the purely non-projective case.

An ELRIF⊥ ontology O is inverse closed, that is, for ev-
ery role name r in O, there is a role name r̂ such that O
contains r v r̂− and r̂ v r−. We provide non-projective ap-
proximations under the assumption that the source ontology
is inverse closed. This also yields projective approximations
for source ontologies that are not inverse closed because we
can first extend OS with the required role names r̂ and then
approximate. Note that in practice, there are relevant exam-
ples of ontologies that are inverse closed such as Galen. If our
source is inverse closed, we can further assume that there are
no other occurrences of inverse roles in OS , neither in con-
cept inclusions nor in other role inclusions. In other words,
our source ontology is formulated in ELRIF⊥.

Theorem 4 Let OS be an inverse closed ELRIF⊥ ontology
and Σ = sig(OS). Define OT to be the ELR⊥ ontology that
contains for all EL(Σ) concepts C,D:

1. all CIs in OS;
2. all RIs r v s with OS |= r v s, r, s ∈ Σ role names;
3. all RIs r1 ◦ · · · ◦ rn v r and r̂n ◦ · · · ◦ r̂1 v r̂ such that
r1 ◦ · · · ◦ rn v r ∈ OS with n ≥ 2;

4. all CIs C u ∃r.D v ∃r.(D u ∃r̂.C);

5. all CIs ∃r.C u ∃r.D v ∃r.(C u D) such that
func(r) ∈ OS;

6. all CIs ∃r.∃r̂.C v C such that func(r̂) ∈ OS .
Then OT is an ELR⊥ approximation of OS .

Note that Points 1 to 3 essentially take over the part of OS

that is expressible in ELR⊥, Point 4 aims at capturing the
consequences of inverse roles, Point 5 at functional roles, and
Point 6 at the interaction between functional roles and inverse
roles. Points 4 to 6 all introduce infinitely many CIs. Via
Lemma 2, Theorem 4 also yields projective approximations
for the Horn-SRIF -to-ELR⊥ case.

The following example shows that the CIs in Point 5 of
Theorem 3, which unlike Point 5 of Theorem 4 mix functional
roles and role inclusions, are implied by the ontology OT

constructed in Theorem 4. The example also illustrates the
strength of the ‘inverse closed’ property.
Example 3 Let r1 v s, r2 v s, func(s) ∈ OS , and let
C1, C2 be EL-concepts. We aim to show that

OT |= ∃r1.C1 u ∃r2.C2 v ∃r1.(C1 u C2).

Due to Points 2 and 5 in Theorem 4, it suffices to show that

OT |= ∃s.Ci u ∃ri.> v ∃ri.Ci for i ∈ {1, 2}.

This CI, in turn, can be proved from OT as follows:

OT |= ∃s.Ci u ∃ri.>
v ∃ri.(> u ∃r̂i.∃s.Ci) (Point 4)
v ∃ri.(> u ∃ŝ.∃s.Ci) (r̂i v ŝi ∈ OT by Point 2)
v ∃ri.(> u Ci) (Point 6).

It is straightforward to show that the ontology OT from
Theorem 4 is sound as an approximation. To prove complete-
ness, we establish a novel connection between EL⊥ approx-
imations and axiomatizations of the quasi-equations that are
valid in classes of semilattices with operators (SLOs) [Jack-
son, 2004; Sofronie-Stokkermans, 2017; Kikot et al., 2017].
Roughly speaking, an approximation is obtained from such
an axiomatization by instantiating its equations, which corre-
spond (in the sense of modal correspondence theory) to the
role inclusions in the original ontology, with EL concepts.

5 Inverse Roles in Concept Inclusions
As discussed before Theorem 4, the approximations provided
by that theorem also cover the case where inverse roles are
admitted in concept inclusions. This is achieved, however,
by first making the ontology inverse closed and then drop-
ping inverse roles from CIs. Here, we investigate alterna-
tive approaches in the basic case of ELI⊥-to-EL⊥, both non-
projectively and projectively, in the latter case using a well-
known normal form for ELI⊥ ontologies that avoids syntac-
tic nesting [Baader et al., 2017].

A key to constructing non-projective approximations is the
observation that concepts of the form ∃r−.C can be used as a
marker that is invisible to EL⊥.
Example 4 Let OS = {A v ∃s−.>, ∃r−.∃s−.> v
∃s−.>, ∃s−.> v B}. Then OS |= C v C ′ for all EL con-
cepts C,C ′ where C ′ is obtained from C by decorating with
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B any node that is reachable inC from a node decorated with
A along an r-path (we view an EL concept as a tree in the
standard way, see for example [Konev et al., 2018]).
We now give a non-projective approximation that captures
the effect demonstrated in Example 4. For an ELI⊥ ontol-
ogy OS , let clEL(OS) denote the set of all EL concepts that
can be obtained by starting with a subconcept of a concept
from OS and then replacing every subconcept of the form
∃r−.D with >. Let C be an EL concept. An EL concept C ′
is a clEL(OS) decoration of C if it can be obtained from C
by conjunctively adding concepts from clEL(OS) to a single
occurrence of a subconcept in C.

