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Abstract

Images can convey rich semantics and induce
strong emotions in viewers. Recently, with the ex-
plosive growth of visual data, extensive research ef-
forts have been dedicated to affective image content
analysis (AICA). In this paper, we review the state-
of-the-art methods comprehensively with respect to
two main challenges — affective gap and percep-
tion subjectivity. We begin with an introduction
to the key emotion representation models that have
been widely employed in AICA. Available existing
datasets for performing evaluation are briefly de-
scribed. We then summarize and compare the rep-
resentative approaches on emotion feature extrac-
tion, personalized emotion prediction, and emotion
distribution learning. Finally, we discuss some fu-
ture research directions.

1 Introduction

With the rapid development of photography technology and
the wide popularity of social networks, people have become
used to sharing their experiences and expressing their opin-
ions online using images and videos together with text. This
gives rise to a huge volume of multimedia data, which results
in urgent demand of processing and understanding the visual
content. Compared to low-level visual appearances, humans
could better perceive and understand the high cognitive level
and affective level of semantics [Zhao et al., 2014al. Exist-
ing works on image content analysis from the computer vi-
sion community mainly focus on understanding the cognitive
aspects of images, such as object detection. Recently, a lot
of research attention has been paid from the psychology, af-
fective computing and multimedia communities to affective
level analysis of image content. As what people feel may di-
rectly determine their decision making, affective image con-
tent analysis (AICA) is of great importance, which can enable
wide applications [Chen et al., 2014], ranging from human-
computer interaction to image retrieval.
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Specifically, the task of AICA is often composed of three
steps: human annotation, visual feature extraction and learn-
ing of mapping between visual features and perceived emo-
tions [Zhao et al., 2017a). One main challenge for AICA is
the affective gap, which can be defined as “the lack of coinci-
dence between the features and the expected affective state in
which the user is brought by perceiving the signal” [Hanjalic,
2006]. Recently, various hand-crafted or learning-based fea-
tures have been designed to bridge this gap. Current AICA
methods mainly assign an image with the dominant (average)
emotion category (DEC) with the assumption that different
viewers react similarly to the same image. This task can be
performed as a traditional single-label learning problem.

However, labeling the emotions in ground-truth generation
is in fact highly inconsistent. Different viewers may have to-
tally different emotional reactions to the same image, which
is caused by many personal and situational factors, such as
the cultural background, personality and social context [Peng
et al., 2015; Zhao et al., 2016; Yang et al., 2017b]. This phe-
nomenon causes the so-called subjective perception problem,
as shown in Figure 1. In such cases, just predicting the DEC
is insufficient for this highly subjective variable.

To tackle the subjectivity issue, we can conduct two kinds
of AICA tasks [Zhao et al., 2016]: for each viewer, we can
predict personalized emotion perceptions; for each image, we
can assign multiple emotion labels. For the latter one, we can
employ multi-label learning methods, which associates one
instance with multiple emotion labels. However, the impor-
tance or extent of different labels is in fact unequal. In such
cases, emotion distribution learning would make more sense,
which aims to learn the degree to which each emotion de-
scribes the instance [Yang er al., 2017b].

In this paper, we concentrate on reviewing the state-of-the-
art methods on AICA and outlining research trends. First,
we introduce the widely-used emotion representation models
and the available datasets for performing AICA evaluation.
Second, we summarize and compare the representative ap-
proaches on emotion feature extraction, personalized emotion
prediction, and emotion distribution learning, corresponding
to the affective gap and perception subjectivity challenges.
Finally, we discuss potential research directions to pursue.
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Title: Light in Darkness

Tags: london, stormy, dramatic
weather, ...

Description: ...there was a break
in the clouds such that a strip of the
far bank and bridge were lit up||Valence: 4.1956
while the sky behind remained || A ousal: 4.4989
somewhat foreboding. I thought it
made for a pretty intense scene....

Expected emotion:

Sentiment: negative

Dominance: 4.8378

Emotion category: fear

(a) Original image

(b) Image metadata

(c) Expected emotion

Comments from viewers | Personalized emotions

Wow, that is fantastic...it Emotion: awe

looks so incredible, ..... Sentiment: positive

That sky is amazing. V:7.121 A:4.479 D:6.635
Emotion: excitement
Sentiment: positive

V:7.950 A:6.950 D:7.210
Hey, it really frightened me! Emotion: fear

My little daughter just Sentiment: negative

looked scared. V:2.625 A:5805 D:3.625

Expected emotion labels

oe?age emotion labels

Personalized emotion labels

Valence
2 34567829
(e) Emotion distribution

Arousal

Yup a fave for me as well.
Exciting drama at its best.

NWDODN ®©

-
N

(d) Personalized emotion labels

Figure 1: Illustration of the image emotion’s perception subjectivity phenomenon [Zhao et al., 2017¢c]. The expected emotions in (c) and
the personalized emotions in (d) are assigned using the keywords in red based on the metadata (b) from the uploader and the comments
from different viewers. (e) shows the differences of expected, personalized and average emotions, while the contour lines are the estimated
continuous emotion distributions by the expectation maximization algorithm based on Gaussian mixture models.

2 Emotion Models from Cognitive Science
Community

Psychologists mainly employ two typical models to represent
emotions: categorical emotion states (CES), and dimensional
emotion space (DES). CES models consider emotions to be
one of a few basic categories, such as fear and joy, etc. Some
typical models include Ekman’s six basic emotions [Ekman,
1992] and Mikels’s eight emotions [Mikels et al., 2005].
Specifically, emotions can be classified into positive and neg-
ative [Zhao et al., 2018b], sometimes including neutral. In
such case, “emotion” is usually called “sentiment”. DES
models usually employ a 3D or 2D Cartesian space to rep-
resent emotions, such as valence-arousal-dominance (VAD)
[Schlosberg, 1954] and activity-temperature-weight [Lee and
Park, 2011]. VAD is the most widely used DES, where va-
lence represents the pleasantness ranging from happy to un-
happy, arousal represents the intensity of emotion ranging
from excited to calm, while dominance represents the degree
of control ranging from controlled to in control. Dominance
is difficult to measure and is often omitted, leading to the
commonly used two dimensional VA space [Hanjalic, 2006],
where V is easier to recognize in AICA than A.

