
A*+IDA*: A Simple Hybrid Search Algorithm

Zhaoxing Bu and Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095
{zbu, korf}@cs.ucla.edu

Abstract
We present a simple combination of A* and IDA*,
which we call A*+IDA*. It runs A* until mem-
ory is almost exhausted, then runs IDA* below
each frontier node without duplicate checking. It is
widely believed that this algorithm is called MREC,
but MREC is just IDA* with a transposition table.
A*+IDA* is the first algorithm to run significantly
faster than IDA* on the 24-Puzzle, by a factor of
almost 5. A complex algorithm called dual search
was reported to significantly outperform IDA* on
the 24-Puzzle, but the original version does not.
We made improvements to dual search and our ver-
sion combined with A*+IDA* outperforms IDA*
by a factor of 6.7 on the 24-Puzzle. Our disk-based
A*+IDA* shows further improvement on several
hard 24-Puzzle instances. We also found optimal
solutions to a subset of random 27 and 29-Puzzle
problems. A*+IDA* does not outperform IDA* on
Rubik’s Cube, for reasons we explain.

1 Introduction and Overview
A* ([Hart et al., 1968]) stores all the nodes it generates in the
Open or Closed lists, and hence is severely space-limited in
practice. Iterative-Deepening-A* (IDA*) ([Korf, 1985]) re-
quires space that is only linear in the maximum search depth,
and is often faster than A*, because it incurs less overhead
per node. The main overhead of IDA* is not the initial it-
erations, but rather re-expansions during the same iteration
of the same states via different paths, called duplicate nodes,
in graphs with cycles. This is because IDA* is a depth-first
search, and doesn’t store most previously generated nodes.

Almost as soon as IDA* was introduced, researchers real-
ized that since it uses so little memory, there should be a way
to use more memory to speed it up by detecting some dupli-
cate nodes and not re-expanding them. A large number of
different algorithms were proposed over the years, including
MREC ([Sen and Bagchi, 1989]), MA* ([Chakrabarti et al.,
1989]), SMA* ([Russell, 1992; Kaindl and Khorsand, 1994]),
IDA* with a transposition table ([Reinefeld and Marsland,
1994]), BIDA* ([Manzini, 1995]), DBIDA* ([Eckerle and
Schuierer, 1995]), and breath-first heuristic search ([Zhou and
Hansen, 2006]). Most of these algorithms demonstrated a

reduction in node generations compared to IDA*, but either
reported small or no improvments in running time, or failed
to report running times at all. None of these algorithms was
shown to be faster than IDA* on the 24-Puzzle.

We propose a very simple combination of A* and IDA*.
We run A* until memory is almost exhausted, then execute
IDA* starting from the frontier nodes, which are the nodes
on Open at the end of the A* phase. We define an iteration
of A*+IDA*’s IDA* phase as a series of calls of IDA* on the
frontier nodes with the same cost bound. This corresponds
to one single iteration of pure IDA* called on the root node.
In each iteration of A*+IDA*, we execute IDA* from each
frontier node whose f -cost does not exceed the bound, and
store with each such node an updated h-value based on the
search tree generated below it. These are pure IDA* itera-
tions, with no duplicate-node checking. For each iteration,
the frontier nodes of lowest f -cost are searched in increasing
order of their stored h-values. This has two main advantages
over IDA*. The first is the elimination of duplicate nodes dur-
ing the A* phase, reducing the number of frontier nodes for
the IDA* phase, and the second is the ordering of the fron-
tier nodes during the IDA* phase, which results in finding a
solution very early in the last iteration. Overall, A*+IDA* is
almost five times faster than an efficient implementation of
IDA* on the 24-Puzzle with a 6-6-6-6 Pattern Database.

The only algorithm in the literature that claims to be faster
than IDA* on the 24-Puzzle is DIDA* ([Felner et al., 2005;
Zahavi et al., 2006; Felner et al., 2010]), based on a complex
algorithm called dual search that is only applicable to permu-
tation problems. Based on code provided to us by the authors,
we discovered that the version of IDA* they compared to is
not the most efficient version, and that their DIDA* code con-
tained a performance bug. We further optimized dual search,
and combined it with A*+IDA*, achieving a factor of 6.7
speedup over an efficient version of IDA* on the 24-Puzzle.

We implemented a disk-based version of the A* phase, and
showed that this version is faster only on extremely hard 24-
Puzzle instances. We also experimented with Rubik’s Cube,
and found that A*+IDA* is not faster than IDA*, because
there are fewer duplicate nodes, and the node ordering is less
effective on the final iteration. We optimally solved a subset
of random instances of the 4x7 and 5x6 Puzzles. The results
show that we will need at least months to solve hard problems
optimally. We also show how to use A*+IDA* to quickly find

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1206



a (potentially suboptimal) solution for such hard problems.

2 Related Work
How did this simple algorithm escape notice for so long? The
answer seems to be that most researchers believe it was dis-
covered in 1989 as the MREC algorithm ([Sen and Bagchi,
1989]). For example, Korf [1993]1 described MREC as run-
ning A* until memory is full, then running iterations of IDA*
below the frontier nodes. Several other researchers repeated
this erroneous characterization of MREC ([Edelkamp and
Schrödl, 2000; Felner, 2005; Stern et al., 2010; Akagi et al.,
2010; Schütt et al., 2013]).

