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Abstract
Algorithms used in networking, operation research
and optimization can be created using bio-inspired
swarm behaviors, but it is difficult to mimic swarm
behaviors that generalize through diverse environ-
ments. State-machine-based artificial collective
behaviors evolved by standard Grammatical Evo-
lution (GE) provide promise for general swarm
behaviors but may not scale to large problems.
This paper introduces an algorithm that evolves
problem-specific swarm behaviors by combining
multi-agent grammatical evolution and Behavior
Trees (BTs). We present a BT-based BNF gram-
mar, supported by different fitness function types,
which overcomes some of the limitations in us-
ing GEs to evolve swarm behavior. Given human-
provided, problem-specific fitness-functions, the
learned BT programs encode individual agent be-
haviors that produce desired swarm behaviors. We
empirically verify the algorithm’s effectiveness on
three different problems: single-source foraging,
collective transport, and nest maintenance. Agent
diversity is key for the evolved behaviors to outper-
form hand-coded solutions in each task.

1 Introduction
Bio-inspired collectives like honeybee, ant, and termite
colonies provide elegant distributed solutions to complex
collective problems like finding food sources, selecting a
new site, and allocating tasks. Effective collective behav-
iors emerge from biological swarms through local interac-
tions [Gordon, 2010; Seeley, 2009; Sumpter, 2010].

Despite the potential benefits of bio-inspired algorithms,
only a few organisms have been explored for their collective
behavior; for example, very little is understood about the con-
struction methods of termites [Margonelli, 2018]. One reason
for slow research is the effort involved in understanding indi-
vidual agent behavior and creating mathematical models to
describe both individual and collective behaviors. Mimick-
ing an evolutionary process with artificial agents may yield
useful collective behaviors in a reasonable time.

Conventional approaches for evolving swarms behaviors
used Finite State Machines (FSM) with or without neuro-

evolutionary algorithms [Petrovic, 2008; Pintér-Bartha et al.,
2012; König et al., 2009; Neupane et al., 2018a]. When the
system is complex and the number of states is huge, a hier-
archical finite state machine (HFSM) offers benefits [Brooks,
1986; Valmari, 1996].

Unfortunately, HFSMs must trade-off between reactivity
and modularity [Colledanchise and Ögren, 2017]. Also, be-
haviors encoded in HFSMs can be hard to debug and ex-
tend [Lim, 2009]. Behaviour Trees (BTs), which are useful in
game design, overcome some HFSM limitations [Isla, 2005].
BTs have recently been used to evolve behaviors for robot
swarms. For example, [Jones et al., 2018] used genetic evo-
lution algorithm to evolve a BT for a Kilobot foraging task.

This paper presents an algorithm that extends a dis-
tributed evolutionary algorithm called GEESE [Neupane et
al., 2018b] with BTs to generate swarm behaviors. GEESE is
similar to the work in [Jones et al., 2018], but decentralized
GE is used in-place of genetic programming. There are two
important differences between the use of GEESE in this paper
compared to [Neupane et al., 2018b]: First, the grammar that
generated genotypes was changed to allow BT programs to
be the evolutionary phenotype. Second, three fitness function
types were designed to promote not only task-specific success
but also diversity with useful learning through a bootstrap-
ping process. The novelty of this work includes the grammar
and fitness function types, enabling GE to evolve effective
swarm BT programs. More specifically:

• Twenty-eight primitive individual behaviors were de-
signed to mimic behaviors frequently seen in the swarm
literature. A BNF grammar was designed that embeds
the primitive behaviors as BT nodes, and experiments
showed that the grammar was general enough to solve
multiple collective spatial allocation tasks.
• Behavioral diversity among agents enabled high perfor-

mance in all the swarm problems.
• The three fitness functions constrained the search space

so that the GEESE algorithm efficiently found collective
behaviors that solved the task.

