Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

ATSIS: Achieving the Ad hoc Teamwork
by Sub-task Inference and Selection

Shuo Chen'?, Ewa Andrejczuk?, Athirai A. Irissappane’® and Jie Zhang'
School of Computer Science and Engineering, Nanyang Technological University
2ST Engineering - NTU Corporate Laboratory, Nanyang Technological University

3School of Engineering and Technology, University of Washington
chen1087 @e.ntu.edu.sg, ewaa@ntu.edu.sg, athirai@uw.edu, zhangj @ntu.edu.sg

Abstract

In an ad hoc teamwork setting, the team needs to
coordinate their activities to perform a task with-
out prior agreement on how to achieve it. The ad
hoc agent cannot communicate with its teammates
but it can observe their behaviour and plan accord-
ingly. To do so, the existing approaches rely on
the teammates’ behaviour models. However, the
models may not be accurate, which can compro-
mise teamwork. For this reason, we present Ad Hoc
Teamwork by Sub-task Inference and Selection (AT-
SIS) algorithm that uses a sub-task inference with-
out relying on teammates’ models. First, the ad hoc
agent observes its teammates to infer which sub-
tasks they are handling. Based on that, it selects its
own sub-task using a partially observable Markov
decision process that handles the uncertainty of the
sub-task inference. Last, the ad hoc agent uses the
Monte Carlo tree search to find the set of actions
to perform the sub-task. Our experiments show the
benefits of ATSIS for robust teamwork.

1

In the ad hoc teamwork, an agent engages in collaborative
tasks with other (unknown) teammates without relying on
communication or pre-defined team strategy [Stone er al.,
2010]. The ad hoc teamwork becomes increasingly important
with the growing usage of robots in various domains, such as
search and rescue, logistics, agriculture, construction, or min-
ing. The agents are expected to cooperate even though they
may not share the team strategy (as they were developed by
different parties) or cannot communicate (as communication
channels may not be reliable enough).

This paper addresses the following common ad hoc team-
work problem. There is a team of agents that needs to per-
form a collaborative task, i.e. a task that requires multiple
agents’ cooperation. Then, one agent is replaced by an ad
hoc agent. The ad hoc agent does not know its teammates
and cannot communicate with them. It needs to understand
the teammates’ behaviour and plan its actions to perform the
task. The goal is time sensitive, that is, the team members
have a short time to coordinate their actions. This scenario

Introduction

172

is particularly common in search and rescue missions, where
the victim’s well-being is time dependent.

We can divide the existing work relevant for this paper into
two approaches. In the first approach, authors do not consider
the uncertainty brought by the dynamism of the environment.
In [Agmon and Stone, 2012; Chakraborty and Stone, 2013;
Agmon et al., 2014] authors assume that the utilities of the
team’s actions are known. Similarly, [Genter ef al., 2011]
consider the role assignment problem where they know which
roles are assigned to which teammates. In real life, the utili-
ties of the team’s actions as well as the teammates’ roles may
be changing due to the changing environment. Thus, the as-
sumption that they are known is too simplistic. In the second
approach [Wu er al., 2011; Albrecht and Ramamoorthy, 2013;
Melo and Sardinha, 2016; Chandrasekaran et al., 2017;
Barrett et al., 2017], researchers consider the uncertainty of
the environment. They represent their problem domain as
Markov decision process (MDP). MDP provides a framework
for the ad hoc agent to select optimal actions based on its
teammates’ actions. There, authors assume that the ad hoc
agent can predict teammates’ actions based on teammates’
behaviour models. However, the teammates can have a very
different behaviour compared to the acquired models. There-
fore, the chosen action may be far from the optimal one. The
ad hoc agent can also learn its teammates’ models based on
their current actions (as in [Barrett et al., 2017]). However, in
time-sensitive tasks, there is not enough time to learn the ac-
curate behaviour models. Therefore, there is a need to devise
an approach that does not rely on teammates’ models.

In this paper we propose Ad hoc Teamwork by Sub-task In-
ference and Selection (ATSIS) algorithm. To the best of our
knowledge, this is the first algorithm in the ad hoc teamwork
domain that does not rely on teammates’ models. In detail,
we assume that the collaborative task is a set of disjoint sub-
tasks. The ad hoc agent observes its teammates and infers
which sub-tasks they are performing to identify an unattended
sub-task. In some situations, the ad hoc agent cannot be cer-
tain which sub-tasks its teammates are performing. For in-
stance, an agent moving to a certain direction may either try
to rescue a person or search for other victims. To handle these
uncertain situations, we model the ad hoc agent’s sub-task
selection as a partially observable Markov decision process
(POMDP). Finally, the ad hoc agent uses Monte Carlo tree
search (MCTS) to find the actions for the selected sub-task.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

In summary, we make the following contributions: 1) we
propose a new algorithm, called ATSIS that solves the ad hoc
teamwork problem without relying on teammates’ behaviour
models. To the best of our knowledge, using the sub-task
inference to solve the ad hoc teamwork was never studied
before. ATSIS consists of three parts: a) It infers which sub-
tasks the team members are performing by observing if the
teammates’ actions help to fulfil those sub-tasks; b) It uses
a POMDP model to select the sub-task for the ad hoc agent
given the uncertainty of the environment; c) It uses a variant
of the MCTS algorithm to find the actions to perform the cho-
sen sub-task. On top of the high-level termination condition,
i.e. achieving the task (as in previous approaches [Barrett
et al., 2017]), our version of MCTS has another termination
condition, that is, achieving the sub-task. This allows the ad
hoc agent to make faster decisions. 2) We perform extensive
experiments in the pursuit domain to compare ATSIS to the
existing approaches. Our results show that ATSIS performs
much faster than the existing methods and still achieves a very
good performance. We observe that when teammates cannot
be represented by the models that the ad hoc agent has, AT-
SIS achieves better performance and in a shorter time than the
state-of-the-art algorithms.