In fact, MREC is IDA*, except that it stores in memory
the first nodes generated, until memory is almost full. As
each node is generated both before and after this point, it is
checked against the stored nodes, and updated if a lower-
cost path to the node is found. This algorithm was redis-
covered, and referred to as IDA* with a transposition ta-
ble (IDA*+TT) in [Reinefeld and Marsland, 1994]. Trans-
position tables ([Slate and Atkin, 1983]) were first used in
two-player games to cache search states and reduce duplicate
nodes. [Akagi et al., 2010] also implemented IDA*+TT, but
did not apply it to the sliding-tile puzzles.

There are four main differences between A*+IDA* and
MREC (IDA*+TT). First, A*+IDA* stores the first nodes
generated by A*, while MREC stores the first nodes gener-
ated by IDA*. These sets can differ significantly among the
nodes of largest f -cost that are stored. Second, A*+IDA*
starts each iteration of IDA* from the Open nodes of the A*
search, while MREC starts each iteration from the start state.
Third, during the IDA* phase, A*+IDA* orders the frontier
nodes of equal f -cost in increasing order of h-value. Finally,
A*+IDA*’s IDA* phase does not check for duplicate nodes,
while MREC always does duplicate checking. This saves sig-
nificant overhead since accessing a large hash table requires
an expensive access to main memory. Transposition tables
can also use various replacement strategies to dynamically
modify the nodes stored, but this adds additional overhead.

The MREC paper [Sen and Bagchi, 1989] shows no
speedup on the 15-Puzzle. [Reinefeld and Marsland, 1994]
reported a node generation reduction of 54%, and a speedup
of 37% compared to IDA* on the 15-Puzzle. As we will see
below, however, such speedups can be very sensitive to the
efficiency of the implementation of IDA* they are compared
to. We use Korf’s implementation of IDA* on the sliding-tile
puzzles, which has been widely disseminated, and is gener-
ally considered quite efficient.

The first appearance of a version of A*+IDA* in the lit-
erature is in [Korf, 1993], which he mistakenly described as
MREC. He also claims that MREC in [Sen and Bagchi, 1989]
did not check for duplicate nodes during the IDA* search on
the 15-Puzzle, contrary to the pseudo-code in the paper. He
implemented a version of A*+IDA*, but with duplicate node
checking during the IDA* phase, and no mention of ordering
Open nodes. He reported a 41% reduction in node genera-
tions, but a 64% increase in running time compared to IDA*,
presumably due to checking for duplicate nodes during IDA*.

1We refer to Korf here in the third person because he is only one
of the authors of this paper.

MA* ([Chakrabarti et al., 1989]) and SMA* ([Russell,
1992; Kaindl and Khorsand, 1994]) run A* until memory
is full, then contract the worst Open nodes, replacing them
by their parents, to free up memory to expand the best Open
nodes. The overhead of these algorithms is considerable and
they don’t outperform IDA* on the sliding-tile puzzles.

Eckerle and Schuierer [1995] proposed Dynamic Balanced
IDA* (DBIDA*), a modification of A*+IDA* that dynami-
cally adjusts the frontier nodes by adding new frontier nodes
with a large subtree below them and removing existing fron-
tier nodes that have a small subtree below them. DBIDA* is
very complex as it utilizes multiple sets and priority queues
to adjust the frontier. The authors reported a speedup of less
than a factor of two, but this was for finding all optimal solu-
tions in the last iteration, and hence is not directly comparable
to finding a single optimal solution.

Bidirectional A*-IDA* (BAI, [Kaindl et al., 1995]) first
runs A* from one direction, then runs IDA* with duplicate
detection from the other direction. Auer and Kaindl [2004]
further presented several other bidirectional search algo-
rithms based on BAI and BS* ([Kwa, 1989]) and showed that
their algorithm is 7 times faster than IDA*. Manzini [1995]
presented BIDA* and showed that it is almost 8 times faster
than IDA*. BIDA* first builds a perimeter of nodes all at
the same distance d from the goal state, then runs IDA* from
the start state. For each node s generated, BIDA* computes
the heuristic to the perimeter nodes p, and expands those for
which g(s) + h(s, p) + d does not exceed the current search
bound. These works used Manhattan Distance (MD) heuris-
tic and tested on the 15-Puzzle. However, these algorithms do
not beat IDA* on the 24-Puzzle, for these reasons: 1) IDA*
with duplicate detection is two to three times slower than
IDA* without duplicate detection on our machine. 2) These
algorithms use the MD heuristic so the heuristic between any
two states can be easily calculated. However, this is not easy
with Pattern Databases. 3) The search space of the 24-Puzzle
is 7.4 ∗ 1011 times larger than that of the 15-Puzzle, making
any A* or BS* variations unable to solve random problems.
Furthermore, the chance that a node generated in BAI’s IDA*
phase was already generated in its A* phase is very small.
4) As shown in [Barker and Korf, 2015], bidirectional algo-
rithms with the 6-6-6-6 PDB on the 24-Puzzle would generate
more nodes than unidirectional search algorithms.

The above work was done before Pattern Database heuris-
tics (PDBs, [Culberson and Schaeffer, 1998]) enabled opti-
mal solutions to the 24-Puzzle [Korf and Felner, 2002]. While
Korf and Felner were aware of these previous works, they
chose standard IDA* as their search algorithm.