2 Related Work
Evolutionary robotics (ER) is useful for generating au-
tonomous behaviors. Early work applied neural-network-
based evolving control architectures to visually guiding
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robots [Cli et al., 1993]. [Lewis et al., 1992] applied staged
evolution of a complex motor pattern generator for the con-
trol of a walking robot. [Doncieux et al., 2015] aggregated
achievements of ER and claimed that ER’s agent-centered
paradigm and behavior-based selection process allows chal-
lenging phenomena to be modeled and analyzed by statistics-
based processes.

Evolving swarm behaviors was first described in [Kriesel
et al., 2008], which showed that individuals don’t need
to possess complex capabilities for effective swarm behav-
iors. [Duarte et al., 2016] demonstrated an evolved neural
net-based controller in a real and uncontrolled environment
for homing, dispersion, clustering, and monitoring with ten
aquatic surface robots. Key properties of swarm intelligence-
based control were demonstrated, namely scalability, flexibil-
ity, and robustness.

Many ER approaches use neural networks (NNs) to evolve
robot controllers. However, NN models are hard to reverse
engineer and are not transparent, meaning that it is difficult
to figure out why the algorithm choose a certain action dur-
ing execution. A viable alternative to NN models is Genetic
Programs (GPs), particularly Grammatical Evolution (GE).
[Ferrante et al., 2013] used GE to evolve foraging behaviors
that than can be traced back to individual-level rules.

[Neupane et al., 2018b] built a distributed multi-agent
variant of GE to evolve swarm behaviors. Their approach
performed better in a canonical GE task called the Sante Fe
Trail problem, and successfully evolved foraging behaviors
that outperformed a hand-coded solution and other GP-based
solutions. The evolved behaviors were represented as a FSM.
[Neupane and Goodrich, 2019] described a proof-of-concept
about using grammatical evolution and BT to evolve behav-
iors for foraging task.

Representing swarm behaviors with FSMs gets trouble-
some when the number of states increases. HFSMs and
Probabilistic FSMs are often used to overcome these limi-
tations [Brooks, 1986]. BT representations are equivalent to
Control Hybrid Dynamical Systems and HFSMs [Marzinotto
et al., 2014], and BTs promote increased readability, main-
tainability, and code reuse [Colledanchise and Ögren, 2018].

[Scheper, 2014] used a BT to evolve a program that enabled
a DelFly drone to perform a window search and fly-through
task. The evolved BTs performed well in both simulation
and in the real world. [Kucking et al., 2018] used BTs with
AutoMoDe to perform foraging and aggregation.

3 Behavior Trees Overview
BTs are composed of a small set of simple components but
they can give rise to very rich structures. A BT is a directed
rooted tree where the internal nodes are called control flow
nodes and leaf nodes are called execution nodes. Each tree
node is either a parent or child node. The root node in a BT is
the one without parents and all other nodes have one parent.
All control flow nodes have at least one child.

The execution in BTs starts from the root node by generat-
ing signals or control flows, often called ticks, at a particular
frequency. Signals and control flows are sent from a control
flow node to its children. After receiving a tick, the nodes can

be in only one of the following three states: running, success,
or failure. Running indicates that processing for that node
is ongoing, success indicates that the node has achieved its
objective, and anything else is a failure.

The execution nodes in this paper are based on the primi-
tive behaviors of bio-swarms. We use a python-based BT im-
plementation. A variant of the GE algorithm called GEESE
is used to convert a colony-specific grammar, written to pro-
duce BT programs, into the phenotype of the agents. The
phenotype is an executable BT program.

In many BT formulations, there are four categories of con-
trol flow nodes: Sequence, Selector, Parallel, and Decorator;
and there are two categories of execution nodes: Action and
Condition. The parallel control node is not used in this paper.
A memory module known as the Blackboard holds relevant
BT data. We use a dictionary data structure as the Black-
board for the agents to store information. Each BT has its
unique blackboard, and data sharing is forbidden. For more
information, see [Colledanchise and Ögren, 2018].

4 GEESE-BT
GE is a context-free grammar-based genetic program
paradigm that is capable of evolving programs or rules in
many languages [Ryan et al., 1998]. GE adopts a popula-
tion of genotypes represented as binary strings, which are
transformed into functional phenotype programs through a
genotype-to-phenotype transformation. The transformation
uses a BNF grammar, which specifies the language of the pro-
duced solutions.