The relationship between CES and DES and the transfor-
mation from one to the other are studied in [Sun et al., 2009].
For example, positive valence relates to a happy state, while
negative valence relates to a sad or angry state. CES is easier
for users to understand and label, but may not reflect the sub-
tlety and complexity of emotions. DES is more flexible and
richer in descriptive power, but absolute continuous values
are difficult for users to distinguish and may be unmeaning-
ful because of the lack of agreed-upon standards for subjec-
tive emotion rating. CES is mainly used in classification task,
while DES is often employed for regression. If discretized
into several constant scores, DES can also be used for classi-
fication [Lee and Park, 2011]. Ranking based labeling can be
applied to ease DEC comprehension difficulties in raters.

Expected emotion is the emotion that the image creator in-
tends to make people feel, while perceived emotion is the ac-
tual emotion that is perceived by the image viewers. Dis-
cussing the difference or correlation of various emotion mod-
els is out of the scope of this paper. We just list some typi-
cal emotion models that have been widely used in AICA, as
shown in Table 1.
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Model Reference Type Emotion states/dimensions

Ekman [Ekman, 1992] CES  happiness, sadness, anger, disgust,
fear, surprise

Mikels [Mikels et al., 2005] CES amusement, anger, awe, contentment,
disgust, excitement, fear, sadness

Plutchik [Plutchik, 1980] CES (X 3 scales) anger, anticipation, dis-
gust, joy, sadness, surprise, fear, trust

Sentiment CES positive, negative, (or neutral)

VA(D) [Schlosberg, 1954] DES valence-arousal(-dominance)

ATW [Lee and Park, 2011]  DES activity-temperature-weight

Table 1: Representative emotion models employed in AICA.

3 Datasets

The early datasets for AICA mainly come from the psychol-
ogy community with small-scale images. Recent large-scale
datasets are constructed using images from social networks.
The released datasets are summarized in Table 2.

The International Affective Picture System (IAPS) is an
emotion evoking image set in psychology [Lang et al., 1997].
It consists of 1,182 documentary-style natural color images
depicting complex scenes, such as portraits, babies, animals,
landscapes, etc. Each image is associated with an empirically
derived mean and standard deviation (STD) of VAD ratings
in a 9-point rating scale by about 100 college students.

The (IAPSa) dataset includes 246 images [Mikels et al.,
2005] selected from IAPS, which are labeled by 20 under-
graduate participants with a mean age 19.55 years.

The (Abstract) includes 279 peer rated abstract paint-
ings without contextual content, while the Artistic database
(ArtPhoto) consists of 806 artistic photographs from a photo
sharing site [Machajdik and Hanbury, 2010], the emotions of
which are determined by the artist who uploaded the photo.

The IAPSa, ArtPhoto, and Abstract datasets are catego-
rized into eight discrete categories [Mikels et al., 2005]. Each
image is labeled with only one emotion in ArtPhoto, the im-
ages in IAPSa may be labeled with more than one emotion,
while the detailed votes of all emotions are provided for the
images in Abstract, from which one can obtain the DEC and
emotion distributions. Totally, 395 emotions are labeled on
the 246 images in IAPSa. 228 Abstract images are usually
used for emotion classification after DEC selection.

The Geneva affective picture database (GAPED) is com-
posed of 520 negative images, 121 positive images and 89
neutral images [Dan-Glauser and Scherer, 2011], labeled by
60 participants with a mean age of 24 years (ranging from 19
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Dataset Reference #Images  Type # Annotators ~ Emotion model E/P  Label detail

IAPS [Lang et al., 1997] 1,182 natural ~100 (halff) ~ VAD P empirically derived mean and standard deviation
IAPSa [Mikels et al., 2005] 246  natural 20 (10f,10m)  Mikels P at lease one emotion category for each image
Abstract [Machajdik and Hanbury, 2010] 279  abstract ~230  Mikels P the detailed votes of all emotions for each image
ArtPhoto [Machajdik and Hanbury, 2010] 806 artistic - Mikels E one DEC for each image

GAPED [Dan-Glauser and Scherer, 2011] 730 natural 60  Sentiment, VA P one DEC and average VA values for each image
MART [Alameda-Pineda et al., 2016] 500 abstract 25 (11f,14m) Sentiment P one DEC for each image

devArt [Alameda-Pineda et al., 2016] 500 abstract 60 (27f,33m) Sentiment P one DEC for each image

Tweet [Borth et al., 2013] 603 social 9  Sentiment P one sentiment category for each image

FlickrCC [Borth et al., 2013] ~500,000  social —  Plutchik P one emotion category for each image

Flickr [Yang et al., 2014] 301,903 social 6,735 Ekman P one emotion category for each image

Emotion6 [Peng et al., 2015] 1,980  social 432 Ekman+neutral P the discrete probability distribution

FI [You et al., 2016b] 23,308 social 225 Mikels P one DEC for each image

IESN [Zhao et al., 2016] 1,012,901  social 118,035  Mikels, VAD B the emotion of involved users for each image
FlickrLDL [Yang et al., 2017b] 10,700 social 11 Mikels P the discrete probability distribution

TwitterLDL [Yang et al., 2017b] 10,045 social 8  Mikels P the discrete probability distribution

Table 2: Released and freely available datasets for AICA, where ‘# Images’ and ‘# Annotators’ respectively represent the total number of
images and annotators (f: female, m: male), ‘E, P, B’ are short for expected emotion, perceived emotion and both, respectively.

to 43, STD = 5.9). Besides, these images are also rated with
valence and arousal values, ranging from 0 to 100 points.

