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Abstract

The performance of decentralized multi-agent sys-
tems tends to benefit from information sharing and
its effective utilization. However, too much or un-
necessary sharing may hinder the performance due
to the delay, instability and additional overhead of
communications. Aiming to a satisfiable coordi-
nation performance, one would prefer the cost of
communications as less as possible. In this paper,
we propose an approach to improve the sharing u-
tilization by integrating information sharing with
prediction in decentralized planning. We present
a novel planning algorithm by combining deci-
sion sharing and prediction based on decentralized
Monte Carlo Tree Search called Dec-MCTS-SP.
Each agent grows a search tree guided by the re-
wards calculated by the joint actions, which can not
only be sampled from the shared probability distri-
butions over action sequences, but also be predict-
ed by a sufficiently-accurate and computationally-
cheap heuristics-based method. Besides, several
policies including sparse and discounted UCT and
DIY-bonus are leveraged for performance improve-
ment. We have implemented Dec-MCTS-SP in the
case study on multi-agent information gathering
under threat and uncertainty, which is formulated
as Decentralized Partially Observable Markov De-
cision Process (Dec-POMDP). The factored belief
vectors are integrated into Dec-MCTS-SP to han-
dle the uncertainty. Comparing with the random,
auction-based algorithm and Dec-MCTS, the eval-
uation shows that Dec-MCTS-SP can reduce com-
munication cost significantly while still achieving a
surprisingly higher coordination performance.

1

Communication is fundamental to coordinated behaviour, as
robots need to develop decision strategies that take into ac-
count the actions of others [Best er al., 2018]. Through the
cooperative planning process, multi-robot systems become
effective for complex real-world tasks, including coopera-
tive localisation, target tracking, object recognition, explo-
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Figure 1: The interaction among the robots and the environment.

ration, surveillance, and environmental monitoring [Best et
al.,2019].

Full appreciation of the interactive nature of sequential de-
cision making will enable us to better understand multi-agent
coordination, and thus come up with more usable and effec-
tive solutions [Oliehoek, 2018], which means that the per-
formance of the decentralized multi-agent systems tends to
benefit from information sharing and its effective utilization.
However, over communication may lead to large overhead-
s, which hinders the suitability for realistic scenarios where
communication resources are limited, the network is unreli-
able, or the signals are susceptible to interference from the
other robots [Best ef al., 2018]. We hold the viewpoint that
decision sharing can be integrated with prediction in decen-
tralized planning to reduce communication cost significantly
with equally-good or even higher coordination performance.

In this paper, we propose a novel decentralized planning
approach by combining decision sharing and prediction in a
more principled method. Our approach is based on the con-
text of decentralized Monte Carlo Tree Search (Dec-MCTYS)
[Best et al., 2019] , which is called Dec-MCTS-SP. Its intu-
ition is in analogy with human, when several players cooper-
ate to play soccer, they need not talk frequently to let others
know what they are going to do the next moment. Instead,
given an overall objective (to score a goal), the cooperation is
always happening by prediction on others.

As a result, decision sharing through communication is
critical but not everything for cooperation. In Dec-MCTS-
SP, each agent grows a search tree guided by the rewards
calculated by the joint actions as shown in Figure 1. The
cooperation of Dec-MCTS-SP is composed of two features.
One is through sampling from the shared probability distribu-
tions over action sequences by communication, and the other
is predicted by a sufficiently-accurate and computationally-
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cheap heuristics-based method. Besides, several policies are
leveraged for further performance improvement including s-
parse and discounted UCT and DIY bonus. To validate Dec-
MCTS-SP, we formulate a representative decentralized infor-
mation gathering problem under uncertainty. It is based on
decentralized partially observable Markov decision process
(Dec-POMDP) [Bernstein et al., 2002]. We use Dec-MCTS-
SP to solve it and compare the performance with that of the
state of the art.
In summary, our main contributions are as follows.

e We propose the framework that decision sharing can be
integrated with the prediction for decentralized planning
in a more principled way, and design Dec-MCTS-SP al-
gorithm which combines these sharing and predicting
cooperating methods in the context of Dec-MCTS.

e We incorporate the method of factored belief into Dec-
MCTS-SP for empowering it to deal with uncertainty.

e The experimental results show the significant commu-
nication reductions with a surprisingly higher coordina-
tion performance, which outperforms those of random,
auction-based algorithm and Dec-MCTS.