Dual IDA* (DIDA*) ([Felner et al., 2005; Zahavi et al.,
2006; Felner et al., 2010]) was believed to be the state-of-the-
art solver for the 24-Puzzle and reduced the nodes generated
by IDA* by a factor of 9.3. However, there are three consid-
erations here: 1) Dual search is very complicated and hard
to implement. 2) For each state generated in DIDA*, there
is a corresponding dual state generated, so the total number
of states generated should be doubled. 3) Korf’s 24-Puzzle
solver ([Korf and Felner, 2002]) has two PDB lookups for
each new node, while the version of IDA* used for compar-
ison does eight PDB lookups for each node. Compared to

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1207



Korf’s more efficient IDA* code and Zahavi et al.’s code,
DIDA* is only 8.5% faster than IDA*.

Lookahead-A* (AL*) ([Stern et al., 2010; Bu et al., 2014])
is another A* variation which performs a DFS with bound
f(parent)+k for each node generated to increase its heuris-
tic value and hence reduce the memory requirement. We
found that on our machine, k = 6 is the smallest k that en-
ables us to solve all of Korf’ 50 test cases ([Korf and Felner,
2002]). When k = 6, AL* is also faster than IDA* on the
24-Puzzle, but slower than A*+IDA*. However, to use AL*
in practice, a lot of time would be needed to find the correct
k, as the k-value is not known in advance and a small k will
lead AL* to run out of memory before finding a solution.

External IDA* ([Edelkamp and Schroedl, 2011; Edelkamp,
2016]) first runs disk-based A* then runs IDA* on the frontier
nodes, which appears similar to our disk-based A*+IDA*, de-
scribed later. They did not indicate whether or not duplicate
detection is performed during the IDA* phase, nor whether
any node ordering of the Open nodes is done. They only re-
ported data for two instances of the 24-Puzzle, did not com-
pare it to IDA*, and did not report any running times.

Forward Perimeter Search (FPS) ([Schütt et al., 2013])
builds a perimeter from the start state, then runs Breadth-
first IDA* (BF-IDA*) ([Zhou and Hansen, 2006]) from the
perimeter to find a solution. A perimeter is a set of nodes that
have the same or similar distance from the start state. Dur-
ing search, this perimeter is also dynamically adjusted. There
are two issues here: 1) The experiment was performed on a
cluster with 32 computers and no running time for FPS on a
single computer was provided. 2) Schütt et al. [2013] mis-
takenly compared the number of nodes expanded in FPS with
the number of nodes generated in [Korf and Felner, 2002].

3 A*+IDA*
We use a hash table to store nodes, and A*’s Open list is
implemented as in PSVN ([Hernádvölgyi and Holte, 1999;
Burch et al., 2014]), which uses a three-dimensional vector
(C++’s STL vector). The first dimension corresponds to the
f -value, the second dimension corresponds to the g-value,
and the third dimension stores indices to all nodes that have
the same f and g-values. Adding or removing a node from
Open takes O(1) time. To the best of our knowledge, this is
the most efficient implementation of A* for the 24-Puzzle.

After A* runs out of memory, we run a series of iterations
of IDA* on frontier nodes without duplicate detection. The
first bound is set to be the smallest f -value among all frontier
nodes. In each iteration of A*+IDA*, we perform an iteration
of IDA* on each frontier node (in increasing order of stored
h-values) whose f -value equals the bound. After each IDA*
iteration on a frontier node s, we increase the stored h(s)-
value to the difference between the minimum f -value of all
the nodes generated but not expanded below s and g(s).

4 Experimental Results and Analysis
All experiments were performed on a 3.33GHz Intel Xeon
X5680 CPU with 96 GB of RAM. We used the same heuris-
tic function (6-6-6-6 disjoint PDBs with reflection) and the
same 50 test cases as in [Korf and Felner, 2002]. We ran

0 10 20 30 40 50

0

5

10

15

20

y = 1

Test instances sorted by IDA* nodes generations

Ti
m

e
sp

ee
du

p
ov

er
ID

A
*

8GB
48GB
96GB

Figure 1: A*+IDA*’s speedup over IDA*.

Algorithm Stored nodes Total nodes Last iteration Time(s)

IDA* 0 18,044,623,983,548 9,861,089,635,700 572,845
Cached-IDA* 33,149,796,158 10,416,963,057,231 5,703,252,119,005 446,293
A*+IDA*(8GB) 4,565,459,317 4,552,871,977,112 454,939,266,782 150,387
A*+IDA*(48GB) 30,491,473,996 3,143,297,938,874 24,670,542,049 116,963
A*+IDA*(96GB) 56,833,924,109 2,839,875,132,068 24,133,797,786 129,871
ratio 5.74 400 4.9

Table 1: Cumulative data for A*+IDA*.

A*+IDA* with 8GB, 48GB, and 96GB memory, and the
number of nodes stored were 96,855,259, 774,842,075, and
1,549,684,150, respectively.

We also implemented the original MREC/IDA*+TT ([Sen
and Bagchi, 1989; Reinefeld and Marsland, 1994]). However,
because of the high cost of duplicate detection for each node
generated during search, it is two to three times slower than
IDA*, so we omit the results here.