2 Preliminary

2.1 Multi-agent Goal-oriented MDP

In this paper, our objective is to find the best set of actions
the ad hoc agent should take to achieve the team’s goal with
unknown teammates. We represent the problem domain as a
multi-agent goal-oriented MDP which is the combination of
multi-agent MDP [Boutilier, 1999] and goal-oriented MDP
[Teichteil-Konigsbuch, 2012]. In detail, the MDP is given by
a tuple (N, S,{4;}, P,G, R,~), where N is a set of agents;
S is a set of states; A; is the set of actions of an agent

i €{1,2,..,|N|}and A = xg‘lAi is the set of joint ac-
tions; P : S x A x S — [0,1] is the state transition function
which specifies the probability of transiting to the next state
P(s'|s,@) ¥V s’ € S, given the joint action @ € A and current
state s € S; G is the set of goal states which represents the
common goal of teamwork; R : S x Ax .S — R is the reward
function that specifies the reward R(s, @, s’) of the team tak-
ing joint action 4 in state s and resulting in state s’; R(s, d@, s)
is positive when s’ € G and negative otherwise; and v is the
discount factor for the future reward where 0 < v < 1.

A joint policy 7w : S x A — [0, 1] specifies the probability
m(d]|s) of taking joint action @ in state s. Given m, the value
of state s can be computed as:

V7™(s) = Z w(als) Z P(s|s,@)[R(s,a,s") +yV7(s)]

acA s'eS

Similarly, the Q-value of a joint action @ in state s is com-
puted as:

Q(s,a) = Z P(s'|s,a)[R(s,d,s") +yV™(s")] (1)

s'es

We assume that the state space S can be factored into a
[M]
i=1

set of components M, i.e. S = x;_,S;. Each component

173

represents a feature of a domain, for instance the position of
each agent. Environmental components cannot be controlled
by the team members. Team components can be controlled
by the team members. The goal of the teamwork is to make
all team components reach the desired value in goal state
(through state transitions). Given the domain knowledge, we
can decompose the task into a set of sub-tasks. We define
each sub-task as a function that takes as input the value of
environmental components and returns the desired value in a
goal state. For instance, a sub-task “rescue a victim” will re-
turn the desired agent position given the victim’s position. To
achieve a sub-task a certain team component needs to reach
the desired value returned by the sub-task. Let 7 denote the
set of sub-tasks identified by {1, 2, ..., |T|}.

2.2 POMDP

We model the selection of a sub-task by the ad hoc agent as
a POMDP [Kaelbling et al., 1998] and formulate it as a tuple
(S,A,P,R,Q,0)". The states in S describe which sub-
tasks teammates are contributing to and which sub-task the
ad hoc agent is more suitable for; at each time step, the ad
hoc agent chooses a sub-task, that is, takes an action & € A
that causes a state transition from s to s’ using transition func-
tion P; the reward function is definedas R : S x A — R.
(2 is a set of observations obtained after taking an action. O
is the observation function specifying the probability distri-
bution over observations O(o|s’,) V o € Q. The ad hoc
agent maintains a belief {b(s)|s € S} where b(s) specifies
the probability of the state being s, > g b(s) = 1. Next,
an updated belief b’ (s”) after taking an action « and receiving
observation o is:

b'(s') x O(ols’,a) > sesP(s']s, a)b(s)

Let B denote the belief space, a POMDP policy # : B — A
maps a belief b to a POMDP action «. The optimal policy
provides actions that return the maximum expected reward
under the uncertainty of states. In this paper, we use it to
handle the uncertainty about which sub-tasks teammates con-
tribute to in the ad hoc teamwork.

3 ATSIS Algorithm

In this section, we explain the details of ATSIS algorithm.
In subsection 3.1, we explain how the ad hoc agent infers
teammates’ desired sub-tasks by observing their actions. In
subsection 3.2, we present the POMDP design which models
the selection of the ad hoc agent’s sub-task. Finally, in sub-
section 3.3, we explain how we use MCTS to map a selected
sub-task to a concrete MDP action.

3.1 Inferring Sub-tasks Pursued by Teammates

In this subsection, we explain how ATSIS infers which sub-
tasks the teammates are pursuing without relying on their be-
haviour models. Since we consider a scenario where the ad
hoc agent replaces one of the team members, we expect team-
mates to collaborate, i.e. their actions help to complete some
sub-tasks. Therefore, we can use the effects of their actions to

"We use bold letters for some of the POMDP notations in order
to distinguish them from MDP.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

infer their desired sub-tasks. To do so, we check for each sub-
task whether a teammate’s observed action brings the most
value addition to that sub-task with respect to all the feasible
actions of the teammate.