We extend a specific distributed, multi-agent GE algorithm
called GEESE in three ways: we present a BNF grammar ca-
pable of expressing BT for multiple swarm tasks, we present
a way to address the credit-assignment problem through non-
episodic rewards, and we show the importance of three dis-
tinct fitness function types. The BNF grammar guides the
genotype-to-phenotype mapping process.

4.1 Swarm Grammar
This section describes the swarm grammar used with GEESE.
The grammar uses a set of elements that are somewhat gen-
eral for a set of spatial swarm tasks. The BNF grammar,
which is used for every spatial swarm result shown in this
paper, is shown below. The phenotype created from the map-
ping process using this grammar is a BT controller. The BT
program is used by the agents to act in the environment. The
grammar incorporates individual agent rules that can produce
a valid BT, which induce desirable swarm behaviors.

(1)〈s〉 ::= 〈sequence〉 | 〈selector〉
(2)〈sequence〉 ::= 〈execution〉 | 〈s〉〈s〉 | 〈sequence〉 〈s〉
(3)〈selector〉 ::= 〈execution〉 | 〈s〉〈s〉 | 〈selector〉 〈s〉
(4)〈execution〉 ::= 〈conditions〉 〈action〉
(5)〈conditions〉 ::= 〈condition〉 〈conditions〉 | 〈condition〉
(6)〈condition〉 ::= NeighbourObjects | IsDropable 〈sobjects〉 |

NeighbourObjects 〈objects〉 | IsVisitedBefore 〈sobjects〉 |
NeighbourObjects 〈objects〉 invert | IsCarrying 〈dbjects〉 |
IsVisitedBefore 〈sobjects〉 invert |
IsCarrying 〈dbjects〉 invert | IsInPartialAttached 〈dbjects〉
| IsInPartialAttached 〈dbjects〉 invert
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(7)〈action〉 ::= MoveTowards 〈sobjects〉 | Explore |
CompositeSingleCarry 〈dobjects〉 |
CompositeDrop 〈dobjects〉 | MoveAway 〈sobjects〉 |
CompositeMultipleCarry 〈dobjects〉 |
CompositeDropPartial 〈dobjects〉 |
CompositeDropCue 〈sobjects〉 | CompositePickCue Cue |
CompositeSendSignal 〈sobjects〉 |
CompositeReceiveSignal Signal

(8)〈sobjects〉 ::= Hub | Sites | Obstacles
(9)〈dobjects〉 ::= Food | Debris

(10)〈cobjects〉 ::= Signal | Cue
(11)〈objects〉 ::= 〈sobjects〉 | 〈dobjects〉

The right-hand side of production rule 1 defines the se-
quence and selector BT control structures. Production rules 2
and 3 recursively expand the nodes. Production rules 4 and 5
recursively define execution nodes, actions and conditions.
Thus, the first five production rules in the grammar define the
way the control nodes of the BT can be constructed. The pro-
duction rules were devised so that the grammar can express
many different BT shapes of arbitrary depth. More specif-
ically, the first five production rules should be sufficient to
generate any valid structure of BTs that do not use a parallel
control structure.

Initial grammar designs placed the twenty-eight primitive
behaviors directly in production rules 6 and 7. Primitive be-
haviors are atomic behaviors that represent the lowest level of
behavior granularity, and are designed specifically to enable
spatial swarm behaviors. Examples include Move, DoNot-
Move, IsVisitedBefore, etc. These primitive behaviors are
specific to spatial tasks. Note the invert literal at the end of
the some primitive behaviors is a decorator BT control node.

