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Abstract

Complexity of voting manipulation is a prominent
topic in computational social choice. In this work,
we consider a two-stage voting manipulation sce-
nario. First, a malicious party (an attacker) attempts
to manipulate the election outcome in favor of a
preferred candidate by changing the vote counts in
some of the voting districts. Afterwards, another
party (a defender), which cares about the voters’
wishes, demands a recount in a subset of the manip-
ulated districts, restoring their vote counts to their
original values. We investigate the resulting Stack-
elberg game for the case where votes are aggre-
gated using two variants of the Plurality rule, and
obtain an almost complete picture of the complex-
ity landscape, both from the attacker’s and from the
defender’s perspective.

1 Introduction
Democratic societies use elections to select their leaders.
However, in societies without a strong democratic tradition,
elections may be used as a way to legitimize the status quo:
voters are asked to cast their ballots, but the election author-
ities do not count these ballots correctly, in order to produce
an outcome that favors a specific candidate. There are mul-
tiple reports of such cases in Russia1, Congo2 and Colom-
bia3, as well as a number of other countries. Even when
the election authorities are trustworthy, election results may
be corrupted by an external party, for instance, by means of
hacking electronic voting machines [Springall et al., 2014;
Halderman and Teague, 2015].

There are several ways to counteract electoral fraud. One
approach is to send observers to polling stations, to ensure
that only eligible voters participate in the election and their
ballots are counted correctly. However, it may be infeasi-
ble for the party that wants to protect the election (the de-
fender) to send observers to all polling stations. Conse-
quently, the election manipulator (the attacker) may observe

1https://reut.rs/2Gf2FD5
2https://on.ft.com/2SW7ggy
3https://bit.ly/2V45gDV

which polling stations remain unprotected, and focus their ef-
fort on these stations. Thus, under this approach the attacker
benefits from the second-mover advantage.

An alternative approach that the defender can explore is to
request recounts in some of the voting districts. While re-
counts cannot protect from all forms of attacks on election
integrity (e.g., a recount is of limited use if voters have been
bribed to vote in a specific way, or if the polling station has
been burned down), they are feasible in a range of settings
and offer the defender the second-mover advantage. Indeed,
there are several examples where a recount changed the elec-
tion outcome. For instance, in the 2008 United States Senate
election in Minnesota the Democratic candidate Al Franken
won the seat after a recount revealed that 953 absentee ballots
were wrongly rejected4 and in the 2004 race for governor in
Washington the Democratic candidate Gregoire was declared
the winner after three consecutive recounts5.

However, recounts can be costly. In Gregoire’s case, the
Democratic party paid $730000 for a statewide manual re-
count, and in the 2016 US Presidential Election the fee to ini-
tiate a recount in Wisconsin was $3.5 million. Thus, a party
that would like to initiate a recount in order to rectify the elec-
tion results should allocate its budget carefully. Of course, the
attacker also incurs costs to carry out the fraud: local election
officials may need to be bribed or intimidated, and the more
districts are corrupted, the higher is the risk that the election
results will not be accepted.

Our Contribution
In this paper we analyze the strategic game associated with
vote recounting. In our model, there are two players: the at-
tacker, who modifies some of the votes in order to make his
preferred candidate p the election winner, and the defender,
who observes the attacker’s actions and tries to restore the
correct outcome (or, more broadly, to ensure that a candidate
better than p wins the election) by means of recounting some
of the votes. We assume that the set of voters is partitioned
into electoral districts, and both the defender and the attacker
make their choices at the level of districts rather than indi-
vidual votes. The attacker selects a subset of at most BA
districts and changes the vote counts in the selected districts,
and the defender can then restore the vote counts in at most

4https://bit.ly/2S2PMxY
5https://bit.ly/2tnO4gG
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Plurality over Voters (PV) Plurality over Districts (PD)
Unweighted Weighted