The MART dataset is a collection of 500 abstract paintings
from the Museum of Modern and Contemporary Art of Tren-
to and Rovereto [Alameda-Pineda et al., 20161, which were
realized by professional artists. The devArt dataset is a col-
lection of 500 amateur abstract paintings obtained from the
“DeviantArt” online social network [Alameda-Pineda et al.,
20161, one of the largest online art communities. Using the
relative score method in [Sartori et al., 2015], these abstract
paintings are labeled as positive or negative sentiment.

Tweet dataset (Tweet) includes 470 positive tweets and 133
negative tweets [Borth e al., 2013].

The FlickrCC dataset is constructed by retrieving the
Flickr creative common (CC) images for the 3,000 adjective
noun pairs (ANPs) [Borth et al., 2013]. By excluding the im-
ages that do not contain the ANP string in the title, tag or
description, about 500k Flickr CC images in total are gener-
ated for 1,553 ANPs. These images are then mapped to the
Plutchnik’s Wheel of Emotions with 8 basic emotions, each
with 3 scales, such as ecstasy—joy—>serenity.

The Flickr dataset consists of 301,903 images based on the
Ekman emotion model [Yang et al., 2014]. A word list for
each of the six emotion categories is manually defined based
on WordNet and HowNet. The emotion category whose word
list has the most same words as the adjective words of an
image’s tags and comments is assigned to the image.

The original FI dataset consists of 90,000 noisy images
collected from Flicker and Instagram by searching the emo-
tion keywords [You et al., 2016b]. The weakly labeled im-
ages are further labeled by 225 Amazon Mechanical Turk
(AMT) workers, which are selected through a qualification
test. The 23,308 images that receive at least three votes from
their assigned 5 AMT workers are kept. The number of im-
ages in each Mikels emotion category is larger than 1,000.

The Emotion6 dataset [Peng er al., 2015] consists of 1,980
images collected from Flickr by using the emotion keywords
and synonyms as search terms. There are 330 images for each
emotion category. AMT workers were invited to label the
images into the Ekman’s 6 emotions and neutral to obtain the
emotional responses. Each image was scored by 15 subjects.
The discrete emotion distribution information is released.

The IESN dataset is constructed for personalized emotion
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prediction [Zhao er al., 2016], with 1,012,901 images from
Flickr. Lexicon-based methods are used to segment the text
of metadata from uploaders for expected emotions and com-
ments from viewers for actual emotions. Synonym based
searching is employed to obtain the Mikels’ emotion cate-
gory by selecting the most frequent synonyms. The average
VAD values of the segmentation results are computed as DES
ground truth based on the VAD norms of 13,915 English lem-
mas [Warriner et al., 2013]. 7,723 active users with more than
50 involved images are selected. The DEC and emotion dis-
tributions can also be easily obtained.

Two image datasets for discrete emotion distribution learn-
ing are released in [Yang et al., 2017b]. One is FlickrLDL
dataset, a subset of FlickrCC. FlickrLDL contains 10,700 im-
ages, which are labeled by 11 viewers using Mikels” emotion
model. 30,000 images are collected by searching various sen-
timent key words from Twitter. After duplication removal, the
images are labeled by 8 viewers. In this way, the TwitterLDL
dataset is generated with 10,045 images. In both datasets, the
ground truth emotion distribution for each image is obtained
by integrating the votes from the workers.

4 Emotion Feature Extraction

As shown in [Zhao et al., 2014c], there are various types of
features that may contribute to the perception of image emo-
tions. In this section, we introduce the hand-crafted features
of different levels (Table 3) and the learning based features
(Table 5) that have been widely extracted for AICA.

4.1 Low-level Features

Low-level features suffer from being difficult to be inter-
preted by humans. The widely used features include GIST,
HOG2x2, self-similarity and geometric context color his-
togram features as in [Patterson and Hays, 2012], because
they are each individually powerful and can describe distinct
visual phenomena in a scene perspective.

Features derived from elements of art, including color and
texture are extracted [Machajdik and Hanbury, 2010]. Lee
and Park [2011] used the MPEG-7 visual descriptors, in-
cluding four color-related ideas and two texture-related ideas.
Lu et al. [2012] investigated how shape features in natu-
ral images influence emotions by modeling the concepts of
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Feature Reference Level  Short description # Feat
LOW.C [Patterson and Hays, 2012] low GIST, HOG2x2, self-similarity and geometric context color histogram features 17,032
Elements [Machajdik and Hanbury, 2010] low color: mean saturation, brightness and hue, emotional coordinates, colorfulness, color names, Itten contrast, Wang’s 97
semantic descriptions of colors, area statistics; texture: Tamura, Wavelet and gray-level co-occurrence matrix
MPEG-7 [Lee and Park, 2011] low color: layout, structure, scalable color, dominant color; texture: edge histogram, texture browsing 200
Shape [Lu ez al., 2012] low line segments, continuous lines, angles, curves 219
IttenColor [Sartori et al., 2015] low color co-occurrence features and patch-based color-combination features 16,485
Attributes [Patterson and Hays, 2012] mid scene attributes 102
Sentributes [Yuan et al., 2013] mid scene attributes, eigenfaces 109
Composition  [Machajdik and Hanbury, 2010] ~ mid level of detail, low depth of field, dynamics, rule of thirds 45
Aesthetics [Wang et al., 2013] mid figure-ground relationship, color pattern, shape, composition 13
Principles [Zhao et al., 2014al mid principles-of-art: balance, contrast, harmony, variety, gradation, movement 165
BoVW [Rao et al., 2016a] mid bag-of-visual-words on SIFT, latent topics 330
FS [Machajdik and Hanbury, 2010] high number of faces and skin pixels, size of the biggest face, amount of skin w.r.t. the size of faces 4
ANP [Borth et al., 2013] high semantic concepts based on adjective noun pairs 1,200
Expressions [Yang er al., 2010] high automatically assessed facial expressions (anger, contempt, disgust, fear, happiness, sadness, surprise, neutral) 8
Table 3: Summary of the hand-crafted emotion features at different levels. ‘# Feat’ indicates the dimension of each feature.