Preliminary results showed that appropriate swarm behav-
iors rarely evolved because finding useful combinations of
primitive behaviors required a very big search space. Thus,
we introduced a set of subjectively obvious combinations
of spatially useful primitive behaviors to reduce the search
space. The grammar adopts a clustering approach, reducing
the total behaviors to twenty-one (rules 6 and 7). High-level
behaviors include MoveTowards, CompositeDrop, etc. The
MoveTowards behavior is the combination of GoTo, Towards,
and Move primitive behaviors. These primitive behaviors
were combined using the sequence BT control structure. The,
other high-level behaviors were similarly subjective combina-
tions of primitive-behaviors.

Production rule 8 defines the general static elements in the
swarm environment, specifically a hub, sites, and obstacles.
Production rule 9 defines the dynamic objects in the environ-
ment, specifically food and movable debris.

4.2 Non-Episodic Credit Assignment
In many previous GE and GP problems, an episodic learn-
ing environment is used. Episodic learning allows an agent
to learn a good policy by focusing on long-term rewards.
Every-time the agent reaches a terminal state or reaches a
time-bound, the environment resets to an initial state. This
type of episodic environment is widely used in reinforcement
learning problems and genetic computation to test the algo-
rithms/agents. The episodic learning environment allows vis-
iting various parts of the state space in different episodes.

In general, an episodic learning environment is useful for
testing single agent systems, but for the multi-agent system
many complications arise. A big complication is that an agent
not only needs to take environment states into account to
choose the best action but also the states of other agents. In
addition, the environment is partially observable because the
states of other agents are not observable in distributed learn-
ing, which adds more complexity to the problem. Without ex-
periencing any feedback from the environment about its con-
troller, the agents don’t have a reliable mechanism to assign
credit for the collective success of the swarm. This hampers
the GE’s capability to converge to a useful solution.

Because pure episodic learning is not compatible with fully
distributed multi-agent systems, the learning in our algorithm
is not based on an episodic variant. Thus, there is no notion
of terminal states and replay. Rather, the algorithm runs for a
particular number of time steps, which are defined before the
start of the simulation.

When two GEESE agents are in proximity to each other,
either at the hub or near each other elsewhere in the envi-
ronment, they pass their current genome to each other. Each
agent in the swarm collects genomes from every other agent
with whom it interacts, and once an agent has collected a
sufficient number of genomes (see Table 1), the agent per-
forms genetic operations independently. Since the evolution
depends on agents having a high probability of being in prox-
imity with each other, the density of agents in the environ-
ment is a critical albeit implicit criterion for successful learn-
ing.

The most fit 50% of the genomes in the agent’s repository
are then selected to be parents. Crossover is performed to
create a new population of genomes. Mutation is then ap-
plied and a new population is formed by combining the mu-
tated and unmutated individuals. The highest performing par-
ents are included in the new population. A single genome is
then selected based on diversity fitness, and the agent fol-
lows the corresponding BT program phenotype. In every step
of simulation, each agent evaluates its fitness based on how
well it performs in the environment using its BT controller.
Three distinct class of fitness function, each necessary given
the non-episodic learning and the large search space, are used
to evaluate the agent.

A generation begins with an agent holding only a single
genome and ends when that agent has selected a new genome
using genetic operations. Since whether or not an agent has
had enough encounters with others depends on the probability
that agents meet in the world, each agent can experience mul-
tiple generations, or can experience few or no generations.

5 Fitness Functions Types
Three distinct fitness function types guide the evolutionary
process: Type I (Diversity), Type II (Task-specific), and Type
III (Bootstrap). Type I fitness acts as a surrogate when Type
II and III function aren’t salient, especially early in learning,
and applies only to the genomes created between genetic op-
erations. Type III fitness guides genomes to regions of the
search space where Type II fitness can be used. Type II and
III fitness evaluate agent success.
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Parameters GEESE
Number of Genomes Required to
Trigger Genetic Operations

10

Parent-Selection Fitness + truncation
Elite-size 1
Mutation Probability 0.01
Crossover variable onepoint
Crossover Probability 0.9
Genome-Selection Diversity
Maximum Codon Int 1000
Number of Agents 100
Behavior Sample 0.1

Table 1: GEESE parameters used for the swarm experiments.