For comparison purposes, we also include an algorithm we
call Cached-IDA*, which uses a transposition table (TT) to
store the first nodes generated by IDA*. Before the TT is
full, Cached-IDA* behaves the same as MREC/IDA*+TT.
After TT is full, Cached-IDA* only does duplicate checking
for children if the parent is stored in TT. As a result, when
Cached-IDA* generates a node c that is not in TT and TT is
full, Cached-IDA* turns off duplicate checking for the search
tree below c. Cached-IDA* generates more nodes than the
original MREC/IDA*+TT, but is much faster as it avoids du-
plicate detection for most nodes. Our Cached-IDA* stored
the same number of nodes as A*+IDA* with 48GB memory.

We present the speedups of A*+IDA* over IDA* in run
time on all 50 test cases in Figure 1. We sort the 50 test cases
according to the number of nodes generated by IDA*, so the
left-most test case is the easiest and the right-most test case is
the hardest. The squares, diamonds, and circles correspond to
A*+IDA* with 8GB, 48GB, and 96GB memory respectively.
The scattered nature of this plot is due to variation in when
the first optimal solution is found on the last iteration.

We present the cumulative data of the 50 test cases in Ta-
ble 1, where the first column is the algorithm, the second col-
umn is the total number of nodes stored, the third column
is the total number of nodes generated, the fourth column is
the nodes generated in the last iteration, and the last column
is total time in seconds for all 50 problems. The first five
rows correspond to different algorithms and the last row is

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1208



the nodes or time ratio of IDA* over A*+IDA* with 48GB
memory, which had the best performance in time.

Over all 50 problems, A*+IDA*’s speedup over IDA* is
3.8 (8GB), 4.9 (48GB), and 4.4 (96GB) respectively. A*
solved 5, 15, and 19 problems respectively. A*+IDA* is
slower than IDA* on the easy problems due to A*’s expensive
memory and duplicate detection operations. On the medium
and hard problems, A*+IDA* is consistently faster than
IDA*. A*+IDA* (8GB) is also faster than the 48GB/96GB
version on easy problems as its A* phase is much shorter than
that of the 48GB/96GB version. Increasing the memory from
8GB to 48GB reduced the total number of nodes generated
by 31.0%, while increasing the memory from 48GB to 96GB
only reduced the nodes by an additional 9.7%.

In Table 1, the overall nodes ratio for A*+IDA* (48GB)
is 5.74, which is higher than the speedup ratio of 4.9. There
are two reasons for this. First, A* is about 7 times slower
than IDA* in terms of nodes generated per second. However,
this is a minor reason as the nodes generated in A* are less
than 1% of the total generated nodes in A*+IDA*. The major
reason is that the IDA* phase in A*+IDA* is always slower
(in terms of nodes generated per second) than pure IDA* due
to the overhead for each separate IDA* call. This overhead
mainly comes from fetching the start node from a large hash
table, which usually causes cache misses. This is also the rea-
son why A*+IDA* (96GB) is slower than A*+IDA* (48GB).
The former generated fewer nodes, but as the frontier nodes
doubled, this overhead for all IDA* runs also doubled.

The speedup comes from three factors: fewer IDA* itera-
tions, fewer duplicates, and early goal termination. A*+IDA*
typically performs only two to five iterations in its IDA*
phase, while pure IDA* typically performs around 10 itera-
tions. However, this is a minor reason as the last two iter-
ations dominate the search. A*+IDA* (48GB) reduced the
nodes generated in all but the last iteration by 2.62 times over
IDA* and 1.51 times over Cached-IDA*. By starting from
the frontier nodes instead of the start state, we do not need to
re-generate the nodes above the frontier nodes and the search
tree generated by A*+IDA*’s IDA* phase is much smaller
than that of IDA*. Our data shows that on average, each
separate IDA* call in A*+IDA* (48GB) only generated 190
nodes. This number is dominated by the hard test cases and
for most test cases, this number is below 50. The better du-
plicate pruning effect of A*+IDA* over Cached-IDA* also
suggests that expanding and storing nodes in a best-first or-
der is better than depth-first order, as the latter can be heavily
biased to the left part of the search tree.

The last iteration of IDA* is usually the most time-
consuming iteration. In Table 1, 54.6% of IDA* nodes were
generated in the last iteration. A*+IDA* reduced the nodes
generated in the last iteration by 400 times, making it less
than 1% of the total nodes generated. We present the de-
tailed last iteration comparison in Figure 2, where the y-axis
is the number of nodes generated in IDA*’s last iteration over
A*+IDA*’s. We see that the 8GB version usually leads to
more nodes generated, but there is not much difference be-
tween the 48GB and 96GB version. For the 48GB/96GB
version, A*+IDA* reduced the number of nodes in the last
iteration by more than three orders of magnitude on most test

10 20 30 40 50

100

102

104

106

108

Test instances sorted by IDA* nodes generations

ID
A

*’
s

la
st

ite
ra

tio
n

/A
*+

ID
A

*’
s 8GB

48GB
96GB

Figure 2: A*+IDA*’s last iteration vs. IDA*’s.

Memory A*+IDA* Cached-IDA*+node ordering

8GB 453,763,507,684 557,116,891,535
48GB 24,636,552,525 320,412,253,835
96GB 24,133,797,786 40,276,211,512

Table 2: Nodes generated in the last iteration in A*+IDA* and
Cached-IDA* with node ordering.

cases. This result shows that by expanding frontier nodes of
equal f -values in increasing order of h-values, the goal state
was found very early in the final iteration. It also suggests that
finding the optimal solution is much easier than verifying op-
timality. Expanding nodes according to the f and h-values
to significantly reduce the number of nodes generated in the
last iteration was first done in [Powley and Korf, 1989]. As
noted there, the benefit of node ordering may be mitigated by
the extra cost for node ordering. This may be the reason why
node ordering was not commonly used in IDA* in the past.
However, we show that effective node ordering can be easily
achieved by utilizing A*+IDA*’s frontier list.