Reference Feature Fusion  Learning model Dataset Target Result
[Machajdik and Hanbury, 2010] Elements, Composition, FS early Naive Bayes IAPSa, Abstract, ArtPhoto cla 0.471, 0.357,0.495
[Lee and Park, 2011] MPEG-7 - K nearest neighbor unreleased cla 0.827
[Lu et al., 2012] Shape, Elements early SVM, SVR IAPSa, IAPS cla, reg 0.314; V-1.350, A-0.912
[Li et al., 2012] Segmented objects - bilayer sparse learning IAPS, ArtPhoto cla 0.612,0.610
[Yuan ez al., 2013] Sentributes - SVM, logistic regression Tweet cla 0.824
[Wang et al., 2013] Aesthetics - Naive Bayes Abstract, ArtPhoto cla 0.726, 0.631
[Zhao et al., 2014al Principles - SVM, SVR IAPSa, Abstract, ArtPhoto, cla, reg 0.635, 0.605, 0.669;

IAPS V-1.270, A-0.820

[Zhao et al., 2014c] LOW._C, Elements, Attributes, ~ graph

multi-graph learning

IAPSa, Abstract, ArtPhoto, ret 0.773, 0.735, 0.658,

Principles, ANP, Expressions GAPED, Tweet 0.811,0.701
[Sartori et al., 2015] IttenColor - sparse group Lasso MART, devArt cla 0.751, 0.745
[Rao et al., 2016al BoVW - multiple instance learning IAPSa, Abstract, ArtPhoto cla 0.699, 0.636, 0.707
[Alameda-Pineda et al., 2016] IttenColor - matrix completion MART, devArt cla 0.728,0.761

Table 4: Representative DEC works on AICA using hand-crafted features, where ‘Fusion’ indicates the fusion strategy of different features,
‘cla, reg, ret’ in the Target column are short for classification, regression and retrieval (the same below), respectively, ‘Result’ is the reported
best accuracy for classification, mean squared error for regression, and discounted cumulative gain for retrieval on the corresponding datasets.

roundness-angularity and simplicity-complexity. Based on It-
ten’s color wheel, Sartori et al. [2015] designed two types of
features to represent the color combinations.

4.2 Mid-level Features

Mid-level features are more interpretable, more semantic and
more relevant to emotions than low-level features. 102 at-
tributes are detected [Patterson and Hays, 2012], including 5
different types: materials, surface properties, functions or af-
fordances, spatial envelop attributes and object presence. Be-
sides the 102 attributes, Yuan ef al. [2013] also incorporated
eigenfaces corresponding to different emotions, which con-
tribute a lot to the images containing faces. Rao er al. [2016a]
extracted SIFT features as basic feature and adopted bag-
of-visual-words (BoVW) to represent the multi-scale blocks.
The latent topic distribution estimated by probabilistic latent
semantic analysis is used as another mid-level representation.
Harmonious composition is essential in an artwork and
Machajdik and Hanbury [2010] extracted several features to
analyze an image’s compositional character. Interpretable
aesthetic features [Wang et al., 2013] are designed based on
the fact that artists often jointly use figure-ground relation-
ships, color patterns, shapes and their diverse combinations
to express emotions in their art creations. Features inspired
from principles of art are designed in [Zhao er al., 2014al.

4.3 High-level Features

High-level features are the semantic contents contained in im-
ages. People can easily understand the emotions conveyed

in images by recognizing the semantics. In the early years,
Machajdik and Hanbury [2010] extracted simple semantic
content by detecting faces and skins contained in an image.
Facial expressions may determine the emotion of the images
containing faces. 8 kinds of facial expressions are extracted
as high-level features [Yang et al., 2010]. The expressions of
images detected without faces are set as neutral. An 8 dimen-
sional vector, each element of which indicates the number of
related facial expressions in the image, is generated.

Borth et al. [2013] proposed to describe the semantic con-
cepts by 1,200 adjective noun pairs (ANPs), which are de-
tected by SentiBank. The advantages of ANP are that it turns
a neutral noun into an ANP with strong emotions and makes
the concepts more detectable, as compared to nouns and ad-
jectives, respectively. A 1,200 dimensional double vector rep-
resenting the probability of the ANPs is obtained.

Some representative works based on hand-crafted features
of the above 3 levels are summarized in Table 4. Generally,
high-level features (such as ANP) perform better for images
with rich semantics, mid-level features (such as Principles)
perform better for artistic photos, while low-level features
(such as Elements) are effective for abstract paintings.

4.4 Learning-based Features

With the advent of deep learning, emphasis has been shift-
ed from designing hand-crafted features to learning features
in an end-to-end fashion. To tackle the weakly labeled im-
ages, You et al. [2015] proposed to progressively select a po-
tentially cleaner subset of the training instances. An initial
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Reference Base net Pre #Feat Cla Loss Dataset Target Result
[You et al., 2015] self-defined no 24 — - FlickrCC, (unreleased) Twitter cla 0.781
[You et al., 2016b] AlexNet yes 4096 SVM — FI, IAPSa, Abstract, ArtPhoto cla 0.583, 0.872, 0.776, 0.737
[Rao et al., 2016b] ~ AlexNet, ACNN,TCNN  yes 40962564096  MIL FI, IAPSa, Abstract, ArtPhoto, MART  cla 0.652, 0.889, 0.825, 0.834, 0.764
[Zhu et al., 2017] self-defined no 512 - contrastive FI, IAPSa, ArtPhoto cla 0.730, 0.902, 0.855
[Yang et al., 2018] GoogleNet-Inception yes 1024 - sentiment FI, IAPSa, Abstract, ArtPhoto cla, ret 0.676, 0.442, 0.382, 0.400