5.1 Diversity Fitness
In non-episodic and multi-agent learning, it is very difficult
for an agent to know which of its genomes are the most fit.
The only way to test a genome is to use the corresponding BT
controller and move around in the environment, but it is not
possible to do this in any kind of efficient way because of the
credit assignment problem. Nevertheless, a single genome
must be selected so that the agent can act. This paper uses
a heuristic measure of diversity to select a genome. We call
this heuristic Diversity Fitness.

Let D : {Phenotypes} → R denote diversity fitness. The
diversity function takes a BT as input and extracts all the
nodes from the tree. Recall that the BNF grammar produces
only (a) “Sequence” and “Selector” BT controls and (b) prim-
itive and higher-level agent behaviors. The extracted nodes
from the tree are stored in a dictionary structure as control
nodes and behavior nodes; the number of such nodes is also
stored. The diversity fitness is then the total number of unique
behavior nodes divided by the total behaviors defined in the
grammar.

The relative importance of diversity fitness was measured
against two other heuristics: random fitness and simplified fit-
ness. Random fitness values are assigned randomly to the
agent’s phenotype. Simplified fitness values are computed
based on the presence of three primitive behaviors: Explore,
CompositeSingleCarry and CompositeDrop. These behaviors
are the workhorse for swarms tasks. If all three behaviors
are present, it assigns 100%, 66% for any two, 33% for one
and 0% for everything else. Experiment results for a foraging
task, see Figure 1, show that the Diversity Fitness is consid-
erably better than Random and Simplified.

Promoting diversity among agents in a collective serves
two purposes. First, promoting diversity allows a more thor-
ough exploration of the set of possible solutions. Second,
promoting diversity contributes to the resilience of the swarm
as a whole; such diversity has been identified as key for tuning
the number of agents committed to specific tasks in biological
colonies [Gordon, 2010; Seeley, 2009]. The primary purpose
of promoting diversity in this paper is to contribute to what
is called the diversity of “types and kinds” [Page, 2010], en-
abling swarm resilience and efficient collective behavior, with
greater exploration a side-benefit.

The diversity of a population of agents is computed at their

Figure 1: Genetic fitness functions comparison

phenotype level since it is the phenotype/program that actu-
ally interacts with the environment. As the evolutionary algo-
rithm is trying to combine different type of behaviors within a
BT, the diversity function ensures the agents with unique BT
program phenotypes have higher chances of survival.

5.2 Task-specific and Bootstrap Function
This section describes how the phenotypical behaviors
evolved by GEESE are evaluated for evolutionary fitness.

Agents act within the environment using the evolved BT
as a controller. At each iteration, each agent evaluates and
revises the quality of its BT based on the two level of fitness
function discussed in this section: bootstrap and task-specific.

The credit assignment problem for swarm behavior design
is a hard problem because (a) swarm success emerges from
the collective actions of individual agents and (b) the reward
to an individual is determined by the reward to the group.
This credit assignment problem is exacerbated by different
time scales used in the algorithm: the number of iterations,
the number of generations, how long tasks take to execute,
and how long it takes for information to flow between agents.

Preliminary experiments showed that task-specific fitness
functions were not sufficient to induce desirable learned be-
havior in reasonable time. This paper uses two forms of
“bootstrapping” to help boost learning. One form of boot-
strapping, exploration, rewards exploration to different spa-
tial regions. The other bootstrapping form, prospective fit-
ness, rewards agents for trying potentially useful activities.

Whether or not a genome is considered fit enough to be a
parent is determined by three elements: Task Fitness, Explo-
ration Fitness, and Prospective Fitness. Let O, E, and P de-
note task fitness, exploration fitness, and prospective fitness,
respectively. Task fitness, O, is defined by a task-specific ob-
jective function. The next subsubsection describes the three
task-specific fitness functions used in this paper. Exploration
fitness, denoted by E, and prospective fitness, denoted by P ,
are described in the subsequent subsubsections.