To compare the value addition, we compute the Q-value of
each of the teammate’s actions. Note that the computation
of Q-value requires a policy for achieving the sub-task. To
generate a policy, the ad hoc agent models the sub-task as
a single-agent MDP. It assumes the environment and other
team members to be static as we do not want to rely either on
teammates’ models or the environment model. Then, the ad
hoc agent solves the MDP to find the policy.

In the remainder of the paper, we use subscript to denote
the index of team members and superscript to denote the in-
dex of sub-tasks. Let 7! : S; x A; — [0, 1] be the policy used
by the ad hoc agent to compute the Q-value of teammates’ ac-
tions for achieving sub-task [. The Q-value of action a,, is:

= > P(s

sJES'

|sj7au)[Rl(5j7 A, S;)

+y Yo “(s),0)] (@)

a€A;

Q Sj»"fu

(als)@Q

where s; is the value of the team component controlled by
the teammate j in the previous time step and the reward
Rl(sj,ay, s';) is positive when the sub-task [is achieved, and
negative otherwise. Note that 7! is the policy for the sub-task
I. Since 7! assumes the environment and teammates to be
static, Eqn. 2 considers only s; and a,. Let {a},} be the set
of actions resulting in the largest Q-value for the sub-task [
(there may be multiple actions returning the same largest Q-
value). If the teammate j’s action a; in the last time step is
present in {a!,}, we infer the sub-task [to be possibly pursued
by the teammate j. We repeat this process for all sub-tasks.

Note that a; may result in the largest Q-value for multiple
sub-tasks. Thus, it is uncertain which sub-task the teammate
7 contributes to. Also, when the teammate j selects its ac-
tion, it may consider the future states of the environment and
other team members. For instance, it may predict the posi-
tion of teammates and take the action to avoid a collision.
However, the policy 7! assumes the environment and team-
mates to be static, i.e. it does not consider the future states
of the environment and teammates. Therefore, the inference
of the sub-tasks that teammates are performing is not always
accurate. Given all those uncertainties, the ad hoc agent still
needs to select the sub-task for itself. Hence, in the next sub-
section, we present the POMDP model that the ad hoc agent
uses to select its sub-task given its (uncertain) inference of
teammates’ sub-tasks.

3.2 Selecting the Sub-task by POMDP

In this subsection, we present the POMDP model for the ad
hoc agent’s sub-task selection. There are two possible cases
in this scenario. First, the ad hoc agent is highly confident
which sub-task is unattended. Then, it should simply select
that sub-task. Second, the ad hoc agent is very uncertain
which sub-tasks its teammates are pursuing or it believes that
there are multiple unattended sub-tasks. In this case, the ad
hoc agent should select the sub-task it is the most suitable for

174

based on the current MDP state. Hence, the ad hoc agent also
cares about its suitability for each sub-task compared to its
teammates. We present the details of the POMDP below.

State. A POMDP state s € S is defined as a tuple ({¢;]j =

o|N|andj # i}, {g'|l = 1,...,|T|}). We denote i as
the index of the ad hoc agent. ¢; € {1,...,|7|} denotes the
sub-task the teammate j pursues. g' € {1, ...,|N|} represents
how suitable the ad hoc agent is for the sub-task [compared
to its teammates. If the agent is the r-th most suitable for the
sub-task [, then ¢! = |N|—r + 1. We consider that the ad
hoc agent is more suitable for a given sub-task compared to
a given teammate when its utility for the performance of this
sub-task is higher than that teammate. We provide the details
of the utility function later on in Eqn. 3.

Action. In each time step, our POMDP model makes a de-
cision about which sub-task the ad hoc agent shall pursue.
Thus, the action space A is {ag|k = 1,2, ...,|T|} where ay
denotes that the ad hoc agent should pursue the sub-task k.

Transition function. The POMDP state component ¢; is
controlled by the teammate j. ¢' depends on the environ-
ment and other agents’ states. Since the ad hoc agent has
no knowledge about the teammate j’s decision-making pro-
cess and thus, does not know the teammates’ future states, we
set their transition function as uniform distribution, i.e. Yoy,

!/
P(tlt;,) = 7y and P(g"lg", i) = 7.

Observation. The observation provides information for the
partially observable POMDP state. Corresponding to our
POMDP state, the observation o € §2 can be defined as a
tuple ({07 = 1,...,|NJandj # i}, {o]l = 1,...,|T|}).
where i is the index of the ad hoc agent. Specifically, o; rep-
resents the inference about which sub-task the teammate j is
contributing to. Since multiple sub-tasks could be inferred as
being pursued by the teammate j, o; takes its value from the
powersetof {1, ...,|7|}. For example, if o; = {1, 2, \T| 1},
it means the ad hoc agent ¢ infers that the teammate j is trying
to pursue the sub-task 1, 2 or | 7| — 1. o; takes its value from
{1,...,|N|} and represents how suitable the ad hoc agent is
for the sub-task [with respect to all other agents. The more
suitable it is, the higher the value is. In each time step, these
observations are obtained as follows: 1) the ad hoc agent ini-
tializes o; with an empty set. Next, for each sub-task [, the
ad hoc agent uses the Eqn. 2 to infer if the teammate j is
pursuing that sub-task. If so, it adds [to o;; 2) to obtain oy,
the ad hoc agent computes the utility gained by each agent j
(including the ad hoc agent) if the agent j achieves the sub-
task / from the current state. If s; represents the value of the
team component controlled by the agent j in the current time
step and ! is the same policy used in Eqn. 2, the utility of the
agent j in achieving the sub-task [is given by,