0.780, 0.819, 0.788, 0.704

Table 5: Representative works on deep learning based AICA methods, where ‘Pre’ indicates whether the network is pre-trained using
ImageNet, ‘# Feat’ indicates the dimension of last feature mapping layer before the emotion output layer, ‘Cla’ indicates the classifier used
after the last feature mapping with default Softmax, ‘Loss’ indicates the loss objectives besides the common cross-entropy loss, and ‘Result’
is the reported best accuracy for classification and discounted cumulative gain for retrieval on the corresponding datasets.

convolutional neural network (CNN) model is trained on the
training data. According to the prediction score of the trained
model on the training data itself, the training samples with
distinct sentiment scores between the two classes with a high
probability are selected. The trained model is fine-tuned us-
ing the newly selected instances. Later, they fine-tuned the
pre-trained AlexNet on ImageNet to classify emotions into 8
categories by changing the last layer of the neural network
from 1000 to 8 [You et al., 2016b]. An SVM classifier is al-
so trained using features extracted from the second to the last
layer of the pre-trained AlexNet model.

Rao et al. [2016b] proposed to learn multi-level deep rep-
resentations for image emotion classification (MldrNet). The
input image is segmented into 3 levels of patches, which are
input to 3 different CNN models, including Alexnet, aesthet-
ics CNN (ACNN) and texture CNN (TCNN). Multiple in-
stance learning (MIL) is employed to generate the emotion
label of an input image. Based on MldrNet, Zhu et al. [2017]
integrated the different levels of features by a Bidirection-
al GRU model (BiGRU) to exploit their dependencies. Two
features generated from our Bi-GRU model are concatenated
as the final features to predict the emotions. Apart from the
traditional cross-entropy loss, an additional contrastive loss
is jointly optimized to enforce the feature vectors extracted
from each pair of images from the same category to be close
enough, and those from different categories to be far away.

To explore the correlation of emotional labels with the
same polarity, Yang et al. [2018] employed deep metric learn-
ing and proposed a multi-task deep framework to optimize
both retrieval and classification tasks. Besides the cross-
entropy loss, a novel sentiment constraint is jointly optimized
by considering the relations among emotional categories in
the Mikels’ wheel, which extends triplet constraints to a hi-
erarchical structure. A sentiment vector based on the texture
information from the convolutional layer is proposed to mea-
sure the difference between affective images.

The deep representations generally outperform the hand-
crafted features, which are designed based on several small-
scale datasets for specific domains. However, how the deep
features correlate to specific emotions is unclear.

5 Personalized Emotion Prediction

Zhao er al. [2016; 2018d] proposed to predict the person-
alized emotions (see Figure 1 (d)) of a specified user after
viewing an image, associated with online social networks. D-
ifferent types of factors that may influence the emotion per-
ception are considered: the images’ visual content, the so-
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cial context related to the corresponding users, the emotion-
s’ temporal evolution, and the images’ location information.
Rolling multi-task hypergraph learning is presented to joint-
ly combine these factors. Each hypergraph vertex is a com-
pound triple (u,x, S), where u represents user, x and S are
the current image and the recent past images, termed as ‘tar-
get image’ and ‘history image set’, respectively. Based on
the 3 vertex components, different types of hyperedges are
constructed, including target image centric, history image set
centric, and user centric hyperedges. Visual features (512-
dimensional GIST, Elements, Attributes, Principles, ANP,
Expressions) in both target image and history image set are
extracted to represent visual content. User relationship is ex-
ploited from the user component to take social context into
account. Past emotion is inferred from history image set to
reveal temporal evolution. Location is embedded in both tar-
get image and history image set. Semi-supervised learning is
conducted on the multi-task hypergraphs to classify personal-
ized emotions for multiple users simultaneously. The average
F1 of emotion classification on the IESN dataset is 0.582.

6 Emotion Distribution Learning

According to probability theory, there are typically two types
of probability distributions: discrete and continuous. Gener-
ally, distribution learning can be formalized as a regression
problem. For CES, the task aims to predict the discrete prob-
ability of different emotion categories, the sum of which is
equal to 1 (see Figure 2). For DES, the task usually transfers
to predict the parameters of specified continuous probability
distributions, the form of which should be firstly determined,
such as Gaussian distribution (see Figure 1 (e)) and exponen-
tial distribution.

6.1 Discrete Probability Distribution Learning

Zhao et al. [2015] proposed shared sparse learning (SSL) to
represent the probability distribution of one test image as the
linear combination of the training images’ distributions, the
coefficients of which are learned from the feature space. Only
uni-modal features are considered in SSL, which can simply
adopt early or late fusion to handle multi-modal features (in-
dicate multiple features from images unless otherwise speci-
fied) without considering the latent correlations. Multi-modal
features are fused by weighted multi-modal SSL (WMMSS-
L) [Zhao et al., 2017a; 2018a] to explore useful information
by the constraint of joint sparsity across different features.
The representation abilities of different features are jointly
explored with the optimal weight automatically learned.
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Reference Feature Fusion Learning model Dataset Result

[Zhao et al., 2015] GIST, Elements, Principles - SSL Abstract 0.134

[Zhao et al., 2017al GIST, Elements, Attributes, Principles, weighted WMMSSL Abstract, Emotion6, IESN 0.482, 0.479, 0.478
ANP, deep features from AlexNet

[Yang et al., 2017b]  ANP, deep features from VGG16 - augmented CPNN Abstract, Emotion6, FlickrLDL, TwitterLDL 0.480, 0,506, 0,469, 0.555