2 Problem Formulation

In a multi-agent information gathering problem, agents move
and observe to gather information in the dynamic environ-
ment which may threaten their health. We represent the sce-
nario as a graph. The targets with information and threat are
modeled as graph nodes. The information and threat chang-
ing are modeled as probabilistic Markov state transition ma-
trixes, which model the uncertainty. We assume that the a-
gent can only observe the information and threat at the node
where it locates, which captures the partially observable fea-
ture, and all the agents can share their observations. In this
paper, we formulate the planning problem as a constrained
Dec-POMDP.

Environment

We model the environment as an undirected graph G
(V,E) and N = |V|. Each vertex has two states, one for
information and the other for threat. The value of informa-
tion is determined by the function f” : I™ — R, where I" is
the information level of vertex v,,. In the same way, the threat
value is determined by ¢ : R” — R. Figure 2 gives an in-
stance of 3 agents (“blue triangles”) patrolling an area of 36
locations (“black dots”). The information (positive) or threat
(negative) states of the locations are shown by the yellow and
red circles respectively. The size of the circles denotes the
information or threat levels.

Multi-Agent Information Gathering
The problem is formulated as a Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP), which is
<M,S8 A T,0,Q,r h,by >, where

e M is the set of agents, | M| = m.
e S is the set of states, and each s € S is defined as
[v, (skh, ... sN), (s}, ..., s¥)], where v is the current po-

sitions of agents, s¥ € R™ and s € I™ are the threat
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Figure 2: A scenario of 3 agents patrolling an area of 36 nodes gen-
erated randomly.

-

and information states at vertex v, € V. We denote
Se = [(shy .y sN), (s}, ..., 8N)] € S, as the threat and
information states at each position that captures the un-
certainty of the environment.

A is the set of all joint actions, and the agents select
adjacent vertices to visit as a joint action.

T is the set of conditional transition probabilities. We
assume that v is deterministic and only determined by
the destinations of the joint movement of agents. s,
follows a discrete-time Markov process. We denote the
Markov state transition processes as P, and P7 for the
threat and information state transition of vertex v,,.

O is the set of joint observations. In this paper, we as-
sume the observation of the environment is determinis-
tic without uncertainty. The uncertainty comes from the
changing environment.

) is the set of observation probabilities. As an observa-
tion o is directly a part of some states, the observation
probability 2(o|s’;a) = 1 if o is consistent with the
corresponding part of s’ and 2(o|s’, a) = 0 otherwise.
r is the immediate reward function S x A — R calculat-
ed by Eqn. 1, where n,,, is the number of agents visiting
v;. We assume that multiple agents at the same vertex of
the same time suffer from multiple threats but only gath-
er one information. The immediate reward for state s is
shown as Eqn. 1, where « is the weighting parameter for
balancing information and threat.

) = (a%fi(sé) — (1 - a)ci(s%))

v EV i

(D

h is the horizon of the problem. For example, each pa-
trolling robot has a battery limit and can only move for
20 time steps during the whole information gathering
task. Besides, there is no place for them to recharge.

by is the initial state distribution at time ¢ = 0. For the
scenario, the initial information and threat states for all
the vertex are zero vectors, and they start from the same
starting places at the left bottom corner of the map.

Planning Objective

The objective of the agents is to choose the joint movement
actions to maximize the total expected reward accumulated
over h time steps shown as Eqn. 2, where r(t) is the immedi-
ate reward of time step .

2)
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3 Integrating Decision Sharing with
Prediction in Decentralized Planning

3.1 Decentralized Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a promising approach to
online planning because it is not myopic and anytime [Kocsis
and Szepesvari, 2006]. Recently, MCTS has been successful-
ly applied to robotics such as adversarial patrol [Kartal et
al., 2015] and computer Go (MCTS is the basis for Alpha-
Go [Silver et al., 2016] and AlphaGo Zero [Silver et al.,
20171). By using Monte Carlo simulations to sample thou-
sands of possible trajectories quickly, we can achieve good
approximations of the values of possible actions.
Decentralized Monte Carlo Tree Search (Dec-MCTS)
leverages the power of MCTS to select an effective and com-
pact sample space of action sequences for decentralized on-
line planning [Best et al., 2019]. By sharing the decision-
s (intentions/plannings) with each other, i.e. the probability
distributions of the action sequences, the multi-agent system
gradually forms an emerging type of cooperation. The intu-
ition behind Dec-MCTS is that one needs both think indepen-
dently and negotiate with teammates when cooperating.