> whagls;) Y

a]‘GAJ‘ S;ESJ

Vi(s;) P(s)sj, a;)[R'(s;,a;,5))

+Vis)] 3
The agents are ranked based on their V!(s;) value. If the

value for the ad hoc agent is the r-th largest value, then the
observation o; = |N|—r + 1.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Observation function. The observation function handles
the uncertainty in the received observations. The observation
function for o; is given by,

where p1 € (0, 1] represents the ad hoc agent’s confidence that
the policy 7! matches the behaviour model of the teammate
7. Using the variable p allows controlling the incorrect be-
lief updates. These inaccuracies may arise when teammates’
actions are based on either the changes of other agents’ be-
haviours or the environment. In particular, if we set p = 1,
then O(o,[t};, o) # 0 only when t; € o;. Imagine that the
teammate j is pursuing the sub-task [, i.e. #; = [. In the last
time step, it took an action a; to avoid a conflict with other
agent making it deviate from the best path to achieve the sub-
task. Then, given the Eqn. 2, a; does not result in the largest
Q-value for the sub-task [. This leads to an inaccurate obser-
vation o; (that does not contain /), and causes an erroneous
belief about t;-. Having 1 = 1 causes the ad hoc agent to
believe that the sub-task [is unattended. When p < 1, the
belief update is more conservative and can better withstand
the inaccurate observation. We divide by 2!71=1 in Eqn. 4, to
normalize the probability across the 2/7 1= possible observa-
tions. Also, the observation function for o; is given by,

. !
if tj € 0;
otherwise

K
2ITI-1
1—p
21TI-1

“

Vo, O (05t} o)

ifor = g)

otherwise

/
vak?O(O”gl ,Olk) = nl—n
IN|—1

where 1 € (0, 1] represents the ad hoc agent’s confidence in
the accuracy of the utility evaluation calculated by Eqn. 3.

Reward function. The ad hoc agent’s reward function
should offer a trade-off between a desire to fulfil the sub-task
when the ad hoc agent is certain which sub-task is unattended,
and pursuing the most suitable sub-task. Hence, we design
the reward function as an additive function, such that:

R(< {t;}.{d'} >, ax) = Ri({t;},) —I—Rg({g’},ak)@

where Ry ({t;}, o) = 2 x71 and Ra({g'}, o) = g* x7a. 2
represents the overall number of unique sub-tasks being pur-
sued by the team which is determined by teammates’ sub-
tasks {t;} and the ad hoc agent’s POMDP action «y,. For
example, if one agent tries to fulfil the sub-task {; while all
the remaining agents try to achieve the sub-task Iy (I; # I5),
then z = 2. g* € {g'} represents how suitable the ad hoc
agent is for the sub-task k£ chosen by ay. 71 and r5 are the de-
sign constants that adjust the decision bias between pursuing
the unattended sub-task and the most suitable sub-task. We
evaluate the influences of POMDP parameters in Section 4.5.

Sub-task selection. The ad hoc agent ¢ infers teammates’
sub-tasks in every time step. Each inference is a POMDP
observation which updates the belief on {¢;}. The ad hoc
agent updates the belief on {g'} based on the current MDP
state. The belief b(t; = k) is the probability that the team-
mate j pursues the sub-task k. Let b(k) denote the prob-
ability that the sub-task & is pursued, then b(k) 1-—
[1;.[1—0(t; = k)]. The higher b(k) the more probable

175

that the sub-task k is pursued. Hence, the ad hoc agent prefers
the sub-task k£ with the lowest overall belief (as it has a higher
probability to increase z and the expected reward). When
there are multiple sub-tasks with the lowest belief, ro leads
the ad hoc agent to select the most suitable sub-task.

3.3 Pursuing the Chosen Sub-task

At every time step, POMDP suggests pursuing a certain sub-
task. To achieve that sub-task, we use a popular variant of
MCTS, i.e. UCT (Upper Confidence Bound 1 applied to
trees) [Kocsis and Szepesvari, 2006]. That is, we use UCT
to search for the best action for the ad hoc agent at every time
step. The idea is to estimate the long term expected rewards
of each possible action by sampling future states. UCT has
a simulator that takes a state and an ad hoc agent’s action
as the input and samples the next state. This simulates the
uncertainty resulting from the dynamics of the environment.
During the sampling, if the simulator does not have team-
mates’ models, it assumes teammates to be static. Given a
sub-task, UCT performs a preset number of simulations. In
each simulation iteration, UCT builds a tree where the root
node is the current state s. To sample a new state s, UCT
chooses an action a with the largest upper confidence bound
ins, ie. Q(s,a) +c
n(s, a) are the numbers of times that s and (s, a) have been
visited respectively. UCT expands the tree by adding s as
the child node of s with the action a as the edge between s
and s’. Then, UCT chooses the best action a in the new state
s’ (the child node) and samples again a next state. UCT ex-
pands the tree until a termination condition or a given depth
is reached. ATSIS has two termination conditions. First is
the achievement of the given sub-task. In this case, the sim-
ulator returns the reward T'R;. Second is the fulfilment of
the ultimate team’s goal. Here, the reward is T'R». Once the
simulation finishes, UCT updates Q(s, a), n(s) and n(s,a).
After a preset number of simulations, UCT returns the action
that has the largest Q(s, a).

