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Abstract

State-of-the-art hand gesture recognition methods
have investigated the spatiotemporal features based
on 3D convolutional neural networks (3DCNNS5)
or convolutional long short-term memory (ConvL-
STM). However, they often suffer from the ineffi-
ciency due to the high computational complexity of
their network structures. In this paper, we focus in-
stead on the 1D convolutional neural networks and
propose a simple and efficient architectural unit,
Multi-Kernel Temporal Block (MKTB), that mod-
els the multi-scale temporal responses by explic-
itly applying different temporal kernels. Then, we
present a Global Refinement Block (GRB), which
is an attention module for shaping the global tem-
poral features based on the cross-channel similarity.
By incorporating the MKTB and GRB, our archi-
tecture can effectively explore the spatiotemporal
features within tolerable computational cost. Ex-
tensive experiments conducted on public datasets
demonstrate that our proposed model achieves the
state-of-the-art with higher efficiency. Moreover,
the proposed MKTB and GRB are plug-and-play
modules and the experiments on other tasks, like
video understanding and video-based person re-
identification, also display their good performance
in efficiency and capability of generalization.

1 Introduction

Gesture recognition is a longstanding topic in computer vi-
sion, whose goal is to assign the corresponding label to hand
gesture video. It plays an important role in many real ap-
plications, such as video surveillance, human-computer in-
teraction, etc. A variety of methods [Narayana er al., 2018;
Zhang et al., 2018; Zhang et al., 2017; Miao et al., 2017] have
been developed in recent years.

Considering the nature of sequential data, many gesture
recognition approaches focus on extracting discriminative
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Figure 1: We display the pipeline of 3DCNN, ConvLSTM and our
method in (a), (b) and (c), respectively. (d) shows the comparison
with other frameworks on accuracy and speed, and it can be found
that our model outperforms 3DCNNs or ConvLSTM methods.

spatiotemporal features, including 3D convolutional neural
networks (3DCNNs) [Miao et al., 20171, the ensemable of
2D convolutional neural networks (2DCNNs) [Narayana et
al., 2018] and convolutional long short-term memory (Con-
vLSTM) [Zhang et al., 2017]. However, the huge computa-
tional cost in previous methods can cause severe inefficiency
in real-world deployment. In this work, we make use of
the 1D convolutional neural networks (1IDCNNs used in both
MKTB and GRB) for exploring temporal information as it is
much more efficient and applicable. In particular, we apply
multiple IDCNNSs with different kernel sizes to extract pyra-
midal temporal features. As Figure. 1 shows, our proposed
model is better and faster than current state-of-the-art meth-
ods that utilize 3DCNNs and ConvLSTM.

In this paper, we first introduce a simple and effective ar-
chitecture unit, i.e., Multi-Kernel Temporal Block (MKTB),
to model the multi-scale temporal information. It consists
of multiple 1D convolutional kernels with different sizes in
a depthwise fashion, thus enjoying high efficiency. Experi-
ments further demonstrate that MKTBs bring significant im-
provements in accuracy. Furthermore, we design a Global
Refinement Block (GRB) to adaptively explore the high-level
temporal features by modeling the cross-channel similarity,
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which is neglected in the MKTB. It performs as an attention
mechanism and allows distant temporal features to contribute
to the filtered temporal response at a location based on cross-
channel similarity. Therefore, there are several advantages of
our proposed modules: (1) In contrast to the complex recur-
rent and 3D convolutional operations, MKTB captures both
short-term and long-term temporal information by using the
multiple 1D depthwise convolutions. As shown in experi-
ments, they are efficient; (2) The proposed modules, MKTB
and GRB, maintain the same size between input and output,
and can be easily deployed everywhere. Overall, the cooper-
ation of these two components leads to a temporal modeling
process that holds the discriminative spatiotemporal informa-
tion effectively and efficiently.