[Zhao et al., 2017b] GIST, Elements, Attributes, Principles, weighted WMMCPNN Abstract, Emotion6, IESN 0.461, 0.464, 0.470

ANP, deep features from AlexNet

Reference Base net Pre #Output  Loss Dataset Result
[Peng et al., 2015] AlexNet yes 1 Euclidean loss Emotion6 0.480
[Yang ez al., 2017al VGG16 yes 6or8 KL divergence loss Emotion6, FlickrLDL, TwitterLDL 0.420, 0,530, 0,530

Table 6: Representative discrete distribution learning works on AICA, where ‘Fusion’ indicates the fusion strategy of different features, ‘Pre’
indicates whether the network is pre-trained using ImageNet, ‘# Output’ is the output dimension of the last layer, and ‘Result’ is the reported
best KL divergence on the corresponding datasets except the first line, which is the result on sum of squared difference.
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Figure 2: Examples of the image emotion’s discrete probability dis-
tribution [Zhao et al., 2018al.

Both SSL and WMMSSL can only model one test im-
age each time. For different test images, the shared coef-
ficients have to be learned repeatedly. Geng et al. [2013]
proposed a conditional probability neural network (CPNN)
for distribution learning by modeling the conditional prob-
ability of labels given features as a three layer neural net-
work. Yang et al. [2017b] replaced the signless integers in
CPNN with a binary representation, since adding two emo-
tion labels or subtracting one label from another is meaning-
less. By adding noises to the ground truth emotion labels,
more roughly labeled distributions and samples are generat-
ed. Zhao et al. [2017b] extended CPNN into multi-modal
settings and proposed weighted multi-model CPNN (WMM-
CPNN) to jointly explore the representation abilities of differ-
ent features. The linear combination of different CPNN loss
functions are minimized with a sparse constraint on the com-
bination coefficients. Once the parameters of the augmented
CPNN and WMMCPNN are learned, the emotion distribu-
tions of a test image would be easily obtained.

The CPNN series have only 3 layers and the input is ex-
tracted visual features instead of original images. A deeper
CNN regressor (CNNR) for each emotion category is trained
in Emotion6 [Peng er al., 2015] with the exact AlexNet ar-
chitecture. The number of output nodes is changed to 1 to
predict a real value and the Softmax loss layer is replaced
with the Euclidean loss layer. The predicted probabilities of
all emotion categories are normalized to sum to 1. Howev-
er, the CNNR cannot guarantee that the predicted probability
is non-negative. Further, the probability correlations among
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different emotions are actually ignored, since the regressor
for each emotion category is trained independently. Yang et
al. [2017a] designed a multi-task deep framework based on
VGG16 by jointly optimizing the cross-entropy loss for emo-
tion classification and Kullback-Leibler (KL) divergence loss
for emotion distribution learning, which achieves the state-
of-the-art performances. For the single emotion dataset, the
single label is transformed to emotion distribution with emo-
tion distances computed on Mikels’ wheel. The representa-
tive methods are summarize in Table 6.

6.2 Continuous Probability Distribution Learning

Zhao et al. [2017¢] proposed to learn continuous emotion dis-
tributions in VA space. Based on the assumption that the VA
emotion labels can be well modeled by a mixture of 2 bidi-
mensional Gaussian mixture models (GMMs, see Figure 1
(e)), the task turns to predict the parameters of GMMs, in-
cluding the mean vector and covariance matrix of the 2 Gaus-
sian components as well as the mixing coefficients.

Shared sparse regression (SSR) is proposed as the learning
model by assuming that the test feature and test parameters
can be linearly represented by the training features and train-
ing parameters but with shared coefficients. SSR can only
model one test image each time. To explore the task relat-
edness, multi-task SSR is further presented to simultaneous-
ly predict the parameters of different test images by utilizing
appropriate shared information across tasks. GIST, Elements,
Attributes, Principles, ANP, and 4,096-dimensional deep fea-
tures from AlexNet are extracted as visual features. Experi-
ments are conducted on a subset of IESN, which consists of
18,700 images each with more than 20 VA labels. The aver-
age KL divergence of multi-task SSR using ANP is 0.436.

7 Conclusion and Future Directions

This paper attempted to provide an overview of recent de-
velopments on affective image content analysis (AICA). Ob-
viously, it cannot cover all the literature on AICA, and we
focused on a representative subset of the latest methods.
We summarized the widely employed emotion representation
models, released datasets, and compared the existing methods
on emotion feature extraction, personalized emotion predic-
tion and emotion distribution learning. We believe that AICA
will continue to be an active and promising research area
with broad potential applications, such as an emotion-aware
personalized music slide show [Chen erf al., 2014], emotion
based image musicalization [Zhao et al., 2014b], and image
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captioning with sentiment [Mathews er al., 2016]. Many is-
sues in AICA, however, are still open.

Understanding image content and context. Accurately
analyzing what is contained in an image can significantly im-
prove the performance of AICA. Sometimes we even need
subtle analysis of visual contents. For example, if an image is
about the laugh of a lovely child, it is more likely that we feel
“amused”; but if it is about the laugh of a known evil ruler
or criminal, we may feel “angry”. The context of image con-
tent is also important in AICA. Similar visual content under
different contexts may evoke different emotions. For exam-
ple, we may feel “happy” about beautiful flowers. But if the
flowers are placed in a funeral, we possibly feel “sad”.

Recognizing group emotions. Recognizing the dominant
emotion is too generic, while predicting personalized emotion
is too specific. Modeling emotions for groups or cliques of
users, who share similar tastes or interests, may be a good
choice — e. g., by cultural or societal background. Analyzing
the user profiles provided by each individual to classify users
into different types of backgrounds, tastes and interests may
help to tackle this problem.