There are two advantages of using UCT: 1) it can handle
a large state/action space efficiently which is desired in com-
plex domains; 2) it increases the feasibility of ATSIS because
the simulator’s assumption about the teammates’ behaviour
can be revised on-the-fly. Specifically, the simulator assumes
that teammates are static when it has to work without team-
mates’ models. However, the simulator could integrate the
learned model which can help to improve the performance.

Inn(s)
n(s,a)

where c¢ is a constant, n(s) and

4 Experiments

In this section, we present the details of the experiments that
we conducted to evaluate our algorithm. We compare AT-
SIS with the PLASTIC-Model scheme [Barrett et al., 2017]
and the Online Planning for Ad Hoc Teams (OPAT) scheme
[Wu er al., 2011]. PLASTIC is the representative scheme
that explicitly models the behaviour of teammates and uses
the behaviour model to predict the teammates’ actions during
planning. In detail, PLASTIC uses UCT with the acquired
teammates’ models to plan the ad hoc agent’s actions. OPAT
assumes the teammates’ model is given and uses UCT to es-
timate the utility of joint actions under current state s. They

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

then choose the ad hoc agent’s action based on the history of
joint actions in s in order to obtain the maximum utility. We
use the online POMDP solver DESPOT [Somani et al., 2013]
to select the sub-task for the ad hoc agent.

We perform four different experiments to pitch ATSIS
against the above methods. In subsection 4.1, we perform
an experiment to show how ATSIS performs with respect to
PLASTIC and OPAT when they are provided with (a) correct,
and (b) incorrect teammates’ models. The results show that
the existing methods are vulnerable to incorrect teammates’
models. ATSIS does not require correct teammates’ mod-
els to perform well, which is a huge advantage in scenarios
where we lack teammates’ behaviour models [Barrett et al.,
2017]. The ad hoc agent can also learn teammates’ behaviour
models during the teamwork. Henceforth, we compare our
approach to PLASTIC that can learn the behaviour models
from scratch. In subsection 4.2, we show the benefits of AT-
SIS compared to PLASTIC under different lengths of learn-
ing periods. PLASTIC can also use transfer learning to learn
faster new teammates’ models using its knowledge about pre-
vious teammates’ behaviour. For this reason, in subsection
4.3, we evaluate ATSIS by pitching it to PLASTIC that uses
transfer learning. The results show that transfer learning is
only effective when the previous teammates are comparable
to new teammates. This shows the benefits of our approach.
In subsection 4.4, we show how to further improve the per-
formance of ATSIS by integrating the learned models into its
UCT simulator. We further discuss the influences of POMDP
parameters in subsection 4.5. Table 1 shows the parameters
used in the experiments. In every step, we run at most 1000
UCT simulations with the maximum depth as 100. We set
the decision time limit for each step as one second because
the task is time sensitive.

Pursuit domain. As mentioned in [Barrett et al., 2017],
the pursuit domain requires cooperation among all teammates
while remaining simple enough to evaluate approaches well.
Hence, we conduct the experiments with it (see Figure 1).
The pursuit domain is a game where four predators try to
catch a prey in a 10 x 10 toroidal grid world. Each episode
starts with the prey and predators in random locations and
ends with predators surrounding the prey (see Figure 1(b)).
The task consists of four sub-tasks, i.e. a predator occupies
the left, right, top and bottom position of the prey. Predators
and the prey can move in any of the four directions (top, bot-
tom, left, right) or stay still. Each step of an episode starts
from the prey move. The prey moves with 0.5 probability
(and the remaining time it stays still) to one of the unoccu-
pied neighbouring positions selected using the uniform distri-

' > |

(a) (b)

Figure 1: The pursuit domain

176

Name Value || Name Value || Name Value
Simulation 1000 || Depth 100 || ¢ 0.5
W 095 || n 1] m 30
] 4 TRl 1 TR2 1

Table 1: Experiment parameters

bution. Next, predators move in random order. If a predator
decides to move to a position that in meantime got occupied
by others, it stays still [Barrett ez al., 2017]. We measure the
performance by the average number of steps taken to cap-
ture the prey. Following the existing approach [Barrett erf al.,
20171, we consider three types of predators:

e Greedy (GR) predators check the prey’s neighboring
positions and move to the nearest unoccupied one.

e Team-aware (TA) predators consider the benefits of
teammates and allow the farthest teammate to occupy
the closest neighboring position to the prey.

e Probabilistic-destinations (PD) predators randomly
choose a new position at every time step as long as this
position decreases their distance to the prey.