Let At denote the fitness of the agentAt. The overall agent
fitness of a genome to be a parent at time step t is given by

At = β(At−1) + (Ot + Et + Pt). (1)

Recall that a generation begins when an agent has a single
genome and ends when the agent collects enough genomes
from interactions with neighbors to produce a new genome
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through genetic operations. Because task completion and
generations can operate on different time scales for different
agents, the fitness of an agent needs to have some memory to
enable it to account for its part in the credit assignment prob-
lem [Agogino and Tumer, 2004]. The t − 1 term in Equa-
tion (1) represents the agent fitness in the previous generation
and β is the generational discount factor.

Task-Specific Objectives
The designer must specify the task or goal the swarms should
accomplish. The goal is defined in terms of a task-specific ob-
jective function. The objective function embodies the intent
of the designer for the swarms to accomplish. The objective
function guides the evolution of individual agent behaviors.

Designers can define an objective function for the experi-
ments they want the swarms to perform given that the func-
tion is (quickly) computable using the information available
in the environment. For the experiments reported in this pa-
per, three different task-specific objective functions are de-
fined: Foraging, Nest-Maintenance, and Cooperative Trans-
port. Denote these objective functions by F , N , and T , re-
spectively; thus the objective function O is selected by a hu-
man operator from the set O ∈ {F,N, T}.

Single-Source Foraging
Denote foraging fitness byF whereF : {Phenotypes} → R.
F represents the designer’s goal for the swarms to collect the
maximum amount of food, and the set {Phenotypes} rep-
resents all possible BT program phenotypes. More food is
preferred to less food. Since the food could be in any part
of the environment, the agents need to explore the environ-
ment, find the source of food, and transport food to the hub.
Let F (phenotypes) = |HF |, where HF is food “items” col-
lected to hub. Foraging fitness is set cardinality, i.e., total
number of food items collected and transported from envi-
ronment to hub.

Cooperative Transport
Denote cooperative transport fitness by T where T :
{Phenotypes} → R. T represents the designer’s goal for the
swarms to transport a heavy object from a source location,
located anywhere in the environment, to a destination. No
agent is capable of moving the object alone. The agents need
to explore the environment, find the heavy object, and coordi-
nate with other agents to transport it to a desired destination.
LetDO be the set which contains all the objects collected and
moved to a desired destination. Let T (phenotypes) = |DO|,
which is the number of heavy objects collected and moved to
the desired destination.

Nest Maintenance
Denote the nest maintenance function by M where M :
{Phenotypes} → R. M represents the designer’s goal for
the swarms to clear the area around the hub from debris. The
debris objects are distributed around the periphery of the hub
blocking the way for any exploring agents who might wish
to return to the hub. In nest maintenance, agents need to ex-
plore near the hub, find the debris, and then move the de-
bris to a place outside a boundary. Let ND be the set which
contains all the debris collected outside the boundary. Then

Figure 2: Comparison of different level of fitness functions

M(phenotype) = |ND| is the total number of debris objects
moved outside the boundary.

Exploration Fitness
Exploration fitness is a form of bootstrapping that rewards
those agents that explore the world. Denote the exploration
fitness function by E where E : {Locations} → R. At each
time step, each agent stores the location it is in. If the cur-
rent location has not previously been visited by an agent, then
the agent appends the current location into its memory. Ex-
ploration fitness is the total numbers of locations the agent
has visited. The exploration function is computed exactly the
same way each swarm task.

Prospective Fitness
Prospective fitness is a form of bootstrapping that rewards
agents that persist in tasks that have a “prospect” of contribut-
ing to the collective good. Denote the prospective fitness by
P. In each task in this paper, moving things (food, debris,
objects of interest) contributes to collective good. Thus P is
set to the number of items that an agent is carrying.

Necessity of Task, Exploration, Prospective
The grammar allows BT to create two different control-flow
nodes and twenty-one types of execution nodes, organized re-
cursively. If the width is a behavior tree is N , then there are
2 ∗ 21!

N !×(21−N)! ways to build the behavior tree at a particu-
lar depth. Thus the search space is a combinatoric problem
where there are myriad ways to construct the BT.