REC

NP-c, Thm. 3.1 (i) 3 P, Thm. 4.3 NP-c, Thm. 4.1 (i) 3

NP-c, Thm. 3.1 (ii) U NP-c, Thm. 4.1 (ii) U

O(nm+2), Thm. 3.2 O(nm+2), Thm. 4.2

MAN
NP-h, Thm. 3.3 (i) 3 0 ∞ NP-c, Thm. 4.5 (iii) U ΣP

2 -c, Thm. 4.5 (i) 3

NP-h, Thm. 3.3 (ii) U 0 ∞ NP-h, Thm. 4.5 (ii) U 0

Table 1: Summary of our complexity results. MAN denotes the attacker’s problem, and REC denotes the defender’s problem. Hardness results
with U hold even when the input is given in unary (the default is binary); with 3 hold even for three candidates; with 0 hold even when the
defender’s budget is zero; with ∞ hold even when the attacker can change as many votes as she wants in each district.

BD districts to their original values. We assume that both
players have full information about the true votes and each
other’s budgets, and the defender can observe the attacker’s
actions. While the full information assumption is not en-
tirely realistic, we note that in a district-based model both par-
ties only need to know the vote counts in each district rather
than individual votes, and one can get fairly accurate district-
level information from independent polls. Also, verifying
whether the votes in a district have been tampered with is pos-
sible using risk-limiting audits [Lindeman and Stark, 2012;
Schürmann, 2016].

For simplicity, we focus on the Plurality voting rule, where
each voter votes for a single candidate. We consider two im-
plementations of this rule: (1) Plurality over Voters, where
districts are only used for the purpose of collecting the ballots
and the winner is selected among the candidates that receive
the largest number of votes in total, and (2) Plurality over Dis-
tricts, where each district selects a preferred candidate using
the Plurality rule, and the overall winner is chosen among the
candidates supported by the largest number of districts; we
also consider a variant of the latter rule where districts have
weights, and the measure of a candidate’s success is the total
weight of districts that support her. Both of these rules are
widely used in practice: Plurality over Voters is commonly
used in gubernatorial elections in the US, while Plurality over
Districts is used in the US Presidential elections.

We provide a detailed analysis of the computational com-
plexity of the algorithmic problems faced by the attacker and
the defender. Our main results are summarized in Table 1.
Briefly, assuming that the vote counts and the weights of the
districts are specified in binary, most of the problems we con-
sider are computationally hard; however, the defender’s prob-
lem appears to be easier than that of the attacker, and we also
get some tractability results for the former. Towards the end
of the paper, we consider a variant of our model where the at-
tacker is limited to only transferring support to his preferred
candidate; we show that, while this assumption reduces the
attacker’s ability to achieve his goals, it lowers the complex-
ity of some of the problems we consider.

Related Work
There is a very substantial literature on voting manipula-
tion and bribery; we point the readers to the excellent sur-
veys of Conitzer and Walsh [2016] and Faliszewski and
Rothe [2016]. In much of this literature it is assumed that

the malicious party can change some of the votes subject to
various constraints, and the challenge is to determine whether
the attacker’s task is computationally feasible; there is no de-
fender that can counteract the attacker’s actions. While there
is a number of papers that apply game-theoretic analysis to
the problem of voting manipulation, they typically consider
interactions among several manipulators, with possibly con-
flicting goals (e.g., see the recent book by Meir [2018]), rather
than a manipulator and a socially-minded actor. An important
exception, which is similar in spirit to our paper, is the recent
work of Yin et al. [2018], who investigate a pre-emptive ap-
proach to protecting elections. In their model the defender
allocates resources to guard some of the electoral districts,
so that the votes there cannot be corrupted; notably, in this
model the defender has to commit to its strategy first, and
the attacker can observe the defender’s actions before decid-
ing on its response. The leader-follower (defender-attacker)
structure of this model is in the spirit of a series of successful
applications of Stackelberg games to security resource allo-
cation problems [Tambe, 2011]. Li et al. [2017] analyze a
variant of the model of Yin et al. where the goal is to min-
imize resource consumption, and Chen et al. [2018] study a
similar scenario, in which manipulation is achieved through
bribing the voters. The key difference between our work and
the above papers is the action order of the players: in all prior
work on election protection that we are aware of the defender
makes the first move.