Theorem 5 Let OS be an ELI⊥ ontology and Σ =
sig(OS). Define OT to be the EL⊥ ontology OT that con-
tains for all EL(Σ) concepts C:

1. all CIs C v C ′ such that OS |= C v C ′, C ′ a
clEL(OS) decoration of C;

2. all CIs C v ⊥ such that OS |= C v ⊥.
Then OT is an EL⊥ approximation of OS .

We prove completeness by a chase based approach. The
CIs in Theorem 5 are rather different from those that we have
used in Sections 3 and 4 to deal with inverse roles. Being
much less constrained, they provides less guidance for con-
structing approximations in practice. We next observe that we
can get back to the more constrained CI scheme for inverse
roles by assuming the source ontology OS to be in normal
form, that is, all CIs in OS have one of the forms > v A1,
A1 v ⊥, A1 v ∃ρ.A2, ∃ρ.A1 v B, and A1 u · · · u An v B
whereA1, . . . , An, B range over concept names and ρ ranges
over roles. Every ELI⊥ ontology OS can be converted into
an ELI⊥ ontologyO′S in normal form in linear time such that
O′S is a conservative extension of OS [Baader et al., 2017].
Clearly, any approximation ofO′S is then a projective approx-
imation of OS .
Theorem 6 Let OS be an ELI⊥ ontology in normal form,
Σ = sig(OS), and ` ∈ N ∪ {ω} a depth bound. Define OT

to be the EL⊥ ontology OT that contains:
1. all CIs from OS that are of the form > v A, A v ⊥,
∃r.A v B, or A v ∃r.B,;

2. all CIs A1 u · · · u An v B such that OS |= A1 u · · · u
An v B, A1, . . . , An, B ∈ NC occur in OS;

3. all CIs A u ∃r.C v ∃r.(C u B) such that ∃r−.A v
B ∈ OS and C is an EL(Σ) concept of depth bounded
by `− 1.

Then OT is an `-bounded EL⊥ appoximation of OS .
It is straightforward to verify that OT is sound. To prove

completeness, we again use a chase based strategy.

6 Size of Approximations
We prove that finite approximations are not guaranteed to
exist and that depth bounded approximations can be non-
elementary in size. These results hold both for projective and
non-projective approximations and for all combinations of
source and target DL considered in this paper. The ontologies
used to prove these results are simple and show that also for

most ontologies that occur in practical applications, neither
finite (complete) approximations nor depth bounded (com-
plete) approximations of elementary size can be expected.
We focus on the cases ELIH-to-ELH, ELHF -to-ELH, and
ELHI-to-ELH, starting with unbounded approximations.
Theorem 7 None of the ontologies

{∃r−.A v B}, {func(r), A v A}, {r v s−, A v A}
has finite projective ELH approximations.

To get an idea of the proof, consider OS = {∃r−.A v B}
and let OT be a projective ELH approximation of OS . For
all n ≥ 0, letCn = ∃rn.>, where ∃rn denotes n-fold nesting
of an existential restriction, and observe that

OS |= A u ∃r.Cn v ∃r.(B u Cn).

To establish the desired result, we prove that for every n ≥ 0,
there is a subconcept Mn of OT such that OT |= Mn v Cn

and OT 6|= Mn v Cm for any m > n.
We next show that bounded depth approximations can be

non-elementary in size. The function tower : N × N → N
is defined as tower(0, n) := n and tower(k + 1, n) :=
2tower(k,n). The size of a (finite) ontology is the number
of symbols needed to write it, with concept and role names
counting as one. We use Γn to denote a fixed finite tautolog-
ical set of EL concept inclusions that contains the symbols
Σn = {r1, r2, A1, Â1, . . . , An, Ân}.
Theorem 8 Let n ≥ 0 and let On be the union of Γn with
any of the following sets:

{∃r−.A v B}, {func(r), A v A}, {r v s−, A v A}
For every ` ≥ 1, any `-bounded projective ELH approxima-
tion OT of On must be of size at least tower(`, n).

7 Conclusion
It remains an open problem to develop informative non-
projective approximations for (unrestricted) ELHIF⊥-to-
ELH⊥ or even for Horn-SHIF -to-ELH⊥ and Horn-
SRIF -to-ELR⊥. It would also be interesting to further ex-
tend the expressive power of both the source and target DLs.
For example, nominals and range restrictions could be added
even without compromising tractability of the latter [Baader
et al., 2005]. We remark that Theorem 4 can be adapted to
the extension ELRdr

⊥ of ELR⊥ with range restrictions as the
target DL by additionally including in OT the range restric-
tion ran(r) v ∃r̂.> for every role name r inOS . Once more,
inverse closedness pays off here as a corresponding extension
of Theorem 3 appears to be more challenging.

There are many other relevant approximation cases that we
did not touch upon, including the approximation of non-Horn
DLs such as ALC, SHIQ, and SROIQ in (tractable and
intractable) Horn DLs. It would further be of interest to un-
derstand how approximations can be better tailored towards
relevant applications, for example in the spirit of choosing a
set Γ of relevant concepts as discussed in Section 3.
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