4.1 Influence of the Acquired Behaviour Models

We examine the performance of ATSIS with respect to PLAS-
TIC and OPAT given two possible settings (we run each
setting for 1000 episodes to ensure statistical significance).
First, we give PLASTIC and OPAT the teammates’ behaviour
models that match perfectly the current teammates (see Fig-
ure 2(a)). As expected, when PLASTIC has the accurate
teammates’ models, it can predict their actions with high ac-
curacy and thus, perform well. However, in real life, accu-
rate behaviour models may not be available. Having accurate
teammates’ models is a strong assumption. Hence, in the next
sections, we focus on more realistic scenarios where we do
not have those models. For OPAT, even though it has the cor-
rect behaviour models, it performs worse than ATSIS for GR
and PD teammates. This is because OPAT needs to perform
UCT simulation for each joint action (i.e. 5* joint actions
in the pursuit domain) to estimate its utility and OPAT is not
able to do enough simulations within the decision time. OPAT
performs well only for TA as it can perform more simulations
given the time limit. This is because each episode is shorter
(agents catch the prey with less number of steps as shown in
Figure 2(a)) and hence, the time of each UCT simulation is
shorter. Given these results, in the following experiments, we
only use PLASTIC as the benchmark for ATSIS.

a
o

0| EEER PLASTIC
| == ATSIS
771 OPAT

N
a

HE

Capture Steps

o

20

des
N W
IN
(=]

piso

8160

80
OPLASTIC _ ATSIS OPAT
(b) Incorrect models

Avg Steps for Capture

TA

Long

GR PD

(a) Accurate models

Figure 2: Performance with acquired model

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

®
3

@

3
@
3

N
S

n
S

Avg Steps for Capture
&
5

Avg Steps for Capture
I
8

o

PLAS PLAS PLAS PLAS PLAS
600 800 1000 1200 1400 1600 5000 50000

PLAS PLAS

800 1000 1200 1400 1600 1800 5000 50000

(b) TAPD teammates

(a) GRPD teammates

Figure 3: Performance under different learning periods

Second, we use the models that fail to represent the current
teammates, i.e. we use the TA model while the real team-
mates are GR. Figure 2(b) shows the number of steps needed
to capture the prey and the number of long episodes, i.e. the
episodes whose overall number of steps exceeds 250. Note
that when calculating the average, we only include episodes
defined as not long as most of PLASTIC’s long episodes
never end. This is because the ad hoc agent uses the TA model
and waits for its teammates to make way for it and GR agents
never do. We observe that the average numbers of steps for
PLASTIC and OPAT are higher than for ATSIS (31 and 47.7
respectively compared to 27.33). Additionally, PLASTIC has
a very high number of long episodes.

In summary, ATSIS achieves tasks robustly without relying
on teammates’ behaviour models. In comparison, the existing
methods are vulnerable to incorrect models. This is because
the UCT simulations that are dependent on teammates’ mod-
els fail to correctly estimate the actions’ values.

4.2 Teamwork with Learning Period

Next, we examine the scenarios where the ad hoc agent needs
to learn from scratch teammates’ behaviour models by ob-
serving their state-action pairs within a certain amount of
steps. Since in real life, the agent cannot observe its team-
mates indefinitely, we are interested to compare ATSIS (de-
noted as “ATS” in Figure 3) with PLASTIC (denoted as
“PLAS”) that has different lengths of learning periods (de-
noted below “PLAS”). We set the teammates’ behaviour to
be dynamic (e.g. GRPD teammates randomly select GR and
PD behaviours at each time step) to imitate more complex
behaviours. We average the results for each setting over
10 trials where each trial consists of 500 episodes. We do
Wilcoxon signed-rank test as in [Barrett ef al., 2017] and ob-
serve that when the learning period is below 1600 steps for
GRPD and 1200 steps for TAPD, ATSIS outperforms PLAS-
TIC significantly. We measure also that each PLASTIC step
takes around 1 second. Given that, PLASTIC would need to
learn for roughly 1600 seconds to beat ATSIS. Even though
PLASTIC can act during learning, it performs badly until it

© 90 © 90
=] =]
380 380
© ©
O 70 O 70
<} <}
260 260
2 2
&50 &50
2] oo 2]
3 o|EEL - T,
<30 n <30

PLAS PLAS ATS PLAS PLAS PLAS
NoSource TA GR PD GR+PD

(a) GRPD teammates

PLAS PLAS ATS PLAS PLAS PLAS
NoSource TA PD TA+PD

(b) TAPD teammates

Figure 4: Performance under transfer learning

177

2 80

=2

870

(8] polo

560 A

;-).50 w |

% 40 Nt

S 304 ™ b b
ATS PLAS ATS PLAS* PLAS ATS PLAS* PLAS ATS PLAS*
Static 1600 1600 1600 5000 5000 5000 50000 50000 50000

(a) Average steps

gmoo

2 800

E 600

& 400

(72})

g 200 boo

o

bood
ATS PLAS ATS PLAS* PLAS ATS PLAS* PLAS ATS PLAS*
Static 1600 1600 1600 5000 5000 5000 50000 50000 50000

(b) Decision time

Figure 5: Performance when equipping the learned model

learns a good model. Learning for almost half an hour is not
acceptable as we expect the ad hoc agent to start acting well
shortly after joining the team.