We test the proposed model on various public datasets,
including IsoGD [Wan et al., 2016] and Jester [TwentyBn,
2017]. On these experiments, the proposed model yields con-
siderable improvement over existing methods, about 3.39%
in accuracy and 10X in efficiency. Extensive ablation studies
are also conducted to show the effectiveness of different com-
ponents. Because the proposed MKTB and GRB are plug-
and-play modules and gesture recognition mainly focuses on
hand region, we extend these modules to video understand-
ing task which models human-object relationships and video-
based re-identification task, obtaining notable performance
on Something-Something-V1 dataset [Goyal et al., 2017]
and MARS [Zheng et al., 2016], respectively, which demon-
strates its strong generalization capability and scalability.

2 Related Work
2.1 Temporal Modeling for Action Recognition

Recently, many temporal modeling approaches for action
recognition achieve remarkable success. Based on 2DCNN,
Temporal Segment Network (TSN) [Wang et al., 2016] mod-
els long-range temporal structures with segment-based sam-
pling and aggregation module. To learn spatial and tempo-
ral information jointly, 3DCNN [Miao et al., 2017] and its
variants have been widely adopted. C3D [Li et al., 2016]
designs a 3DCNN with small 3 x 3 x 3 convolution ker-
nels to learn spatiotemporal features, while I3D [Carreira and
Zisserman, 2017] inflates the convolutional filters and pool-
ing kernels into 3D structures. Considering the tradeoffs be-
tween effectiveness and efficiency, P3D [Qiu et al., 2017] and
R(2+1)D [Tran et al., 2018] decompose 3D convolutions into
separate spatial and temporal convolutions. In addition, non-
local network [Wang et al., 2018] presents non-local oper-
ations to capture long-range dependencies. However, these
3DCNN based methods suffer from the huge computational
cost, often causing the inefficiency.

Differently, gesture recognition mainly focuses on the hand
region instead of human-human or human-object relation-
ships and temporal information matters in this task.

2.2 Gesture Recognition

For gesture recognition, deep learning based approaches have
become commonplace nowadays. According to the basic unit
of model, these methods can be grouped into the following
three categories.
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It is straightforward to apply 2DCNN as feature ex-
tractor for gesture recognition. [Narayana et al., 2018]
fuses multi-channels(i.e., global/left-hand/right-hand for
RGB/depth/RGB-flow/depth-flow modalities) and utilizes
separate 2DCNN for each channel with stacked frame se-
quences as input. With an ensemble of multiple weak models,
this method obtains impressive accuracy.

To take into account the temporal information, most of
existing models resort to 3DCNNs. [Zhu et al., 2016;
Li et al., 2016; Miao et al., 2017] employ different 3DCNN
architectures (e.g., C3D and ResC3D ) to learn spatiotempo-
ral features.

[Zhang er al., 2017] combines 3DCNN, bidirectional Con-
vLSTM and 2DCNN into a unified framework, in which the
3DCNN and ConvLSTM focus on short-term and long-term
spatiotemporal information respectively. [Zhang et al., 2018;
Zhu et al., 2017; Ma et al., 2018] propose several variants of
LSTM to explore the attention mechanism in ConvLSTM.

Typical approaches that utilize 3DCNN or ConvLSTM suf-
fer from high computational complexity and memory con-
sumption. In this paper, we exploit critical temporal informa-
tion for gesture recognition task by introducing efficient and
plug-and-play modules based on existing 2D architectures.

3 Methodology

To exploit critical temporal information and maintain high
efficiency, our strategy is to insert modules that learn spa-
tiotemporal features into existing models. In this section, we
first present the full pipeline of our approach. Then we in-
troduce the proposed modules, i.e., Multi-Kernel Temporal
Block (MKTB) and Global Refinement Block (GRB), and
show how we integrate these modules into existing 2DCNN.