We further applied the above node ordering on Cached-
IDA*’s last iteration. We scanned the transposition table, se-
lected the nodes that do not have all their children stored in
the transposition table, pruned the nodes whose f -values ex-
ceed the bound, then sorted the nodes in increasing order of
stored h-values and expanded them. Cached-IDA* with node
ordering is then similar to our A*+IDA* as it now starts from
the frontier nodes instead of the start state. We present the
results for the 31 test cases that A* (96GB) did not solve in
Table 2. We only list the number of nodes generated in the last
iteration. IDA* generated 9,789,829,523,428 nodes in its last
iteration on these 31 test cases. We see that A*+IDA* con-
sistently generated fewer nodes than Cached-IDA* with node
ordering. The most significant difference is under the 48GB
setting where Cached-IDA* with node ordering generated 13
times more nodes than A*+IDA*. This is largely due to one
test case where Cached IDA* with node ordering generated
280,591,231,353 nodes, proving that even with node order-
ing, Cached-IDA* can sometimes find the goal state very late
in the last iteration.

5 Combining Dual Search with A*+IDA*
We further applied dual search ([Zahavi et al., 2008]) to the
IDA* phase of our A*+IDA*. Dual search (DS) is very com-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1209



Algorithm Total nodes Time (s) Speedup

IDA* 18,044,623,983,548 572,845 1
Original DIDA* 3,876,071,228,494 523,948 1.1
Our DIDA* 3,684,978,748,642 259,506 2.2
Original A*+IDA* 3,143,297,938,874 116,963 4.9
A*+IDA* w/ DS 858,888,100,914 85,405 6.7

Table 3: A*+IDA* combined with dual search.

plicated and we do not have the space to explain it here. This
section does not require readers to understand DS.

Zahavi et al. [2008] compared their DIDA* (IDA* with
DS) code to an inefficient IDA* implementation which does
8 PDB lookups for each node. However, an efficient IDA*
implementation only does two PDB lookups for each node.
We compared their DIDA* code with Korf’s efficient IDA*
code ([Korf and Felner, 2002]) and found that their DIDA*
code is only 8.5% faster than Korf’s efficient IDA* code.

The original DIDA* code in [Zahavi et al., 2008] performs
8 PDB lookups for a new child state and 8 PDB lookups for
the child’s dual state, a total of 16 PDB lookups. We opti-
mized the DIDA* code to perform only 4.435 PDB lookups
in total for each state and its corresponding dual state. We
also discovered an error in the original Dual PDB lookup
and Dual search implementation in [Felner et al., 2005;
Zahavi et al., 2006], resulting in 32% of the total generated
nodes’ regular PDB lookups and reflection PDB lookups al-
ways returning the same value. We omit the details of our
optimizations here due to space limitations.

We present the results in Table 3, where the first column
is the algorithm, the second column is the total number of
nodes generated, the third column is time, and the last col-
umn is the speedup over IDA*. We used the same 50 test
cases as before. Zahavi et al. [2006] used bidirectional path-
max (BPMX, [Felner et al., 2005]) in their DIDA*. BPMX,
which is used with inconsistent heuristics, propagates higher
heuristic values from a child node to its parent and siblings,
thus reduces node expansions. BPMX reduced by about 2%
the number of nodes generated during search. To be consis-
tent with IDA*, we did not use BPMX in Table 3.

From Table 3 we see the original DIDA* is only 1.1 times
faster than Korf’s efficient IDA* code. After our optimization
and bug fix, DIDA* is 2.2 times faster than Korf’s efficient
IDA* code. After we combined dual search with A*+IDA*,
the speedup increases from 4.9 to 6.7. Contrary to the original
dual search paper, we treat a state and its dual state as two
distinct states. Therefore, the number of nodes for the original
DIDA* is roughly two times that in [Zahavi et al., 2008]. The
number is only roughly because we did not use BPMX.

6 Disk-based A*+IDA*
We then applied delayed duplicate-detection (DDD, [Korf,
2004]) to A*+IDA*. Our implementation is similar to Exter-
nal IDA* ([Edelkamp and Schroedl, 2011; Edelkamp, 2016]).
However, they did not indicate whether or not duplicate de-
tection was performed during the IDA* phase, nor whether
any node ordering of the frontier nodes was done. They re-
ported data for only two instances of the 24-Puzzle, did not
compare it to IDA*, and did not report any running times.

State Length

s1: 23 1 12 6 16 2 20 10 21 18 14 13 17 19 22 0 15 24 3 7 4 8 5 9 11 113
s2: 0 19 3 14 17 13 21 4 10 22 12 11 9 15 24 18 7 2 6 8 5 1 23 16 20 108
s3: 3 5 0 15 4 13 22 2 21 23 14 7 16 17 10 11 1 8 12 24 9 20 19 18 6 104

Table 4: Three hard test cases in Table 5.