Understanding emotions of 3D data and videos. Com-
pared with traditional intensity images, 3D data contain more
spatial information, being useful in low light levels and being
color and texture invariant, while videos (such as animated
GIF) contain rich temporal correlation information. Combin-
ing the spatial and temporal correlation together with the vi-
sual content would make more sense.

Further, jointly exploring the complementarity of multi-
modal data (such as image and text) [You er al, 2016a;
Zhao et al., 2018c; Chen er al., 2018] would improve the e-
motion recognition performance. How to adapt the emotions
from one labeled domain to another unlabeled domain [Patel
et al., 2015] is another interesting research topic.

Acknowledgments

This work is supported by the Berkeley Deep Drive,
the National Natural Science Foundation of China (Nos.
61701273, 61571269, 61332016, 61620106009, U1636214),
the China Postdoctoral Science Foundation Project (No.
2017M610897), and the European Union’s Horizon 2020
Programme through the Innovative Action No. 645094 (SE-
WA). This research is part of NExT++ project, supported by
the National Research Foundation, Prime Ministers Office,
Singapore under its IRC @ Singapore Funding Initiative.

References

[Alameda-Pineda er al., 2016] Xavier Alameda-Pineda, Elisa Ric-
ci, Yan Yan, and Nicu Sebe. Recognizing emotions from abstract
paintings using non-linear matrix completion. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 5240-
5248, 2016.

[Borth et al., 2013] Damian Borth, Rongrong Ji, Tao Chen, Thomas
Breuel, and Shih-Fu Chang. Large-scale visual sentiment ontol-
ogy and detectors using adjective noun pairs. In ACM Interna-
tional Conference on Multimedia, pages 223-232, 2013.

[Chen et al., 2014] Tao Chen, Felix X Yu, Jiawei Chen, Yin Cui,
Yan-Ying Chen, and Shih-Fu Chang. Object-based visual sen-

5540

timent concept analysis and application. In ACM International
Conference on Multimedia, pages 367-376, 2014.

[Chen et al., 2018] Fuhai Chen, Rongrong Ji, Jinsong Su, Donglin
Cao, and Yue Gao. Predicting microblog sentiments via weak-
ly supervised multimodal deep learning. [EEE Transactions on
Multimedia, 20(4):997-1007, 2018.

[Dan-Glauser and Scherer, 2011] Elise S Dan-Glauser and Klaus R
Scherer. The geneva affective picture database (gaped): a new
730-picture database focusing on valence and normative signifi-
cance. Behavior Research Methods, 43(2):468—477, 2011.

[Ekman, 1992] Paul Ekman. An argument for basic emotions. Cog-
nition & Emotion, 6(3-4):169-200, 1992.

[Geng et al., 2013] Xin Geng, Chao Yin, and Zhi-Hua Zhou. Fa-
cial age estimation by learning from label distributions. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
35(10):2401-2412, 2013.

[Hanjalic, 2006] Alan Hanjalic. Extracting moods from pictures
and sounds: Towards truly personalized tv. [EEE Signal Pro-
cessing Magazine, 23(2):90-100, 2006.

[Lang et al., 1997] Peter J Lang, Margaret M Bradley, and Bruce N
Cuthbert. International affective picture system (iaps): Techni-
cal manual and affective ratings. NIMH Center for the Study of
Emotion and Attention, pages 39-58, 1997.

[Lee and Park, 2011] Joonwhoan Lee and EunJong Park. Fuzzy
similarity-based emotional classification of color images. IEEE
Transactions on Multimedia, 13(5):1031-1039, 2011.

[Li et al., 2012] Bing Li, Weihua Xiong, Weiming Hu, and Xin-
miao Ding. Context-aware affective images classification based
on bilayer sparse representation. In ACM International Confer-
ence on Multimedia, pages 721-724, 2012.

[Luetal.,2012] Xin Lu, Poonam Suryanarayan, Reginald B
Adams Jr, Jia Li, Michelle G Newman, and James Z Wang. On
shape and the computability of emotions. In ACM International
Conference on Multimedia, pages 229-238, 2012.

[Machajdik and Hanbury, 2010] Jana Machajdik and Allan Han-
bury. Affective image classification using features inspired by
psychology and art theory. In ACM International Conference on
Multimedia, pages 83-92, 2010.

[Mathews et al., 2016] Alexander Patrick Mathews, Lexing Xie,
and Xuming He. Senticap: Generating image descriptions with
sentiments. In AAAI Conference on Artificial Intelligence, pages
3574-3580, 2016.

[Mikels et al., 2005] Joseph A Mikels, Barbara L Fredrickson, Gre-
gory R Larkin, Casey M Lindberg, Sam J Maglio, and Patricia A
Reuter-Lorenz. Emotional category data on images from the in-
ternational affective picture system. Behavior Research Methods,
37(4):626-630, 2005.

[Patel et al., 2015] Vishal M Patel, Raghuraman Gopalan, Ruonan
Li, and Rama Chellappa. Visual domain adaptation: A survey of
recent advances. IEEE Signal Processing Magazine, 32(3):53—
69, 2015.

[Patterson and Hays, 2012] Genevieve Patterson and James Hays.
Sun attribute database: Discovering, annotating, and recognizing
scene attributes. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 2751-2758, 2012.

[Peng et al., 2015] Kuan-Chuan Peng, Amir Sadovnik, Andrew
Gallagher, and Tsuhan Chen. A mixed bag of emotions: Mod-
el, predict, and transfer emotion distributions. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 860—
868, 2015.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

[Plutchik, 1980] Robert Plutchik. Emotion: A psychoevolutionary
synthesis. Harpercollins College Division, 1980.

[Rao et al., 2016a] Tianrong Rao, Min Xu, Huiying Liu, Jingiao
Wang, and Ian Burnett. Multi-scale blocks based image emotion
classification using multiple instance learning. In IEEFE Interna-
tional Conference on Image Processing, pages 634-638, 2016.