3.2 Decentralized MCTS Integrating Sharing with
Prediction

We integrate sharing with prediction in the context of Dec-
MCTS and propose Dec-MCTS-SP. Its performance relies on
several important factors mainly including the decision shar-
ing, the decision prediction and the joint-reward-guided de-
centralized tree search.

The result of one rollout is either “win” or “lose” in some
scenarios such as “Chess” or “Go”, so the reward is either
“0” or “1” regardless of how many the look-ahead steps are.
Unlike them, in Dec-MCTS-SP, we limit the maximal look-
ahead steps to a constant variable D, which means the com-
bined rewards guiding the tree to grow is D-step rewards, and
the depth of the tree can not be deeper than D.

As mentioned above, the growth of the tree is guided by the
combined reward calculated by the joint actions of the agents.
The actions of the planning agent itself can be acquired easily
from the tree (a branch from the root node to the leaf node is
an action sequence for the planning agent itself). However,
it is hard to get the actions of the other agents. To solve this
problem, we divide D into two parts including D, and D,,
where D = Dy + D,,.

First, the Dy actions of the other robots are sampled from
the shared decisions (intentions or plannings) from the other
robots, i.e. the probability distributions of action sequences,
which is a compressed MCTS tree in essence (to be explained
further in Section 3.4).

Second, the D), actions of the other robots are predicted
in a sufficiently-accurate and computationally-cheap method
without any communication (to be explained further in Sec-
tion 3.5).

Hence, the combined reward of the joint actions for guiding
the MCTS tree is easy to get by sharing integrating prediction
(ie. D = Ds+ D).

Algorithm 1 presents the pseudocode of the whole pro-
cess of Dec-MCTS-SP. There are two loops in the algorithm.
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Algorithm 1 Dec-MCTS-SP
Inpln: Boutsidev Binside’ Ds» Dp
Output: apcst

1: RootNode<—InitialiseMCTSTree()

2: s + ObserveEnvironment()

3: PublishLocalObservation(s)

4: § +ReceiveAndGetGlobalObservation()

5: while B,,s;4. not met do

6: X + SelectSubsetFrom(X)

7:  while B;,,4;4. not met do

8: ExpandedNode<—SD-UCTSelection(root)

9: Sy=PredictFutureEnvironment(S)
10: as:SharedActionsSampleFrom()e )
11: a,=PredictedActionsOfTeamMates(D),,S¢)
12: r<—CalculateCombinedReward(a,a,,S¢)
13: Backpropagation(r)
14:  end while
15:  AXjoear <GetLocalDistribution(RootNode)
16:  PublishLocalDistribution(Xj,¢q;)
17 Xother <ReceiveAndUpdateDistribution()
18: X +GetGlobalDistribution(Xjocqi, Xother)

19: end while
20: apest=BestNextAction(RootNode)
21: return apest

In the outside loop for budget B,y¢side, the planning agent
shares the observation (Lines 2&3) and decision result (Lines
15-18) and grows the tree (Lines 7-14). In the inside loop
for budget B;,side, the agent grows the tree guided by the
combined reward (Line 12), which is calculated based on the
shared and predicted actions.

3.3 Dealing with Uncertainty

The locations of the environment to patrol are under uncer-
tainty. Hence, the future environment states should be pre-
dicted first (line 9 in Algorithm 1). We maintain two factored
belief vectors of the information and threat states for vertex
n at time step ¢, i.e. by(t) and b} (t). They are probability
distributions of threat and information states calculated by E-
qn. 3 and Eqn. 4, where v; = n means that there is an agent ¢
at location n.

(¢ +1) = bR(t) P G)
e ={duey GG @

Further, we denote a feasible policy of length D at time
steptas mp(t) = (ms1, .-, Ter D), Which consists of D con-
secutive deterministic vertices (or actions). Given 7p(t), we
define the predictive expected future reward E[R(mp(t))],
which is the aggregate of the expected reward of each step
in7p(t) as

D
E[R(mp(t Z'yz by (t+i)F
1=

- (1-

(&)
Q)b (t +1i)L))



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

where ~ is the discounted factor. F' and L are two vectors
denoted for the information values and threat values for dif-
ferent information and threat levels.

3.4 Decision Sharing with Team Mates

The various branches in the tree can represent various kinds
of decisions, i.e. action sequences. The possible action se-
quences for all the agents are represented by X. The most
promising action sequences is restricted to a subset X eX.
Xiocar and Xyiper mean the decisions of the local planning
agent of its teammates.