Algo. & Test case Total nodes Time (s) Speedup

A*+IDA*(48GB), s1 1,343,383,770,705 44,602 1
A*+IDA*(Disk), s1 816,569,465,508 41,085 1.09
A*+IDA*(48GB), s2 5,011,462,601,471 165,972 1
A*+IDA*(Disk), s2 1,620,137,788,282 76,547 2.17
A*+IDA*(48GB), s3 3,039,454,921,549 100,722 1
A*+IDA*(Disk), s3 2,043,687,639,368 88,428 1.14

Table 5: Disk-based A*+IDA* vs. 48GB RAM-based A*+IDA*.

We first ran disk-based A* with DDD up to 10.2 billion ex-
pansions, then we removed the duplicates, leaving the unique
frontier nodes, then ran IDA* on the frontier nodes. Com-
mon disk-based A* assumes consistent heuristics ([Edelkamp
and Schroedl, 2011]). However, the 6-6-6-6 PDB for the
24-Puzzle is an inconsistent heuristic and pathmax cannot
turn it into a consistent heuristic ([Holte, 2010]). Therefore,
re-expanding the same state in A* cannot be avoided. Our
results show that disk-based A*+IDA* is only faster than
RAM-based A*+IDA* on extremely hard problems. The rea-
son is the same as why the 96GB A*+IDA* version is slower
than the 48GB version: 1) more time is spent on the A* phase
and 2) with more frontier nodes, the overhead for initiating
IDA* on the frontier nodes increases.

We randomly generated 150 test cases and found two (s2
and s3) that are harder than the most difficult test case (s1)
we used before. We present these three test cases and their
solution length in Table 4 and the results in Table 5, where
the first column is the algorithm and test case, the second
column is the total number of nodes generated in A*+IDA*,
the third column is time, and the last column is the speedup
of disk-based version over 48GB RAM-based version. Disk-
based A*+IDA* is faster than RAM-based A*+IDA* on all
three problems. On s2, the disk-based version reduced the
nodes by a factor of three and achieved a speedup of 2.17.
On s3, disk-based A*+IDA* reduced the nodes by one third
and search time by 12%. The disk-based version performed
better on s2 because it reduced the number of nodes generated
by 2,479 billion in the last iteration.

7 A*+IDA* on Rubik’s Cube
We randomly generated 100 test cases for Rubik’s Cube. We
used the maximum PDB value of the 8 corner cubies and 9
edge cubies. We present the results in Table 6, where the first
column is the algorithm, the second column is the number
of nodes stored by A*+IDA*’s A* phase, the third column
is the total number of nodes generated, the fourth column
is the nodes generated in the last iteration, and the last col-
umn is time. Our A*+IDA* stored the same number of nodes
(774,842,075) as A*+IDA* (48GB) on the 24-Puzzle, and re-
quired 32GB for A* and 38GB for the PDBs.

A*+IDA* is 1% slower than IDA* and only reduced the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1210



nodes generated in IDA* by 23%. There are two reasons for
this: 1) With the move pruning used in [Korf, 1997], there are
few duplicate nodes generated in IDA*. Depth-first search
only generates 2.1%, 3.1%, 4.2%, 5.4%, 6.6%, and 8.0% du-
plicate nodes at depth 7, 8, 9, 10, 11, and 12 respectively
(http://www.cube20.org and [Korf, 1997]). Most of
the frontier nodes stored by A*+IDA* are at depth 7 to 12.
Therefore, there will not be much gain in duplicate detection
as there do not exist many duplicates. 2) A*+IDA* generated
more nodes than IDA* in the last iteration on 19 out of 82
test cases that A* did not solve, with the highest ratio as 39.
The reason is that the frontier nodes that are on the optimal
paths sometimes have a perfect heuristic value and hence a
small g-value, causing them to be expanded very late in the
last iteration. For IDA*, the expansion order is based on the
order of operators. The lesson here is that it is hard to get a
good node ordering for Rubik’s Cube.

As we mentioned before, there is an overhead with each
IDA* run, so A*+IDA*’s IDA* phase generated fewer nodes
per second than pure IDA*. The time spent in the A*-
phase, lower speed in the IDA*-phase, rare duplicate nodes,
and less powerful early termination in the last iteration make
A*+IDA* not faster than IDA* on Rubik’s Cube.

8 Parallel A*+IDA* on 27 and 29-Puzzle
We implemented a multi-threaded A*+IDA* and tested it on
the 4x7 (27) and 5x6 (29) sliding-tile puzzles. We first ran a
single-threaded A*, then ran multiple IDA*s in parallel with
each thread given a different frontier node. Unlike the 24-
Puzzle, 27 and 29-Puzzles cannot use reflections for PDB
lookups. For the 27-Puzzle, we built two 7-7-7-6 PDBs (and
took the maximum) whose sparse mapping ([Felner et al.,
2007]) required 26GB in total. For the 29-Puzzle, we built
two 7-7-7-7-1 PDBs and two 6-6-6-6-5 PDBs (and took the
maximum) whose sparse mapping required 64GB in total.

We randomly generated 10 instances for each puzzle. To
date, we have found the optimal solution for 5 and 4 instances
for the 27 and the 29-Puzzle respectively. To our best knowl-
edge, these are the first random instances of a sliding-tile puz-
zle larger than the 24-Puzzle to be solved optimally. For the
remaining instances, we have found solutions but not yet ver-
ified their optimality. The solutions we found range from 108
to 149 for the 27-Puzzle and 117 to 152 for the 29-Puzzle.
The average (not guaranteed to be optimal) lengths for the
solutions we found are 123.6 and 129.4 respectively. The av-
erage heuristic values for one million random states are 81.6,
100.3, and 107.6 for the 24, 27, and 29-Puzzles respectively.