3.1 Framework Overview

Considering the efficiency and flexibility, our model builds
upon the popular TSN framework [Wang er al., 2016] , in
which sparsely sampled frames are passed through a 2D back-
bone network followed by a consensus (aggregation) func-
tion (e.g., MaxPooling). Although TSN models long-range
temporal structures with the segment-based sampling and ag-
gregation modules from input space, it lacks of capability of
modeling the temporal information from feature-space. Since
the proposed MKTB and GRB are effective temporal mod-
eling modules in feature-space, they are complementary to
TSN.

The overall pipeline of the proposed method is depicted
in Figure. 1(c). Inherited from TSN, the input video is di-
vided into T temporal segments. One frame is randomly
sampled from each segment, so the size of input tensor is
(BxT)x3x Hx W, where B, H and W is the batch
size, height and width of input, respectively. In this paper, T’
is set to 8. It can be found that our pipeline is the combina-
tion of new modules and classic residual network, which only
incurs minor additional computation as the new modules are
computationally efficient.

3.2 Multi-Kernel Temporal Block

To achieve the effective and efficient temporal modeling, the
proposed MKTB has two appealing properties: (1) Unlike the
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Figure 2: The details of proposed MKTB. Depthwise 1D convolu-
tion (DW Conv1D) is used in MKTB.

existing methods that employ 3DCNNSs, in which they often
perform convolutional operation for both spatial and temporal
dimension jointly, our proposed MTKB decouples the joint
spatial-temporal modeling process and focuses on learning
the temporal information; (2) The design of multi-kernel also
works well on shaping the pyramidal and discriminative tem-
poral features, which significantly boosts the performance.
We denote the feature maps from layer [ of 2DCNN
(ResNet-50 is used in this paper) as Fy € R(BXT)XCxXHXW,
To save the computational cost in multi-kernel temporal con-
volutions, we reduce the channels of F, via a convolution
layer with kernel size of 1 x 1, obtaining a new feature rep-

resentation, denoted as F, € R(BXT)XC xHxW Then F

is reshaped to Ft/ € RBxH XW)xC'XT pefore the temporal
convolution. Formally, the 1D convolution is defined as:

C -1
Y =0+ > wxF,, (1)
0

where * denotes the multiplication operator, C' " is the number
of input channels, b is the bias term and w denotes the weights
of convlD. As shown in Figure. 2, to further preserve effi-
ciency in MKTB we utilize depthwise [Chollet, 2017] tem-
poral convolution to perform computation independently over
each channel, which means that the MKTB block focuses on
modeling temporal information for each channel. The pyra-
midal features are fused by element-wise summation, fol-
lowed by a reshaping operation. Another 1 x 1 convolution
is connected at the end to keep the output having the same
number of channels as input. Besides, a skip connection is
added to facilitate model training.

3.3 Global Refinement Block

MKTB mines the pyramidal temporal features with depth-
wise 1D convolution over each channel separately, which
mainly focuses on the local neighborhoods (the size is related
to the kernel size). However, the global temporal features
across channels are not sufficiently attended. Inspired by the
non-local mechanism [Wang er al., 2018], which computes
the response at a position as a weighted sum of features at all
positions, the GRB is designed to perform the weighted tem-
poral aggregation, in which it allows distant temporal features
to contribute to the filtered temporal features according to the
cross-channel similarity.

The pipeline of GRB is shown in Figure. 3. The red dash
square represents the cross-channel similarity based on the
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Figure 3: The pipeline of Global Refinement Block. Red dash
square represents the cross-channel similarity modeling.

temporal features. Although the workflow of GRB is inher-
ited from non-local network, it is worthy to stress some dif-
ferences between the non-local module and GRB: (1) Unlike
the non-local network which performs the filtering on spatial
domain, GRB focuses on the temporal attention modeling,
and it works on the last stage rather than the earlier part (ear-
lier part for non-local network); (2) The 2D convolution in
non-local module is replaced with 1D temporal convolution
in GRB, which naturally suits the temporal features with a
more efficient manner. Besides, we keep the number of chan-
nels for each convolution layer in GRB due to the lightweight
input, which decouples the spatial domain.