We use the probability distributions of X to compress the
tree (line 15 in Algorithm 1). First, the rewards of the branch-
es in a constant depth will be calculated. Second, we normal-
ize the rewards to get probability distributions. Third, the
planning agent shares the probability distributions of X with
the other agents to get global distributions (line 16-17 in Al-
gorithm 1). By sampling from the global distributions, the
planning agent can get the actions of the other agents. Final-
ly, the selected distributions are used to grow the tree.

3.5 Decision Prediction for Team Mates

We integrate decision prediction method in Dec-MCTS-SP to
reduce communication pressure and get better coordination
result.

Modelling Other Agents with Heuristics-Based Policy

We use the heuristics-based methods in the context of Dec-
MCTS to predict the actions of the others, the heuristics of de-
cision (intention/planning) prediction method may have sev-
eral alternatives by drawing inspiration from the work for
warehouse commissioning [Claes et al., 2017].

e Greedy, i.e. robots always move towards the node which
has the highest reward.

e Reverse greedy from the perspective of the nodes, i.e.
each location is assigned to the robot that has the best
evaluation.

e [terative greedy, i.e. we evaluate all locations for all
robots and iteratively assign the currently best-evaluated
location to the highest ranked agent.

Algorithm 2 shows pseudocode for the first approach. How-
ever, the choice of prediction is not limited to the above. In
fact, the decision prediction method can help Dec-MCTS-SP
converge faster, and you do not have to calculate a second
time to predict decisions based on the same shared sampled
joint actions. Besides, the € — Greedy policy can empower
the Greedy to explore and decrease the predicting time.

3.6 Further Optimization

Sparse and Discounted UCT

While MCTS methods can deal with fairly large state spaces,
huge state spaces are problematic. To deal with this problem,
we propose to use Sparse UCT, which builds upon “Sparse
Sampling” [Kearns et al., 2002]. Besides, we also adopt
another widely-used Discounted-UCT policy. The intuition
is that the most recent rollouts are more relevant since they
are obtained by sampling the most recent distributions. We
combine the methods and use Sparse and Discounted UCT
(SD-UCT) in Dec-MCTS-SP (Line 8 in Algorithm 1).
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Algorithm 2 PredictActionsOfTeamMates

Input: D,, Sy

Output: a,,
1: Initialize a,,
2: while D, not met do
3 while m not met do
4: any.: = SelectBestAction(Sy)
5: Qpegt < add(al’ .,
6: end while
7: end while
8: a, + add(apest)
9: return a,

Incentivizing Agents by DIY Bonus

It is extremely difficult to accurately know the actions of the
other agents in the future. We adopt the strategy of having
a slight preference to do tasks themselves like many decen-
tralized planning approaches [Claes et al., 2017; Nijssen
and Winands, 2012]. This improves the performance com-
pared to optimising the combined reward in Eqn. 1 direct-
ly, since the revised reward is more sensitive to the planning
robot itself and less affected by the uncertainty of the oth-
er robots’ plans [Nijssen and Winands, 2012]. We denote
DIY — Bonus € [0,1] for the planning agent performing
tasks when calculating the combined reward.

4 Experiments

4.1 Settings

We have implemented Dec-MCTS-SP on ROS (Robot Op-
erating System) [Quigley er al., 2009]. For the information
gathering scenario, each agent shares their observation with
the others to get a partial observation of the environment.

We use ROS nodes to simulate the uncertain environment
and implement the planning processes of the robots. Sev-
eral types of ROS messages are customized for the robots
to observe the environment and share the information. The
communication among the robots and the environment is
asynchronous by using ROS-provided loosely-coupled pub-
lish/subscribe mechanism. Without loss of generality, the
topological structure of all the maps in this paper are gen-
erated randomly to avoid the bias of evaluation.

We set the parameters in reward function and the value
function as: the weight parameter a = 0.5 and the discoun-
t factor v = 0.9. The information and threat value vectors
are respectively set as F' = [0,1,2,3,4] and L = [0, 1,2].
The information state at each vertex in the environment has
the same Markov state transition model, and the same set for
the threat state transition. We benchmark against a random
algorithm (Random), an auction-based algorithm (Auction).
Besides, we compare our approach against the state-of-the-
art approach as the baseline (Dec-MCTS).

e Random: The agents move in a random direction.

e Auction: The agents move to the adjacent with the high-
est value in the next several steps sequentially, which
is a classical auction-based method for task allocation
[Nunes and Gini, 2015].