For the sliding-tile puzzles, A*+IDA* can be easily con-
verted to an approximation algorithm that enables us to
quickly find a solution. For example, we can only run IDA*
on the top 20% of the frontier nodes (sorted by h-values) in
each iteration. If no solution is found, we go to the next it-

Algo. A* stored Total nodes Last iteration Time (s)

IDA* 0 918,896,332,771 576,086,877,811 323,083
A*+IDA* 69,909,543,136 710,571,584,688 381,865,691,696 325,950

Table 6: A*+IDA* vs. IDA* on Rubik’s Cube.

eration. If a solution is found, we decrease the bound to ver-
ify the optimality or find a better solution. We used this ap-
proximation algorithm to quickly find solutions for the 10 test
cases for the 27 and 29-Puzzles. Given a large bound, most of
nodes generated in the IDA* phase have high h-values. For
example, the last 5% of the frontier nodes would generate
more than two orders of magnitude more nodes than the first
5% of the frontier nodes. Therefore, even expanding the first
half of the frontier nodes would generate only a small por-
tion of the total nodes generated. The optimal solutions are
always generated very early in the last iteration, so the first
solution found by this algorithm is usually the optimal one.
However, our analysis suggests that it would take months to
years to verify the optimality of the hardest 27 and 29-Puzzle
test cases we generated, so we cannot claim to have optimally
solved these instances.

9 Discussion and Conclusions
We present a simple combination of A* and IDA*, called
A*+IDA*, to make use of additional memory. It is widely be-
lieved that this algorithm was discovered in 1989 and called
MREC, but in fact MREC is just IDA* with a transposition
table. While there are several combinations of A* and IDA*
in the literature, to the best of our knowledge, none of them
forego duplicate detection during IDA* and order the fron-
tier nodes of equal f -cost by increasing h-values at the same
time. A*+IDA* is almost 5 times faster than the most effi-
cient implementation of IDA* on the 24-Puzzle, and the first
algorithm to significantly outperform IDA* on this problem.
We combined A*+IDA* with our improved dual search and
found that it is 6.7 times faster than IDA*. We also show that
using a disk-based A* search in A*+IDA* speeds up search
on several very hard 24-Puzzle instances. We also found op-
timal solutions to a subset of random 27 and 29-Puzzle prob-
lems and we show how to use A*+IDA* to quickly find a
solution on sliding-tile puzzles. A*+IDA* is not faster than
IDA* on Rubik’s Cube, due to many fewer duplicate nodes
and less effective node ordering on the last iteration, but not
significantly slower either.

Our combination provides a general way to combine A*
with DFS algorithms. We also implemented A*+RBFS and
observed similar speedups as A*+IDA* on the 24-Puzzle. In
general, if A* solves a problem, there is no overhead in using
A*+IDA*. If not, then compared to pure IDA*, the overhead
of A*+IDA* is likely to be more than compensated for by
the duplicate pruning in its A* phase, and the improved node
ordering of the last iteration in its IDA* phase.

Another way to use memory to speedup IDA* is to build
larger PDBs. We built 8-8-7-1, 7-7-7-3, 7-7-6-4, and 7-7-5-5
PDBs and found that none of them is better than the standard
6-6-6-6 PDB for the 24-Puzzle. The reason is that they all
produce more small heuristic values than the 6-6-6-6 PDB
(see [Holte et al., 2004] for a more detailed discussion on the
effect of small heuristic values).

Acknowledgements
We thank Robert Holte for providing PSVN and Ariel Felner
for providing the DIDA* implementation on the 24-Puzzle.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1211



References
[Akagi et al., 2010] Yuima Akagi, Akihiro Kishimoto, and Alex

Fukunaga. On transposition tables for single-agent search and
planning: Summary of results. In Third Annual Symposium on
Combinatorial Search, 2010.

[Auer and Kaindl, 2004] Andreas Auer and Hermann Kaindl. A
case study of revisiting best-first vs. depth-first search. In ECAI,
volume 16, page 141, 2004.

[Barker and Korf, 2015] Joseph K Barker and Richard E Korf. Lim-
itations of front-to-end bidirectional heuristic search. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

[Bu et al., 2014] Zhaoxing Bu, Roni Stern, Ariel Felner, and
Robert Craig Holte. A* with lookahead re-evaluated. In Seventh
Annual Symposium on Combinatorial Search, 2014.

[Burch et al., 2014] Neil Burch, Robert Holte, and Broderick Arne-
son. Psvn manual (june 20, 2014). 2014.

[Chakrabarti et al., 1989] Partha Pratim Chakrabarti, Sujoy Ghose,
Arup Acharya, and SC De Sarkar. Heuristic search in restricted
memory. Artificial intelligence, 41(2):197–221, 1989.

[Culberson and Schaeffer, 1998] Joseph C Culberson and Jonathan
Schaeffer. Pattern databases. Computational Intelligence,
14(3):318–334, 1998.

[Eckerle and Schuierer, 1995] Jürgen Eckerle and Sven Schuierer.
Efficient memory-limited graph search. In Annual Conference
on Artificial Intelligence, pages 101–112. Springer, 1995.

[Edelkamp and Schrödl, 2000] Stefan Edelkamp and Stefan
Schrödl. Localizing a*. In AAAI/IAAI, pages 885–890, 2000.