4 Experiments

4.1 DataSets

IsoGD. IsoGD [Wan et al., 2016] is a large-scale multi-
modality gesture dataset which contains 249 gesture classes.
In total, there are 47,933 gesture videos for each modality.
This database is split into three sub-datasets: 35,878 videos
for training, 5,784 videos for validation and 6,271 videos for
testing.

Jester. Jester[TwentyBn, 2017] is a large collection of
densely-labeled video clips of hand gestures, containing
148,092 gesture videos performed by workers in front of a
laptop camera or webcam. There are 27 gesture classes, each
of which has more than 5,000 instances on average, making
this dataset more indispensable for gesture recognition.

Something-Somthing-V1. Something-Somthing-
V1[Goyal et al., 2017] is a challenging dataset that shows
basic actions with everyday objects. Temporal information
also plays a key role in this dataset, so we conduct extensive
experiments to verify the effectiveness and generalization of
the temporal modeling modules.

MARS. MARS[Zheng et al., 2016] is the largest video-
based person re-identification dataset. To further evaluate our
method, we perform experiments on this task where temporal
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information helps to perform more accurate pedestrian align-
ments.

4.2 Implementation details

Training. In this paper, we use ResNet-50 [He et al., 2016]
pre-trained on ImageNet [Deng et al., 2009] as the 2D back-
bone. Unless otherwise noted, we set temporal segments 71" =
8. Following data augmentation strategies of TSN [Wang et
al., 2016], the frames are cropped and resized to 224 x 224
after aspect ratio jittering and scale jittering. For all experi-
ments, we adopt mini-batch SGD to optimize the model with
momentum of 0.9 and weight decay of 5e~*. We train for
60 epochs with cross entropy loss and batch size of 48. The
learning rate is initialized as 0.01 and reduced by a factor of
10 every 20 epochs. Dropout layer with ratio of 0.5 is added
before the classification layer. The proposed networks are
trained with PyTorch deep learning framework on GPUs of
NVidia Tesla P40 with CUDA 8.0. The code will be available
at https://github.com/nemonameless/Gesture-Recognition.

Inference. During inference, we take the efficiency into
consideration by uniformly sampling the same number of
frames as in training stage. Simple center crop and scale op-
erations are used during preprocessing.

4.3 Comparison with the State-of-the-Art

Table 1 shows the comparison with the state-of-the-art results
on IsoGD dataset.

First, we compare the performance of our proposed model
with method [Narayana et al., 2018](referred to as 2D-
ResNet50). For fair comparison, we report the results of
global channel in [Narayana ef al., 2018]. Both methods
adopt 2DCNN as backbone network. It can be seen that our
model outperforms the 2D-ResNet50 by significant margin.
The 2D-ResNet50 model simply takes the stacked images as
input, lacking of temporal modeling structures. In contrast,
the proposed MKTB and GRB modules learn effective spa-
tiotemporal feature maps at different stages of network.

Then, compared with 3DCNN models, including [Li et
al., 2016](referred to as C3D), [Zhu et al., 2016](referred
to as Pyramidal-C3D) and [Miao et al., 2017](referred to as
ResC3D), the proposed model achieves more than 10% per-
formance gain over these 3DCNNs on each modality, which
demonstrates that the spatiotemporal representation learned
by MKTB and GRB modules is more effective than ordi-
nary 3DCNNs. More specifically, instead of learning spa-
tiotemporal information simultaneously as in 3DCNNs, we
ease the learning process by using 2DCNN and 1D temporal
convolution to learn spatial and temporal information sepa-
rately. In terms of efficiency, 3DCNNS typically suffers from
high memory and computation cost. Our network utilizes 2D
convolution and 1D temporal convolution to reason spatial
and temporal structures while maintaining complexity close
to the backbone network. Besides, compared with the recent
methods [Zhang et al., 2017](referred to as R3D-BiCLSTM-
2D) and [Zhang et al., 2018](referred to as R3D-AttCLSTM-
2D) that utilize cascaded 3DCNN, ConvLSTM and 2DCNN
to capture short-term and long-term spatiotemporal informa-
tion, the proposed method consistently outperforms them by
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Model RGB Depth Flow Fusion
2D-ResNet50 3322 2798 46.22 61.40
Pyramidal C3D 36.58 38.00 - 45.02
C3D 37.30 40.50 - 49.20
ResC3D 45.07 48.44 4445 64.40
R3D-BiCLSTM-2D  51.31 49.81 4530 58.65
R3D-AttCLSTM-2D 5598 53.28 46.51 -