Because of the size of the possible BT programs and
the difficulty of the credit assignment problem, experiments
showed that each fitness element (task-specific, exploration,
prospective) was necessary to produce good swarm behav-
iors. Figure 2 compares the performance of the different com-
bination of Type II and III fitness function. It is clear from
Figure 2 that task-specific fitness function performed worse
without the assistance from the bootstrap functions. Results
are shown only for the foraging task, which might suggest
that exploration and prospective fitness functions are suffi-
cient to produce good performance. Results for other tasks
show that task-specific, exploration, and prospective fitness
are all necessary.
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Figure 3: Performance with different phenotype sampling

6 Experiments and Results
This section describes the evolved collective behaviors for
different swarm tasks and presents empirical results for the
three tasks described in the introduction. Because of the
stochastic nature of genetic evolution, the set of swarm be-
haviors can consist of different BT program phenotypes for
each experimental run. The evolved behaviors that success-
fully perform the task are transferred to the test environment.
Debris, sites, and objects are randomly placed in the world.
Because the agent phenotypes are affected by the randomness
in mutation and because of the randomness in the world, the
evolved behaviors are evaluated for fifty separate runs. For
each swarm task, a box-plot is superimposed at regular time
intervals with the box indicating IQR (Q3-Q1), the whiskers
with Q3 + 1.5*IQR upper bound and Q1 - 1.5*IQR lower
bound, and outliers as rhombi.

6.1 Behavior Sampling
After running a pre-selected number of iterations, the swarm
has a collection of agents, some of which are fit and some
of which may not be fit. Behavior sampling is the process
of choosing which evolved behaviors from the evolution pro-
cess are used in a swarm when the swarm is placed in a test
environment.

Two different methods of behavior sampling were consid-
ered. Both approaches use the fitness of agents as defined in
Equation (1). First, in best agent sampling, only the highest
performing agent’s phenotype was picked from all the agents
that took part in the evolution; in best agent sampling, all
the test agents were homogeneous. Second, in top agents
sampling, the agents’ phenotypes were sorted based on the
fitness values; then, a fixed number of top phenotypes were
extracted. Results indicated that, because of homogeneity,
best agent sampling performed worse than top agents, so top
agents results are presented. Figure 3 show the performance
of different sample size. The best agent sampling method
performs worse whereas the sampling with 0.1% top agents
performed best. The relative performance of sampling size
between 0.5% - 0.9% show the resilience behaviors of the
swarm as the performance remains roughly the same though
more, less fit phenotypes are introduced in the world.

Figure 4: Empirical results on all swarm experiments.

6.2 Swarm Tasks
Single Source Foraging
The leftmost graph of Figure 4 shows the swarm performance
for Single-Source Foraging between evolved behaviors and
Handcoded behaviors. The evolved behaviors clearly perform
better than the hand-coded behaviors. Figure 3 suggests that
the diversity of agents is one reason for the success of the
learned behaviors; all the agents have the same behavior for
the hand-coded solution. Another reason for the inferior per-
formance of hand-coded behavior is that it is hard for humans
to construct a BT tree with a cyclic nature as BT are directed
trees. For foraging and other swarm tasks, there is cyclic pat-
tern of visiting hub and other objects of interest.

Figure 5 shows one of the evolved BT for the foraging task.
Hexagonal blue colored nodes represent selector controls,
rectangular orange nodes represent sequence controls, and
elliptical grey leaf nodes represent the execution nodes. A
sequence control node returns “Success” when all of its chil-
dren return “Success” else “Failure”, while a Selector control
node returns “Success” when at least one of its children re-
turn “Success” else “Failure”. For details on the control flow
in BT, see [Colledanchise and Ögren, 2018].

A BT is a directed acyclic graph (DAG) so it’s fairly easy to
analyze and understand the control flow. The tick/signal flows
through the root node and uses depth-first search to traverse
the nodes. In the remainder of this section, we first describe
the control flow and return status traversal with the BT show
in Figure 5. We then give an intuitive description about a
specific scenario when an agent uses the BT to interact with
the environment.