[Edelkamp and Schroedl, 2011] Stefan Edelkamp and Stefan
Schroedl. Heuristic search: theory and applications. Elsevier,
2011.

[Edelkamp, 2016] Stefan Edelkamp. External-memory state space
search. In Algorithm Engineering, pages 185–225. Springer,
2016.

[Felner et al., 2005] Ariel Felner, Uzi Zahavi, Jonathan Schaeffer,
and Robert C. Holte. Dual lookups in pattern databases. In Pro-
ceedings of the 19th IJCAI, pages 103–108, 2005.

[Felner et al., 2007] Ariel Felner, Richard E Korf, Ram Meshulam,
and Robert C Holte. Compressed pattern databases. Journal of
Artificial Intelligence Research, 30:213–247, 2007.

[Felner et al., 2010] Ariel Felner, Carsten Moldenhauer, Nathan R
Sturtevant, and Jonathan Schaeffer. Single-frontier bidirectional
search. In AAAI, 2010.

[Felner, 2005] Ariel Felner. Finding optimal solutions to the graph
partitioning problem with heuristic search. Annals of Mathemat-
ics and Artificial Intelligence, 45(3-4):293–322, 2005.

[Hart et al., 1968] Peter E Hart, Nils J Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of mini-
mum cost paths. Systems Science and Cybernetics, IEEE Trans-
actions on, 4(2):100–107, 1968.

[Hernádvölgyi and Holte, 1999] István T Hernádvölgyi and
Robert C Holte. Psvn: A vector representation for production
systems. 1999.

[Holte et al., 2004] Robert C Holte, Jack Newton, Ariel Felner,
Ram Meshulam, and David Furcy. Multiple pattern databases.
In ICAPS, pages 122–131, 2004.

[Holte, 2010] Robert C Holte. Common misconceptions concern-
ing heuristic search. In Third Annual Symposium on Combinato-
rial Search, 2010.

[Kaindl and Khorsand, 1994] Hermann Kaindl and Aliasghar
Khorsand. Memory-bounded bidirectional search. In AAAI,
pages 1359–1364, 1994.

[Kaindl et al., 1995] Hermann Kaindl, Gerhard Kainz, Angelika
Leeb, and Harald Smetana. How to use limited memory in heuris-
tic search. In IJCAI, pages 236–242, 1995.

[Korf and Felner, 2002] Richard E Korf and Ariel Felner. Disjoint
pattern database heuristics. Artificial intelligence, 134(1):9–22,
2002.

[Korf, 1985] Richard E Korf. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial intelligence, 27(1):97–
109, 1985.

[Korf, 1993] Richard E Korf. Linear-space best-first search. Artifi-
cial Intelligence, 62(1):41–78, 1993.

[Korf, 1997] Richard E Korf. Finding optimal solutions to rubik’s
cube using pattern databases. In AAAI/IAAI, pages 700–705,
1997.

[Korf, 2004] Richard E Korf. Best-first frontier search with delayed
duplicate detection. In AAAI, volume 4, pages 650–657, 2004.

[Kwa, 1989] James BH Kwa. Bs*: An admissible bidirec-
tional staged heuristic search algorithm. Artificial Intelligence,
38(1):95–109, 1989.

[Manzini, 1995] Giovanni Manzini. Bida*: an improved perimeter
search algorithm. Artificial Intelligence, 75(2):347–360, 1995.

[Powley and Korf, 1989] Curt Powley and Richard E Korf. Single-
agent parallel window search: A summary of results. In IJCAI,
pages 36–41, 1989.

[Reinefeld and Marsland, 1994] Alexander Reinefeld and T. An-
thony Marsland. Enhanced iterative-deepening search. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
16(7):701–710, 1994.

[Russell, 1992] Stuart Russell. Efficient memory-bounded search
methods. ECAI-1992, Vienna, Austria, 1992.

[Schütt et al., 2013] Thorsten Schütt, Robert Döbbelin, and
Alexander Reinefeld. Forward perimeter search with controlled
use of memory. In Proceedings of IJCAI, pages 659–665. AAAI
Press, 2013.

[Sen and Bagchi, 1989] Anup K Sen and Amitava Bagchi. Fast re-
cursive formulations for best-first search that allow controlled use
of memory. In IJCAI, pages 297–302, 1989.

[Slate and Atkin, 1983] David J Slate and Lawrence R Atkin. Chess
4.5—the northwestern university chess program. In Chess skill
in Man and Machine, pages 82–118. Springer, 1983.

[Stern et al., 2010] Roni Stern, Tamar Kulberis, Ariel Felner, and
Robert Holte. Using lookaheads with optimal best-first search.
In Proceedings of the Twenty-Fourth National Conference on Ar-
tificial Intelligence, 2010.

[Zahavi et al., 2006] Uzi Zahavi, Ariel Felner, Robert Holte, and
Jonathan Schaeffer. Dual search in permutation state spaces. In
Proceedings of the National Conference on Artificial Intelligence,
volume 21, page 1076, 2006.

[Zahavi et al., 2008] Uzi Zahavi, Ariel Felner, Robert Holte, and
Jonathan Schaeffer. Duality in permutation state spaces and the
dual search algorithm. Artificial Intelligence, 172(4-5):514–540,
2008.

[Zhou and Hansen, 2006] Rong Zhou and Eric A Hansen. Breadth-
first heuristic search. Artificial Intelligence, 170(4):385–408,
2006.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1212