Ours 59.37 58.97 5890 7211

Table 1: Comparison with the state-of-the-art results on validation
set of IsoGD dataset.

Model Topl Acc. (%)
TSN 81.45
MFFs(8-MFFs-0f1c¢) 92.90
2-frame TRN 75.65
5-frame TRN 91.40
Multiscale TRN 93.70
R3D-AttCLSTM-2D (variant-a) 95.08
R3D-AttCLSTM-2D (variant-c) 95.13
TSM 94.40
Ours 95.15

Table 2: Results on the validation set of Jester dataset.

8.06% and 3.39% on RGB modality, respectively. Similar
scenarios can also be observed on depth and flow modality.

As for the multimodal evaluation, we simply fuse the pre-
dicted probabilities on each modality for our method. From
the last column we can see that our method achieves better
performance in multimodal settings.

Table 2 compares the proposed network to other recent
methods on validation set of Jester dataset. Methods list in
the table use only RGB modality without extra information
such as optical flow. As can be seen, the proposed method
achieves promising performance compared to the state-of-
the-art methods. In particular, our model obtains higher ac-
curacy than TSM [Lin et al., 2018] (single crop evaluation is
performed) which is the recent state-of-the-art method in the
field of video understanding. Besides, our model consistently
outperforms the TRN network [Zhou et al., 2018] and MFFs

Model Input Speed(VPS) Top-1
13D 8 X 3 x 224 x 224 39.37  36.71
P3D-C 8 X 3 x 224 x 224 37.31 40.29
C3D 32 x 3 x 112 x 112 11.11 37.30
TSN 8 X 3 x 224 x 224 5434  36.15
AttConvLSTM 32 x 3 x 112 x 112 4.50 55.98
Ours 8 X 3 %224 x 224 4347  59.37

Table 3: Speed-Accuracy comparison on validation set of IsoGD.
For speed comparison, we implement the first three models with
PyTorch . AttConvLSTM model is provided by the authors with
TensorFlow implementation.
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Model Backbone Frames Top-1 Mothed Position Top-1 Acc. (%) Speed
TSN BNInception 8 19.5 TSN - 36.15 54.34
TRN-Multiscale BNInception 8 34.4 TSN+MKTB res2 45.60 48.03
13D 3D-ResNet-50 64 41.6 TSN+MKTB res3 46.88 51.89
ECO(Kinetics) BNInception+3D-ResNet-18 8  39.6  LSN+MKTB resd 46.16 - 52.56
e . TSN+MKTB resb 40.08 52.63
ECO(Kinetics) BNInception+3D-ResNet-18 16 41.4
TSM(Kinetics) ResNet-50 8 434 TSN+MKTB resd, resb 46.47 50.79
: TSN+MKTB res3, resd 4891 49.50
Ours ResNet-50 & 421 TSN+MKTB  res2,resd, resb 52.25 45.15
TSN+MKTB  res3,resd,resd 50.50 47.81
Table 4: Performance comparison on Something-Something-V1 TSN+MKTB res2,res3, resd, resb 53.10 43.47

dataset. Only RGB modality is evaluated for comparison. ‘Kinet-
ics’ indicates a model pre-trained on Kinetics action dataset instead
of ImageNet dataset.