2 The Model
We consider elections over a candidate set C, |C| = m.
There are n voters who are partitioned into k pairwise disjoint
districts D1, . . . , Dk, k ≤ n; for each i ∈ [k], let ni = |Di|.
For each i ∈ [k], district Di has a weight wi, which is a pos-
itive integer; we say that an election is unweighted if wi = 1
for all i ∈ [k]. Each voter votes for a single candidate in C.
For each i ∈ [k] and each a ∈ C let via denote the number of
votes that candidate a gets from voters in Di; we refer to the
list v = (via)i∈[k],a∈C as the vote profile.

Let � be a linear order over C; a � b indicates that a is
favored over b. We consider the following two voting rules,
which take the vote profile v as their input.
• Plurality over Voters (PV). The winner a∗ is chosen

from the set arg maxa∈C
∑

i∈[k] via, with ties broken
according to �. Note that district weights wi are not
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relevant for this rule.
• Plurality over Districts (PD). For each i ∈ [k] the winner
ai inDi is chosen from the set arg maxa∈C via, with ties
broken according to �. Then, for each i ∈ [k], a ∈ C,
we set wia = wi if a = ai and wia = 0 otherwise. The
winner a∗ is chosen from the set arg maxa

∑
i∈[k] wia,

with ties broken according to �.
For PV and PD, we define the social welfare of a candidate

a ∈ C as the total number of votes that a gets and the total
weight that a gets, respectively:

SWPV(a) =
∑
i∈[k]

via, SWPD(a) =
∑
i∈[k]

wia.

Hence, each voting rule selects a candidate that maximizes
the respective social welfare.

We consider scenarios where an election may be manipu-
lated by an attacker, who wants to change the election result
a∗ in favor of his preferred candidate p ∈ C. The attacker
has a budget BA ∈ [k], which means that he can manipulate
at most BA districts. For each i ∈ [k], we are given an in-
teger γi, 0 ≤ γi ≤ ni, which indicates how many votes the
attacker can change in district i if he chooses to manipulate
it. Formally, a manipulation is described by a set M ⊆ [k],
|M | ≤ BA, and a vote profile ṽ = (ṽia)i∈[k],a∈C such that
ṽia = via for all i 6∈ M , a ∈ C, and for all i ∈ [k] it holds
that

∑
a∈C ṽia = ni and

∑
a∈C max{0, ṽia − via} ≤ γi.

After the attack, a defender with budget BD ∈ {0} ∪ [k]
can demand a recount in at most BD districts. Formally, a
defender’s strategy is a set R ⊆ M with |R| ≤ BD; after
the defender acts, the vote counts in all districts in R are re-
stored to their original values, i.e., the resulting vote profile
u = (uia)i∈[k],a∈C satisfies uia = via for each i ∈ R, a ∈ C
and uia = ṽia for each i ∈ [k] \ R, a ∈ C. Then the un-
derlying voting rule R ∈ {PV,PD} is applied to u with ties
broken according to �; let a′ denote the candidate selected
in this manner. The defender chooses her strategy R so as to
maximize SWR(a′), breaking ties using �.

We say that the attacker wins if he has a strategy (M, ṽ)
such that, once the defender responds optimally, candidate p
is the winner in the resulting vote profile u; otherwise we
say that the attacker loses. We note that if BD ≥ BA, the
defender can always ensure that a′ = a∗, i.e., the winner at u
is the winner at the original vote profile v, so in what follows
we assume that BD < BA.
Example 2.1. Consider an election with five districts
D1, . . . , D5 over a candidate set C = {a, b, p}, where p is
the attacker’s preferred candidate; suppose that ties are bro-
ken according to the priority order p � a � b. In each of
D1 and D2 there are 7 voters who vote for a, and in each of
D3, D4 and D5 there are 3 voters who vote for b. Suppose
that γi = ni and wi = (ni)

2 for each i ∈ [5], and BA = 2,
BD = 1.