4.3 The Effects of Transfer Learning

Here, we pitch ATSIS against PLASTIC that employs trans-
fer learning. We use data from previous collaborations, i.e.
the state-action pairs obtained while collaborating with some
teammates (not necessarily the same as the current team-
mates). In Figure 4, we index data using the type of previ-
ous teammates denoted below “PLAS”. Each data set consists
of the teammates’ state-action pairs observed within 5000
time steps. ‘“NoSource” means not using any data of pre-
vious teammates. The learning period is 800 which is not
enough to learn the accurate model of current teammates (see
Figure 3). We evaluate whether transfer learning can help to
learn the teammates’ model better with the data of previous
teammates. Figure 4 indicates that if the previous teammates
are much different from the current teammates (e.g. TA vs.
GRPD or TA vs. TAPD), using their data compromises the
learned model. Thus, transfer learning is only effective when
the previous teammates are comparable to current ones.

4.4 TImproving ATSIS with the Learned Model

Here, we show how to further improve the performance of
ATSIS by giving its UCT simulator the learned model to sam-
ple the teammates’ actions (instead of assuming teammates
are static). Having the model helps ATSIS to estimate bet-
ter the best action to achieve the sub-task and the goal. The
number below “ATS” in Figure 5 denotes the length of the
learning period. We observe that the performance of ATSIS
with the learned model improves (see Figure 5(a)). Note that
ATSIS performs much faster than PLASTIC, i.e. 0.3 second
vs. 1 second (see Figure 5(b)). This is because each simula-
tion in ATSIS takes shorter time as the termination condition
“achieving the sub-task™ in ATSIS is easier to be met than
the termination conditions of PLASTIC, i.e. “completing the
task”. This is a critical advantage when the task is time sensi-
tive. We also check the performance of PLASTIC by setting
its decision time close to the one of ATSIS, i.e. 0.3 second
(denoted as PLAS* in Figure 5). In this case, PLASTIC per-
forms much worse due to less UCT simulations.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

71 10 15 20 25 30
PD (Avg) 1793 16.15 13.89 13.12 13.36
PD (Long) 18 0 0 0 0
TA (Avg) 897 9.7 937 977 9.56
TA (Long) 189 155 108 120 112

Table 2: Performance under different 71 when ro = 4

4.5 The Effects of POMDP Parameters

In this subsection, we evaluate the influence of POMDP pa-
rameters on sub-task selection based on the teamwork perfor-
mance. To solely measure POMDP parameters, we set the
prey to stay still, give ATSIS the accurate behaviour model
and set TRy to 0. Then, the teamwork’s performance is de-
termined by whether POMDP selects the sub-task properly.
This depends on the setting of r1, r2, and . We run 1000
episodes for each setting. We evaluate the performance, i.e.
the average number of steps needed for prey capture (de-
noted as “Avg”) and the number of long episodes (denoted
as “Long”), when predators are PD and TA respectively.

The ratio of r; to 75 represents the trade-off between pur-
suing the unattended sub-task and the most suitable sub-task.
Table 2 shows that the smaller the ratio, the worse the perfor-
mance of ATSIS. This is because a smaller ratio makes the ad
hoc agent focus on the sub-task it is most suitable for, while
ignoring what others are doing. Moreover, when teaming up
with TA agents, the number of long episodes is large even
when the ratio is large. This is because both the ad hoc agent
and teammates are considerate, i.e. they move away simul-
taneously to give way to others and then move back based
on others’ changed state, which results in a deadlock. Notice
that the deadlock rarely appears when the prey is moving.

The parameters p and 7 represent to what extent the
POMDP observations can affect the belief update. Table 3
shows that when p becomes smaller, the effects are simi-
lar to the case where 71 is low. This is because when p is
close to 0.5, the sub-task inference barely changes the be-
lief about teammates’ sub-tasks. Thus, POMDP selects the
ad hoc agent’s sub-task based mostly on its suitability for
that sub-task. Further, for x4 smaller than 0.5, if the ad hoc
agent infers that a sub-task is being pursued, then the belief
about the sub-task being pursued will be weaker (i.e. may
result in a belief that this sub-task is unattended). Figure 6
shows that when . = 0.95, the change of 1 does not affect
the performance in a significant way. It is the belief about
teammates’ sub-tasks that mainly affects the decision. When
1 = 0.5, POMDP can only rely on the belief about how suit-
able each sub-task is. A large 1 makes the ad hoc agent iden-
tify the suitable sub-task, focus on it and may block others. A
smaller makes the decision more random since the observa-
tions cannot affect the belief about which sub-task is suitable.
When 1 = 0.25, the decision is totally random. Finally, when
n = 0, the teamwork can never be achieved since the ad hoc
agent will always consider the most suitable sub-task as un-
suitable and not choose to do it. To enable and encourage the
ad hoc agent to pursue unattended sub-task as well as make it
care about the suitability for sub-tasks, we analytically assess

178

[095 085 075 065 055
PD (Ave) 1336 1339 14.88 2038 27.05
PD (Long) 0 0 10 137 204
TA (Avg) 956 9.82 855 863 797
TA (Long) 112 94 149 239 302

Table 3: Performance under different 4 whenn = 1

1000

——PD(; = 0.95)
0F |l-e-TA(u = 0.95)
—&=-PD(p = 0.5)

TA(j=0.5)

800

600

100

Long Episodes

Average Steps for Capture

(a) Average steps

(b) Long episodes

Figure 6: Performance under different

that the best parameter values are a relatively high ratio of r;
tory, > 0.85andn > 0.75.