Model #Frame MAP Rank-1 Rank-5
TSN 8 584% 69.9% 85.7%
Ours 8 63.5% 74.2% 88.3%

Table 5: Performance comparison on the testing set of MARS.

network [Kopuklu et al., 2018] with a notable margin. Our
model achieves similar accuracy compared to [Zhang et al.,
2018] but about 10x in efficiency as shown in Table 3.

The proposed model not only achieves promising perfor-
mance on different datasets but also maintains competitive ef-
ficiency. We show the VPS(videos per second) and accuracy
in Table 3. Notably, our model is around 10X faster than re-
cent state-of-the-art [Zhang er al., 2018] with higher accuracy
(3.39% performance gain). Compared to deeper 3DCNNSs,
including I3D [Carreira and Zisserman, 2017] and P3D [Qiu
et al., 20171, our model achieves significant improvements in
accuracy and delivers faster processing speed. Although our
model shows lower efficiency than TSN method, it achieves
huge advantage from a accuracy perspective. Therefore, our
model achieves better trade-off towards efficiency and accu-
racy.

4.4 Extensive experiments beyond gesture
recognition

Since gesture recognition mainly focuses on the hand region,

we conduct extensive experiments on other video tasks to ver-

ify the effectiveness and generality of our temporal modeling

modules.

Something-Something-V1. Different from gesture recog-
nition, Something-Something-V1 is a video understanding
dataset which models complex human-object relationships
where temporal reasoning plays an important role. The model
in this experiment is the same with that used for gesture
recognition. Table 4 shows that our model is very compet-
itive compared to recent methods TSN[Wang et al., 2016],
TRN [Zhou et al., 2018], ECO [Zolfaghari et al., 2018],
I3D [Carreira and Zisserman, 2017] and TSM [Lin et al.,
2018]. In particular, the proposed model achieves 22.6% gain
than TSN and 7.7% than MultiScale TRN. Given 8 frames
as input, our model outperforms ECO model by 2.5%. No-
tably, our model pre-trained on ImageNet is slightly worse

Table 6: Comparison between different positions for MKTB mod-
ules. ‘Position’ indicates the place right after residual block.

than TSM which is pre-trained on Kinetics [Carreira and Zis-
serman, 2017], a large-scale action classification dataset.

Video-based person re-identification. For video-based
person re-identification task, effective temporal modeling
facilitates the pedestrian alignments, thus producing accu-
rate spatiotemporal representation for video sequences. To
evaluate our method, we perform comparative experiments
on the largest video-based person re-identification dataset
MARS [Zheng et al., 2016]. Specifically, we consider our
model and TSN as feature extractors and we utilize simple
cross entropy loss on the training set of MARS. During test-
ing, we simply sample 8 frames and compute the euclidean
distance of spatio-temporal representations between query
and gallery. As shown in Table 5, our method boosts the accu-
racy of video-based person re-identification by incorporating
the efficient and effective temporal modeling modules.

4.5 Ablation Study

In this section, we perform extensive ablation studies to give
more insight of our proposed model on IsoGD dataset.

Where to add MKTB. Table 6 shows the impact of the dif-
ferent positions for MKTB modules in whole pipeline. Since
feature maps from different layers represent different pat-
terns(e.g., high-level feature maps typically represent seman-
tic information), adding more MKTB modules facilitates the
network to deal with scale variation of spatiotemporal fea-
tures. Placing MKTB modules right after (res2, res3, res4,
resH) shows the best performance, demonstrating the impor-
tance of modeling temporal information. We can see that
MKTB module after res2, res3, or res4 alone brings sim-
ilar gains while MKTB after resb delivers smallest gains.
Besides, (res2,res4, resb) is better than (res3, resd, resb).
We conjecture that feature maps in lower level provide more
spatial information, which facilitates the attention converging
to hand region. It is worth pointing out that we reduce the
number of channels before sending into the MKTB module,
suggesting that the computation cost spent on different posi-
tions is similar.