If the voting rule is PV, then the attacker does not have
a winning strategy. Indeed, consider an attacker’s strategy
(M, ṽ). IfM 6= {1, 2}, the defender can setR = M∩{1, 2};
in the recounted vote profile a gets at least 14 votes, so it is
the election winner. If M = {1, 2}, the defender can set

R = {1}: in the recounted vote profile p gets at most 7 votes,
while b gets at least 9 votes, so the winner is a or b (a can
win if, e.g., the attacker chooses to transfer exactly 4 votes
from a to p in D2, in which case a gets 10 votes after the
recount). Note that even if the winner in u is b rather than
a, the defender still prefers recounting D1 to no recounting:
even though she cannot restore the correct result, she prefers
b to p, since SWPV(b) = 9 > 0 = SWPV(p).

If the voting rule is PD, then the attacker can win by choos-
ing M = {1, 2} and transferring the majority of votes from
a to p in both manipulated districts. Indeed, even if the de-
fender demands a recount in one of these districts, p still wins
the remaining district, leading to a vote weight of 49 in the
recounted profile. Since a’s vote weight is 49 and b’s vote
weight is 27, p wins by the tie-breaking rule.

We assume that both the defender and the attacker have full
information about the game. Both parties know the true vote
profile v, the parameters wi and γi for each district i ∈ [k]
and each others’ budgets. Moreover, the defender observes
the strategy (M, ṽ) of the attacker.

We can now define the following decision problems for
eachR ∈ {PV,PD}:
• R-MAN: Given a vote profile v, the attacker’s preferred

candidate p, budgets BA and BD, and district parame-
ters (wi, γi)i∈[k], does the attacker have a winning strat-
egy?

• R-REC: Given a vote profile v, a distorted vote profile
ṽ with winner b, a candidate a 6= b, a budget BD, and
district weights (wi)i∈[k], can the defender recount the
votes in at most BD districts so that a gets elected?

We will also consider an optimization version of R-REC,
where a is not part of the input and the goal is to maximize
the social welfare of the eventual winner.

Unless specified otherwise, we assume that the vote counts
via and the district weights wi are given in binary; we explic-
itly indicate which of our hardness results still hold if these
numbers are given in unary. All problems considered in this
paper admit straightforward greedy algorithms for m = 2,
so in what follows we focus on the case m ≥ 3. When the
voting rule R ∈ {PV,PD} is clear from context, we write
SW(a) instead of SWR(a). Due to space constraints, most
proofs are omitted.

3 Plurality over Voters
In this section we focus on Plurality over Voters. We first
take the perspective of the defender, and then the perspective
of the attacker.

Unfortunately, the defender’s problem turns out to be com-
putationally hard, even if there are only three candidates or if
the input vote counts are given in unary.

Theorem 3.1. PV-REC is NP-complete even when

(i) m = 3, or

(ii) the input vote profile is given in unary.

Proof. This problem is clearly in NP. The hardness proof in
part (i) follows by a reduction from SUBSET SUM; we omit
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the details. For part (ii), we give a reduction from EXACT
COVER BY 3-SETS (X3C). An instance of this problem is a
set E of size 3` and a collection S of s 3-element subsets of
E; it is a yes-instance if there exists a sub-collection Q ⊆ S
of size ` such that ∪S∈QS = E. Given an instance of X3C,
we construct the following PV-REC instance. Without loss
of generality, we assume that ∩S∈SS = ∅.
• Let C = {je : e ∈ E} ∪ {a, b}, |C| = 3`+ 2.
• For each subset S ∈ S , there is a district DS with true

votes vS,a = 2, vS,b = 6, vS,je = 2 for all e /∈ S, and
vS,je = 0 for all e ∈ S. The attacker distorts the votes
in these districts to ṽS,j = 2 for every j ∈ C \ {b},
ṽS,b = 0.

• There is a district Di∗ with true votes vi∗,a = 6`s,
vi∗,b = 0, and vi∗,je = 6`s + 1 for every e ∈ E, which
is not distorted.
• The budget of the defender is BD = `.

Candidate a is the true winner with 2s+ 6`s votes, compared
to the 6s votes of b and the 2|{S ∈ S : e /∈ S}|+ 6`s+ 1 ≤
2s + 6`s − 1 votes of je for every e ∈ E. In the distorted
profile ṽ candidate a gets 2s + 6`s votes, candidate b gets 0
votes, and each candidate inC\{a, b} gets 2s+6`s+1 votes.
The goal of the defender is to restore candidate a.