5 Conclusions and Future Work

This paper proposes a novel idea to solve the ad hoc team-
work problem by inferring the teammates’ sub-tasks. The
ad hoc agent uses a POMDP model to handle the inference
uncertainty and select its own sub-task. To perform that sub-
task, it uses UCT to find the best set of actions. As this work
tackles the ad hoc teamwork from a new angle, we use a sim-
ple domain to gain the insights of different aspects of algo-
rithms. Experiments show that ATSIS achieves the teamwork
robustly without relying on teammates’ behaviour models.
This is a huge advantage for environments that do not provide
the opportunity to obtain accurate teammates’ models. ATSIS
makes much faster decisions than state-of-the-art schemes,
which is significant for time-sensitive tasks. Moreover, AT-
SIS can further improve its performance by integrating the
learned model. When it comes to more complex domains, we
believe ATSIS will still perform better than the existing meth-
ods. In ATSIS, the inference of sub-tasks and the pursuing
of own sub-task are both single-agent MDP problems. This
helps ATSIS to withstand better the increase of state space
when compared to PLASTIC. We perform some tests under
20 x 20 grid world and observe that PLASTIC needs a long
time for both learning and MCTS simulation since the search
space (the joint state of multiple agents) is larger. One limi-
tation of ATSIS is that it needs domain knowledge to divide
sub-tasks. However, we plan to use reward shaping to auto-
matically identify sub-tasks. As future work, we will con-
tinue this line of work under more complex domains.

Acknowledgments

The research was partially supported by the ST Engi-
neering - NTU Corporate Lab through the NRF corporate
lab@university scheme.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Agmon and Stone, 2012] Noa Agmon and Peter Stone.
Leading ad hoc agents in joint action settings with mul-
tiple teammates. In Proceedings of the International Con-
ference on Autonomous Agents and Multiagent Systems,
pages 341-348, 2012.

[Agmon et al., 2014] Noa Agmon, Samuel Barrett, and Pe-
ter Stone. Modeling uncertainty in leading ad hoc teams.
In Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems, pages 397-404,
2014.

[Albrecht and Ramamoorthy, 2013] Stefano V Albrecht and
Subramanian Ramamoorthy. A game-theoretic model and
best-response learning method for ad hoc coordination in
multiagent systems. In Proceedings of the International

Conference on Autonomous Agents and Multiagent Sys-
tems, pages 1155-1156, 2013.

[Barrett ez al., 2017] Samuel Barrett, Avi Rosenfeld, Sarit
Kraus, and Peter Stone. Making friends on the fly: Co-
operating with new teammates. Artificial Intelligence,
242:132-171, 2017.

[Boutilier, 1999] Craig Boutilier. Sequential optimality and
coordination in multiagent systems. In Proceedings of the
International Joint Conferences on Artificial Intelligence,

pages 478-485, 1999.

[Chakraborty and Stone, 2013] Doran Chakraborty and Pe-
ter Stone. Cooperating with a Markovian ad hoc team-
mate. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, pages 1085—
1092, 2013.

[Chandrasekaran et al., 2017] Muthukumaran Chan-
drasekaran, Prashant Doshi, Yifeng Zeng, and Yingke
Chen. Can bounded and self-interested agents be
teammates? Application to planning in ad hoc teams.
Autonomous Agents and Multi-Agent Systems, 31(4):821—
860, 2017.

[Genter et al., 2011] Katie Long Genter, Noa Agmon, and
Peter Stone. Role-based ad hoc teamwork. In Proceed-
ings of the AAAI Conference on Plan, Activity, and Intent
Recognition, pages 17-24, 2011.

[Kaelbling ef al., 1998] Leslie Pack Kaelbling, Michael L
Littman, and Anthony R Cassandra. Planning and acting
in partially observable stochastic domains. Artificial intel-
ligence, 101(1):99-134, 1998.

[Kocsis and Szepesvri, 2006] Levente Kocsis and Csaba
Szepesvari. Bandit based Monte-Carlo planning. In Pro-
ceedings of the European Conference on Machine Learn-

ing, pages 282-293, 2006.

[Melo and Sardinha, 2016] Francisco S Melo and Alberto
Sardinha. Ad hoc teamwork by learning teammates’ task.
Autonomous Agents and Multi-Agent Systems, 30(2):175—
219, 2016.

[Somani ef al., 2013] Adhiraj Somani, Nan Ye, David Hsu,
and Wee Sun Lee. Despot: Online pomdp planning with

179

regularization. In Advances in Neural Information Pro-
cessing Systems, pages 1772—-1780, 2013.

[Stone et al., 2010] Peter Stone, Gal A. Kaminka, Sarit
Kraus, and Jeffrey S. Rosenschein. Ad hoc autonomous
agent teams: Collaboration without pre-coordination. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 1504-1509, 2010.

[Teichteil-Konigsbuch, 2012] Florent Teichteil-Kénigsbuch.
Stochastic safest and shortest path problems. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
pages 1825-1831, 2012.

[Wu et al., 2011] Feng Wu, Shlomo Zilberstein, and Xiaop-
ing Chen. Online planning for ad hoc autonomous agent
teams. In Proceedings of the International Joint Confer-
ences on Artificial Intelligence, pages 439445, 2011.