Instantiations of MKTB and GRB. We propose several
variants of MKTB which still maintain the multi-scale prop-
erty, but in different ways, to investigate the effect of this
property. These variants utilize different dilation rates to
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TSN Frames

Ours

Figure 4: The visualization of input frames, attention maps from TSN and the proposed model. The attention maps are computed as square
of mean values along channels. We mark the attention region with red circle for more intuitive comparison.

Mothed Kernel(k) Dilation(d) Acc. (%) Speed
TSN - - 36.15 54.34
TSN+MKTB 3 1,2,3 50.40 44.14
TSN+MKTB 3 1,2,3,5 53.10 43.49
TSN+MKTB 3 1 47.18 45.76
TSN+MKTB 1,3 1 4742 45.05
TSN+MKTB 1,3,5 1 49.67 44.19
TSN+MKTB 1,3,5,7 1 53.10 4347
TSN+1D-Conv 3 1 38.36 53.56
TSN+GRB 1 1 41.58 51.62

Table 7: Experiments of different instantiations of MKTB and GRB.
A single kernel size (k) or dilation rate (d) indicates that only one
branch exists. Evaluations are performed on validation set of IsoGD.

achieve the multi-scale modeling. The second section in Ta-
ble 7 shows the results of temporal modeling with different
kernel sizes and dilation rates. It is shown that both MKTB
module with four branches and four dilation rates achieve
the best performance. Essentially, both methods have simi-
lar motivation, i.e., making use of convolutions with differ-
ent receptive field . Compared with the single scale tempo-
ral features (i.e. kernel size = 3), multi-scale temporal fea-
tures achieve much better performance, demonstrating that
the MKTB modules capture short-term and long-term tempo-
ral dependencies effectively, thus improving the results. To
verify the effectiveness of global information, we conduct ex-
periment that replaces GRB module with 1D temporal convo-
lution. The third section in Table 7 shows that the proposed
GRB module performs better than ordinary 1D convolutions,
demonstrating that GRB provides effective global informa-
tion based on cross-channel similarity.

Comparison with deeper 3DCNNs. Although shallow
3DCNNSs such as Res3D[Miao et al., 2017] have been stud-
ied, here we further explore deeper 3DCNN on gesture recog-
nition task. Table 3 shows that although action recognition
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methods P3D and I3D capture spatiotemporal information
by 3D convolutions, they still perform worse than on ges-
ture recognition task. We hypothesize that they fail to model
the long-term temporal dependencies which are important for
gesture recognition. In contrast, we model both the short-
term and long-term temporal information via multi-kernel
temporal convolutions and global refinement.

4.6 Visualization of feature maps

We qualitatively verify the ability of temporal modeling by
visualizing the feature maps from intermediate layer (res3 in
this experiment). As shown in Figure. 4, the most significant
difference between the proposed model and TSN is that our
model is able to attend to regions with hand in a temporally
consistent way. We highlight the region by red circles in the
visualization. Note that these regions are always around the
hand. In contrast, TSN model overlooks the attention infor-
mation in parts of the frames. The qualitative comparison
further proves the effectiveness of the proposed method.

5 Conclusion

In this paper, we propose an effective and efficient learning
paradigm for gesture recognition based on 2DCNNs. Two
simple and plug-and-play modules are introduced, including
MKTB and GRB. MKTB models the pyramidal temporal fea-
tures at local-level with 1D depthwise convolutions and GRB
captures the global temporal features based on the cross-
channel similarity. Quantitative and qualitative results on two
large scale benchmark datasets show that our model is su-
perior to existing methods. Extensive experiments on video
understanding task and video-based person re-identification
task further demonstrate the effectiveness of the proposed
modules. For the future work, since MKTB and GRB can
be plugged into existing architectures without introducing
much overhead, we will further investigate the effectiveness
of these two modules on more video understanding tasks .
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