Recounting a district DS reduces by 2 the votes of each
candidate je such that e ∈ S, leading to a getting more votes
than these candidates; b cannot get more than 6s votes no
matter what the defender does. Therefore, a can be restored
as the winner by recounting ` districts if and only if E can be
covered by ` sets from S .

If the number of candidates is bounded by a constant and
the input is given in unary, an optimal set of districts to re-
count can be identified in time polynomial in the input size
by means of dynamic programming.
Theorem 3.2. PV-REC can be solved in timeO(k ·BD ·nm).

We obtain similar hardness results for the attacker’s prob-
lem. However, it is not clear if PV-MAN is in NP. Indeed, it
may belong to a higher level of the polynomial hierarchy: it
is not hard to see that PV-MAN is in ΣP

2 , and it is plausible
that this problem is hard for this complexity class.
Theorem 3.3. PV-MAN is NP-hard even when BD = 0,
γi = ni for all i ∈ [k] and

(i) m = 3, or
(ii) the input vote profile is given in unary.

In the hardness reductions in the proof of Theorem 3.3 the
defender’s budget is 0. This indicates that the attacker’s prob-
lem remains NP-hard even if the defender is known to use a
heuristic (e.g., a greedy algorithm) to compute her response.

We remark that PV-REC and PV-MAN with BD = 0 are
very similar in spirit to combinatorial (shift) bribery [Bred-
ereck et al., 2016]. In both models, a budget-constrained
agent needs to select a set of vote-changing actions, with each
action affecting a group of voters. However, there are a few
technical differences between the models. For instance, in our
model different actions are associated with non-overlapping
groups of voters, which is not the case in combinatorial shift

bribery. On the other hand, in shift bribery under the Plurality
rule votes can only be transferred to/from the manipulator’s
preferred candidate p, while our model does not impose this
constraint (see, however, Section 5). Consequently, it appears
that the technical results in our paper cannot be derived from
known results for combinatorial shift bribery.

4 Plurality over Districts
In this section we study Plurality over Districts. For the de-
fender’s problem, we can replicate the results we obtain for
Plurality over Voters, by using similar techniques; in particu-
lar, for both of our hardness results it suffices to set wi = ni
for each i ∈ [k].

Theorem 4.1. PD-REC is NP-complete even when

(i) m = 3, or

(ii) the input vote profile and district weights are given in
unary.

Theorem 4.2. PD-REC can be solved in timeO(k ·BD ·nm).

We also obtain a positive result that does not have an ana-
logue in the PV setting; if all districts have the same weight,
the recounting problem can be solved efficiently.

Theorem 4.3. PD-REC can be solved in polynomial time if
wi = 1 for all i ∈ [k].

Proof. We reduce our problem to nonuniform bribery [Fal-
iszewski, 2008]. An instance of nonuniform bribery under
the Plurality rule is given by a set of voters and a set of candi-
dates; for each voter i and each candidate c there is a price pic
for making voter i vote for c, and the briber’s goal is to make
her preferred candidate the Plurality winner6 while staying
within a budget B. This problem is known to be in P [Fal-
iszewski, 2008]. To reduce PD-REC to nonuniform bribery,
we map each district Di to a single voter i; if the true winner
in Di is x, and in the distorted profile the winner in Di is y,
we set piy = 0, piz = +∞ for z ∈ C \ {x, y}, and if x 6= y
(i.e., if the attacker has changed the outcome in Di), we set
pix = 1. Then for any candidate c ∈ C it holds that in PD-
REC the defender can make c win by recounting at most BD
districts if and only if in our instance of nonuniform bribery
the briber can make c win by spending at most BD.

We now consider the attacker’s problem. Interestingly, for
the PD rule, we can actually show a ΣP

2 -hardness result. Our
reduction uses a variant of the SUBSET SUM problem, which
we term SUB-SUBSET SUM (SSS); this problem may be of
independent interest. An instance of this problem is a setX ⊆
Z and a positive integer `. It is a yes-instance if there is a
subset X ′ ⊆ X with |X ′| = ` such that

∑
x∈X′′ x 6= 0 for

every non-empty subset X ′′ ⊆ X ′. Our proof proceeds by
establishing that SSS is ΣP

2 -complete (Lemma 4.4), and then
reducing this problem to PD-MAN.