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

e Dec-MCTS: The agents run a searching tree individu-
ally and share the observing and deciding information
with each other, which serves as the baseline in this pa-
per [Best er al., 2019].

e Dec-MCTS-SP: Our approach that integrates sharing
with prediction.

The initial locations of the agents are all at the bottom left
corner of the maps. We assume each robot has a battery limit
of running for 20 time steps. So, we let agents patrol continu-
ously for 20 time steps (h = 20) in the uncertain environment
and compare the total reward calculated by Eqn. 2. As for the
other parameters for tree search of Dec-MCTS-SP and Dec-
MCTS, we set the same parameters including that By¢side
is 5 and B, siqe 1S 1500, which means the searching cost for
Dec-MCTS-SP and Dec-MCTS is equal. D (total look-ahead
steps) is 5, D, (look-ahead steps for decision sharing) is 3,
D, (extra look-ahead for planning prediction) is 2. Besides,
the DIY-Bonus is set as 0.1 empirically. In each experiment
and each algorithm, we ran 100 rounds. We will present the
average and standard deviation.

4.2 Results and Analysis

We ran Dec-MCTS-SP compared with Random, Auction and
Dec-MCTS in the scenario as shown in Figure 2 with 36 n-
odes. All robots start from the left bottom corner. As the ex-
perimental results of Dec-MCTS-SP with the three heuristics
are similar and are all better than the baseline (Dec-MCTYS),
we only present that of the first one for simplicity.
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Planning Accuracy with Communication Cost

Figure 3 presents the average reward of the agents by dif-
ferent planning approaches. Dec-MCTS-SP performs signif-
icantly better than all the other algorithms. It outperforms
the Auction by more than and 60% and outperforms Dec-
MCTS by more than 5% for three robots with significantly
lower communication cost in bandwidth (Figure 4). Besides,
the gap is gradually widening. With the increase of robots, it
is normal the Random performs worse. However, the Auction
performs worse, either. It is because that Auction is a greedy
algorithm in essence and is prone to trap into local optimum.
It is not easy for the agents to disperse to gather new infor-
mation, so they may suffer from threat of the local locations
continuously.

Planning Times

Figure 5 shows the average planning time of the agents by
different planning approaches. In this experiment, we on-
ly evaluate and compare the two decentralized methods in-
cluding Dec-MCTS-SP and Dec-MCTS. Dec-MCTS-SP has
lower time cost but higher performance compared with Dec-
MCTS. We can divide the reasonable decentralized planning
time into three levels including “within a second”, “several
seconds” and “within a minute”. As shown in Figure 5, the
planning time can be controlled on the level of “several sec-
onds” both for Dec-MCTS-SP and Dec-MCTS, which suits
for some scenarios requiring real-time planning. With the in-
crease of the agents, the planning time increases linearly and
gently for both Dec-MCTS-SP and Dec-MCTS, which is ben-
eficial to the scalability.

With DIY-Bonus

Figure 6 presents the performance (reward) of Dec-MCTS-
SP compared with Dec-MCTS with the increase of DIY-
Bonus. There are three robots in the scenario as shown in
Figure 2. From the result, we can see that the performance
of Dec-MCTS-SP is higher than Dec-MCTS when the DIY-
Bonus increases. The performance of them begins to decline
when DIY-Bonus is larger than 0.2. Dec-MCTS-SP and Dec-
MCTS both have a best performance when DIY-Bonus is set
to 0.1, so we set DIY-Bonus as 0.1. To sum up, the DIY-
Bonus should be set carefully and appropriately.

Discussions
The results show Dec-MCTS-SP has higher reward with
shorter planning time and lower communication cost com-
pared with Dec-MCTS. We analyzed the reasons below.

First, as for the higher reward. The budgets including
Binside and Boytside should be set considering real-time and
online planning with the highest priority. So, the budgets for
the experiments in this paper may not be enough for a Dec-
MCTS tree of the depth of five (D = D) to converge. The
state space for searching will increase exponentially with the
growth of the depth of the tree. For the Dec-MCTS-SP tree,
the tree depth is three (Dy), which is more beneficial for con-
vergence, and thanks to the predictive look-ahead steps (D)),
the look-ahead steps is still five (D = D + Dp).