In the beginning, the control flows to “RootSelector” which
is a selector node; for this selector node to be a “Success” ei-
ther of its two children needs to return “Success” else “Root-
Selector” will return “Failure”. The first child of the “RootS-
elector” has just one child node, “Selector17”. “Selector17”
has two children “Sequence16” and “Sequence56” and both
of them are sequence control nodes. If “Sequence16” returns
“Success” then the “Sequence56” need not be executed since
a selector node only requires one of its children to return
“Success”. Then the return status will flow back to “Selec-
tor17” and to the root node. Thus it completes one full exe-
cution of the BT.
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Figure 5: One of the evolved BTs for the foraging task

Figure 6: Hand-coded behavior tree for the foraging task

If “Sequence16” returns “Failure”, then control flow is
transferred to the “Sequence56” node. If “Sequence56” re-
turns “Success”, then the return status follows similar path to
the root node completing one full execution. However, if both
“Sequence16” and “Sequence56” return “Failure” then the
“Selector17” is a failure which forces the root node to trans-
fer the control flow to the right-hand block “Sequence79”.
“Sequence79” has two children: “Sequence39” and “Selec-
tor62”. For “Sequence79” to return “Success” both its chil-
dren should return “Success”. We can reason about the return
status from “Sequence39” and “Selector62” as done before.

Intuitively, the “Sequence16” block implements a ‘Food
carry phase’, “Sequence56” block implements a ‘Food drop
phase’, “Sequence39” implements an ‘Explore phase’, and
“Selector62” implements a ‘Traverse from hub to site’ phase.
In other words, when the agent is at a site and finds food, it
carries the food [Sequence16]. If the agent has food and there
are some objects near it, then it drops the food [Sequence56].
If the agent is not near the site and isn’t carrying food, then it
will explore the environment [Sequence39]. When the agent
is not carrying food and finds an object, then it will move
away from the hub [Selector62].

For contrast, Figure 6 represents the (less successful) hand-
coded behavior for the foraging task. Recall that every agent
in the experiments with hand-coded behaviors used the same
BT. In the interest of space, the hand-coded BT is not de-
scribed, but it can be interpreted similarly to the evolved BT
illustrated above. Importantly, the hand-coded BT was de-
signed to mimic foraging behavior of agents in nature.

Note that the BT in Figure 5 is just one of the BTs evolved
by the algorithm. Note also that the BT subjectively does
not match the ideal behavior of an individual in nature –
the agent’s behavior is imperfect. Importantly, the diver-
sity experiment shown in Figure 3 shows that when there is
a diverse set of those imperfect BTs used by a large num-
ber of agents, the performance obtained by the diverse-and-
imperfect agents is superior to the homogeneous agent hand-
coded behaviors designed to resemble the ideal bio-swarms.
Subjective observations, to be quantified in future work, indi-
cate that the evolved BT is readable: an expert can analyze its

structure and modify few nodes to make it more efficient for
a specific problem.

Cooperative Transport & Nest Maintenance
The middle and rightmost graphs of Figure 4 shows swarm
performance for Cooperative Transport and Nest Mainte-
nance, respectively. The evolved behaviors perform better
than the hand-coded behaviors in each tasks. As with single-
source foraging, the homogeneous nature of the hand-coded
population interfered with the swarm’s ability to succeed.

7 Conclusions and Future Work
A recursively defined BT-based grammar, built for spatial
swarm tasks, can be used by the GEESE algorithm to evolve
solutions to multiple swarm tasks. Because of the difficulty of
solving the credit assignment problem, bootstrapping meth-
ods must be added to the fitness function to find solutions in
a reasonable time. Moreover, results show that the diversity
of the evolved behaviors was essential to their success.

The algorithm was able to evolve behaviors for different
task and perform well in the simulation but should be applied
to physical robots. Future work should also explore how the
grammar can be modified to evolve other swarm tasks. Ad-
ditionally, future work should explore probabilistic modeling
of agent’s sensing and acting capabilities.
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