PD-MAN remains computationally hard when the input is
given in unary; actually, we conjecture that it remains ΣP

2 -
complete, but we were only able to prove NP-hardness. If

6Faliszewski [2008] assumes that ties are broken in favor of the
briber, but his results extend to lexicographic tie-breaking.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

262



we further assume that all districts have the same weight, the
problem can be shown to be NP-complete. These results are
summarized in Theorem 4.5.
Lemma 4.4. SSS is ΣP

2 -complete.

Theorem 4.5. PD-MAN is NP-hard, and more specifically:

(i) ΣP
2 -complete, even when m = 3;

(ii) NP-hard, even when BD = 0 and the input vote profile
and district weights are given in unary;

(iii) NP-complete when wi = 1 for all i ∈ [k].

Proof. We give the proof for part (i). The hardness results in
parts (ii) and (iii) follow by reductions from the INDEPEN-
DENT SET problem.

Clearly, PD-MAN is in ΣP
2 . To prove hardness, we reduce

from SSS. Given an instance 〈X, `〉 of SSS, we construct an
instance of PD-MAN with three candidates {a, b, p}. Let
X+ = {x ∈ X : x > 0} and X− = X \ X+. Set
y =

∑
x∈X 3|x|. In what follows we describe the votes in

each district Di as a list (via, vib, vip). The districts are parti-
tioned into three sets I1, I2 and I3:
• I1 has a district with votes (0, 3x, 0) for each x ∈ X+,

and a district with votes (0, 0,−3x) for each x ∈ X−.
• I2 consists of a single district with votes (0, y + 3, 0).
• I3 consists of three districts with votes (2y + 5, 0, 0),

(0, y−
∑

x∈X+ 3x, 0), and (0, 0, 2y+ 4 +
∑

x∈X− 3x).
For every district Di we set wi = ni. The attacker is allowed
to change all votes in each district in I1 and I2, but none in
I3. Finally, let BA = ` + 1 and BD = `. The true winner
in this profile is candidate a with weight 2y+ 5, compared to
the weight 2y + 3 of b and 2y + 4 of p.

Given a set of integers Y ⊆ X , let I1(Y ) be the corre-
sponding set of districts in I1. Assume that there is a subset
X ′ ⊆ X with |X ′| = ` such that no X ′′ ⊆ X ′ has sum equal
to 0. The attacker can then exchange the weights of b and
p in the districts in I1(X ′) and the district in I2. This way,
p becomes the winner with weight 3y + 7 +

∑
x∈X′ 3x ≥

2y + 7, compared to the weight 2y + 5 of a and the weight
y −

∑
x∈X′ 3x ≤ 2y of b.

Since SW(p) > SW(b), to defeat the attacker, the defender
needs to restore a as the winner. To this end, she must recount
the district in I2, as otherwise p’s weight will remain at least
2y + 7. Hence she can recount at most ` − 1 manipulated
districts in I1. Let the set of non-recounted districts in I1
be I1(X ′′) for some X ′′ ⊆ X ′; note that X ′′ 6= ∅, so by
assumption,

∑
x∈X′′ x 6= 0. Then, the weight of b is 2y+3−∑

x∈X′′ 3x and the weight of p is 2y + 4 +
∑

x∈X′′ 3x. At
least one of these numbers is greater than or equal to 2y + 6;
thus, a cannot be restored as the winner.

Conversely, suppose that for every subsetX ′ ⊆ X of size `
there exists a non-empty X ′′ ⊆ X ′ such that

∑
x∈X′′ x = 0.

Then, the attacker cannot win. Indeed, letM be the set of ma-
nipulated districts. If a district is changed in favor of a, the
defender can recount all other districts in M . On the other
hand, if all districts in M are won by b or p, the defender
can identify a non-empty subset of M ∩ I1 such that the cor-
responding integers sum up to 0, and request a recount of

all other districts in M . Such a recount recovers the correct
weights of b and p, and a is restored as the winner.