Second, as for the shorter planning time. Because it
is mainly relative to the search budget (the same for Dec-
MCTS-SP and Dec-MCTS) and the size of the tree (the
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Figure 7: A larger scenario with 8 agents and 196 locations.

size of Dec-MCTS-SP tree decreases exponentially compared
with Dec-MCTS due to the difference of depth).

Third, as for the lower communication cost. Because it
depends on the number and length of the communicated ac-
tion sequences. Apparently, because the size of the tree is
extremely reduced, the shared information of Dec-MCTS-SP
will decrease exponentially compared with Dec-MCTS.

Finally, Dec-MCTS-SP is general for distributed sequential
decision problems, which consists of three aspects including
a decision sharing method, a decision prediction method, and
an integrating method of sharing and prediction.

4.3 Scalability

We demonstrate the scalability of Dec-MCTS-SP by a larg-
er case study. Figure 7 gives a larger environment with 8
agents and 196 vertexes. The topology of the map is gener-
ated randomly. At most, we implemented the Dec-MCTS-SP
method in an environment of 400 vertexes and 16 agents. The
single-step planning time is about 8 seconds for 196 vertexes
and about 12 seconds for 400 vertexes. Through quantitative
analysis, by using Dec-MCTS-SP, the agents begin to spread
out into the environment from starting point quickly and pa-
trol sporadically in the environment instead of trapping into a
small area.

5 Related Work

Communication of the robots’ intentions (decisions or plan-
nings) is critical to the coordinated behaviour of decentral-
ized multi-robot teams, yet communication remains a bottle-
neck for deployed multi-robot systems [Best et al., 2018].
Many planning approaches are based on the limiting assump-
tion of perfect communication, such as Dec-MCTS [Best et
al., 2019], Multi-Robot Task Allocation (MRTA) [Capitan et
al., 2013; Nunes and Gini, 2015] and max-sum [Chen et al.,
20161, which makes the approaches suffer from poor scala-
bility and not suit for realistic environment.

To solve the problem above, an alternative solution is
communication-aware planning, which typically seeks to im-
prove the available communication resources by reposition-
ing the robots. This can be achieved by encoding com-
munication reliability as a path planning objective [Lind-
he and Johansson, 2013; Ghaffarkhah and Mostofi, 2011;
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Best et al., 2017; Wu et al., 2017]. However, the comput-
ing overhead is usually high which hinders the performance
of the whole system.

Besides, some decentralized methods are based on the prin-
ciple of without-communication cooperation. The coopera-
tions are implicit, which are implied in observation or predic-
tion. First, as for implicit cooperation by observation [An-
toniades et al., 2003], the agents only coordinate by observa-
tions of the environment (incl. possibly other agents). Sec-
ond, as for implicit cooperation by prediction [Claes er al.,
2017], there is no decision sharing between agents, instead,
the modeling of other agents is through predicting by sever-
al greedy heuristics, which is computationally cheap. The a-
gents coordinated by the methods above are more tend to con-
flict with each other in a dense environment due to the lack
of explicit decision sharing. Oppositely, we hold the idea that
moderate communication is necessary for the coordinational
performance.

Beyond that, planning-aware communication is a recently-
proposed novel method [Best et al., 2018], which is a novel
planning algorithm that reasons over the value of communica-
tion messages to decide when and to whom each robot should
communicate and also in the context of Dec-MCTS. Howev-
er, it does not change the exponential increasing nature of the
communication cost with the growth of look-ahead steps. In
fact, the performance degrades compared with Dec-MCTS.
We tackle the problem in a more principled method by inte-
grating sharing and prediction with higher performance com-
pared with Dec-MCTS. Also, while our approach is intended
to be general, we address these challenges in the context of
Dec-MCTS.

The information gathering problem in this paper is formu-
lated by the framework of decentralized partially observable
Markov decision process (Dec-POMDP) [Bernstein et al.,
2002]. It was introduced for sequential multi-agent decision-
making under uncertainty, which also characterizes incom-
plete or partial information of the environment and other a-
gents due to limited or no communication [Chen er al., 2016].

6 Conclusions and Future Work

In this paper, we propose a decentralized planning approach
called Dec-MCTS-SP, which integrates decision sharing with
prediction. The experimental results show that Dec-MCTS-
SP consumes lower communication cost with higher perfor-
mance compared with Dec-MCTS. We will extend and evalu-
ate the work for more complex tasks under more realistic en-
vironments in the future. Different communication network
models may be used such as broadcasting or sequential com-
munication.
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