The second hardness result of Theorem 4.5 holds even for
BD = 0, but for the first and the third part of this theorem
this is not the case. In fact, PD-MAN is in NP when BD = 0,
since the attacker simply needs to guess a manipulation and
check whether it makes p the winner. The unweighted case
(part (iii)) can be shown to be in P when BD = 0, using
a reduction to nonuniform bribery similar to the one in the
proof of Theorem 4.3. Thus, recounting has a clear impact on
the complexity of the attacker’s problem.

5 Regular Manipulations
In our model, the attacker does not have to transfer votes to
his preferred candidate p in the manipulated districts; indeed,
he may even choose to transfer votes from p to another can-
didate. However, manipulations that give additional votes to
candidates other than p are counterintuitive and may be dif-
ficult to implement in practice. Therefore, in this section we
study what happens if the attacker is limited to transferring
votes (in case of PV) or vote weight (in case of PD) to his
preferred candidate p.
Definition 5.1 (Regular manipulation). Let p be the preferred
candidate of the attacker. A manipulation (M, ṽ) is said to be
regular if for every district i ∈M it holds that
• the voting rule is PV and ṽia ≤ via for all a ∈ C \ {p};
• the voting rule is PD and in ṽ candidate p is the winner

in each district in M .
The difference between our general model and the one

where the attacker is limited to using regular manipulations
is similar to the difference between swap bribery and shift
bribery [Elkind et al., 2009]: in swap bribery the attacker
can change the vote in any way he likes subject to budget
constraints, while in shift bribery he is limited to shifting his
preferred candidate in voters’ rankings.

One may expect that the restriction to regular manipula-
tions is without loss of generality: indeed, why would the at-
tacker want to transfer votes to candidates other than p? How-
ever, our next example shows that this intuition is incorrect.
Example 5.2. We focus on PV; our example also works for
PD by settingwi = ni for every i ∈ [k]. Consider an instance
with 3 candidates {a, b, p} and 19 voters who are distributed
to 12 districts. The vote profile is as follows:

Candidate D1 D2 D3, . . . , D8 D9, . . . , D12

a 0 3 1 0

p 6 0 0 0

b 0 0 0 1

Also, BA = 2, BD = 1, and γi = ni for all i ∈ [12]. The
true winner is candidate a with 9 votes, compared to the 6
votes of p and the 4 votes of b. No regular manipulation can
make p win: no matter what the attacker does, by recounting
at most one district the defender can ensure that a gets at least
8 votes and p gets at most 7 votes.

Now, consider a non-regular manipulation that distorts all
votes in D1 in favor of b, and all votes in D2 in favor of p.
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Then in the distorted profile a has 6 votes and p has 3 votes,
and b wins with 10 votes. If the defender does not recount
D1, b remains the winner after recounting, and if she does
recount it, p becomes the winner. Crucially, since SW(b) <
SW(p), the defender prefers the latter option, so p wins after
the recount.

Example 5.2 shows that only considering regular manip-
ulations may be suboptimal for the attacker. However, the
attacker may be limited to regular manipulations by practi-
cal considerations. For instance, the election officials in the
manipulated districts may find it difficult to follow complex
instructions. Thus, it is interesting to understand if focusing
on regular manipulations affects the complexity of the prob-
lems we consider. It turns out that this is indeed the case.

Let R ∈ {PV,PD}, and consider a regular manipulation
(M, ṽ). Note that if p is not a winner at ṽ, the attacker
necessarily loses: since (M, ṽ) is regular, any recounts can
only decrease the votes/weight of p and will not decrease the
votes/weight of the current winner. Thus, we can assume that
p is the winner at ṽ. The defender can then try the following
greedy strategy. Initially, it defines the set of provisional win-
ners to consist of p. Then, for each a ∈ C \ {p} such that
SWR(a) > SWR(p) or SWR(a) = SWR(p) and a � p the
algorithm sorts the districts in M in non-increasing order of
the quantity (via−vip)−(ṽia− ṽip) for PV, and the quantity
(wia−wip)− (w̃ia− w̃ip) for PD; ties are broken arbitrarily.
Next, it checks what happens if the first BD districts in this
order are recounted; if this results in a candidate b ∈ C \ {p}
with SWR(b) > SWR(p) or SWR(b) = SWR(p), b � p
winning the election, the defender adds b to the set of pro-
visional winners. Finally, it outputs the provisional winner
with the maximum social welfare, breaking ties according to
�. We refer to this algorithm as greedy recounting; note that
its running time is polynomial in the input size.
Lemma 5.3. Let R ∈ {PV,PD}. Suppose that the attacker
uses a regular manipulation (M, ṽ). Then greedy recounting
outputs p if and only if (M, ṽ) is a winning strategy for the
attacker.

Notably, greedy recounting does not constitute an algo-
rithm for R-REC: it is unable to decide whether there is a
recounting strategy that results in a specific candidate becom-
ing the election winner. However, Lemma 5.3 implies that
if the attacker is limited to using regular manipulations, his
decision problem R-MAN is in NP: he can guess a regular
manipulation and use greedy recounting to verify whether it
is successful. As the hardness proofs in Theorem 3.3 use reg-
ular manipulations, PV-MAN is NP-complete in this case.
Theorem 5.4. For regular manipulations, PV-MAN is NP-
complete. The hardness result holds even if m = 3 or if the
input vote profile and district weights are given in unary.

In contrast, the hardness proofs for PD-MAN (Theo-
rem 4.5) rely on the attacker using a non-regular strategy, and
hence they do not imply that PD-MAN remains hard when
the attacker is restricted to regular manipulations. In fact, this
variant of PD-MAN is in P.
Theorem 5.5. For regular manipulations, PD-MAN can be
solved in polynomial time.

Moreover, it turns out that greedy recounting serves as a
1/2-approximation algorithm for the defender: it outputs a
candidate a such that for every candidate a′ that can be made
a winner by recounting at most BD districts it holds that
SW(a) ≥ SW(a′)/2.
Theorem 5.6. For regular manipulations, greedy recounting
is a 1/2-approximation algorithm for the optimization ver-
sions of PV-REC and PD-REC.

In fact, the bound on the approximation ratio provided by
Theorem 5.6 is essentially tight.
Theorem 5.7. For regular manipulations and any constant
ε > 0, neither PV-REC nor PD-REC admit a polynomial-
time ( 1

2 + ε)-approximation algorithm unless P = NP, even
when m = 3.

6 Conclusion and Open Problems
We have studied the problem of protecting elections by means
of recounting votes in the manipulated districts. Our results
offer an almost complete picture of the worst-case complex-
ity of the problems faced by the defender and the attacker.
Perhaps the most obvious open question is whether we can
strengthen the NP-hardness results for PV-MAN and for PD-
MAN under unary representation to ΣP

2 -completeness results.
The next challenge is to extend our results beyond Plurality;
e.g., leadership elections are often conducted using Plurality
with Runoff, and it would be interesting to understand if sim-
ilar results hold for this rule.

Our model is quite expressive: districts may have different
weights, and an attacker may only be able to corrupt a frac-
tion of votes in a district. These features of the model are
intended to capture the challenges of real-world scenarios; in
particular, it is typically infeasible for the attacker to change
all votes in a district. However, it is important to understand
their impact on the complexity of the problems we consider.
We tried to indicate which of our hardness results hold for
special cases of the model, and proved some easiness results
under simplifying assumptions, but it would be good to obtain
a more detailed picture, possibly using the tools of parame-
terized complexity. A concrete open question is whether our
ΣP

2 -hardness result holds if γi = ni for all i ∈ [k].
We contrasted out model with that of Yin et al. [2018],

where the defender moves first and protects some of the dis-
tricts from manipulation. In practice, the defender can use a
variety of protective measures at different points in time, and
an exciting direction for future work is to analyze what hap-
pens when the defender can split her resources among differ-
ent activities, with some activities preceding the attack, and
others (such as recounting) undertaken in the aftermath of the
attack.
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