[Rao et al., 2016b] Tianrong Rao, Min Xu, and Dong Xu. Learning
multi-level deep representations for image emotion classification.
arXiv preprint arXiv:1611.07145, 2016.

[Sartori et al., 2015] Andreza Sartori, Dubravko Culibrk, Yan Yan,
and Nicu Sebe. Who’s afraid of itten: Using the art theory of
color combination to analyze emotions in abstract paintings. In
ACM International Conference on Multimedia, pages 311-320,
2015.

[Schlosberg, 1954] Harold Schlosberg. Three dimensions of emo-
tion. Psychological Review, 61(2):81, 1954.

[Sun er al., 2009] Kai Sun, Junging Yu, Yue Huang, and Xiaogiang
Hu. An improved valence-arousal emotion space for video affec-
tive content representation and recognition. In IEEE Internation-
al Conference on Multimedia and Expo, pages 566-569, 2009.

[Wang et al., 2013] Xiaohui Wang, Jia Jia, Jiaming Yin, and Lian-
hong Cai. Interpretable aesthetic features for affective image
classification. In IEEE International Conference on Image Pro-
cessing, pages 3230-3234, 2013.

[Warriner et al., 2013] Amy Beth Warriner, Victor Kuperman, and
Marc Brysbaert. Norms of valence, arousal, and dominance
for 13,915 english lemmas.  Behavior Research Methods,
45(4):1191-1207, 2013.

[Yang er al., 2010] Peng Yang, Qingshan Liu, and Dimitris N
Metaxas. Exploring facial expressions with compositional fea-
tures. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2638-2644, 2010.

[Yang er al., 2014] Yang Yang, Jia Jia, Shumei Zhang, Boya Wu,
Qicong Chen, Juanzi Li, Chunxiao Xing, and Jie Tang. How do
your friends on social media disclose your emotions? In AAAI
Conference on Artificial Intelligence, pages 306-312, 2014.

[Yang er al., 2017a] Jufeng Yang, Dongyu She, and Ming Sun.
Joint image emotion classification and distribution learning via
deep convolutional neural network. In International Joint Con-
ference on Artificial Intelligence, pages 3266-3272, 2017.

[Yang er al., 2017b] Jufeng Yang, Ming Sun, and Xiaoxiao Sun.
Learning visual sentiment distributions via augmented condition-
al probability neural network. In AAAI Conference on Artificial
Intelligence, pages 224-230, 2017.

[Yang er al., 2018] Jufeng Yang, Dongyu She, Yukun Lai, and
Ming-Hsuan Yang. Retrieving and classifying affective images
via deep metric learning. In AAAI Conference on Artificial Intel-
ligence, 2018.

[You et al., 2015] Quanzeng You, Jiebo Luo, Hailin Jin, and Jian-
chao Yang. Robust image sentiment analysis using progressively
trained and domain transferred deep networks. In AAAI Confer-
ence on Artificial Intelligence, pages 381-388, 2015.

[You et al., 2016a] Quanzeng You, Liangliang Cao, Hailin Jin, and
Jiebo Luo. Robust visual-textual sentiment analysis: When atten-
tion meets tree-structured recursive neural networks. In ACM In-
ternational Conference on Multimedia, pages 1008-1017, 2016.

[You et al., 2016b] Quanzeng You, Jiebo Luo, Hailin Jin, and Jian-
chao Yang. Building a large scale dataset for image emotion
recognition: The fine print and the benchmark. In AAAI Con-
ference on Artificial Intelligence, pages 308-314, 2016.

5541

[Yuan e al., 2013] Jianbo Yuan, Sean Mcdonough, Quanzeng You,
and Jiebo Luo. Sentribute: image sentiment analysis from a mid-
level perspective. In ACM International Workshop on Issues of
Sentiment Discovery and Opinion Mining, page 10, 2013.

[Zhao et al., 2014a] Sicheng Zhao, Yue Gao, Xiaolei Jiang, Hongx-
un Yao, Tat-Seng Chua, and Xiaoshuai Sun.  Exploring
principles-of-art features for image emotion recognition. In ACM
International Conference on Multimedia, pages 47-56, 2014.

[Zhao et al., 2014b] Sicheng Zhao, Hongxun Yao, Fanglin Wang,
Xiaolei Jiang, and Wei Zhang. Emotion based image musicaliza-
tion. In IEEE International Conference on Multimedia and Expo
Workshops, pages 1-6, 2014.

[Zhao et al., 2014¢c] Sicheng Zhao, Hongxun Yao, You Yang, and
Yanhao Zhang. Affective image retrieval via multi-graph learn-
ing. In ACM International Conference on Multimedia, pages
1025-1028, 2014.

[Zhao et al., 2015] Sicheng Zhao, Hongxun Yao, Xiaolei Jiang, and
Xiaoshuai Sun. Predicting discrete probability distribution of im-
age emotions. In IEEFE International Conference on Image Pro-
cessing, pages 2459-2463, 2015.

[Zhao et al., 2016] Sicheng Zhao, Hongxun Yao, Yue Gao, Ron-
grong Ji, Wenlong Xie, Xiaolei Jiang, and Tat-Seng Chua. Pre-
dicting personalized emotion perceptions of social images. In
ACM International Conference on Multimedia, pages 1385-
1394, 2016.

[Zhao et al., 2017a] Sicheng Zhao, Guiguang Ding, Yue Gao, and
Jungong Han. Approximating discrete probability distribution of
image emotions by multi-modal features fusion. In Internation-
al Joint Conference on Artificial Intelligence, pages 4669-4675,
2017.

[Zhao et al., 2017b] Sicheng Zhao, Guiguang Ding, Yue Gao, and
Jungong Han. Learning visual emotion distributions via multi-
modal features fusion. In ACM International Conference on Mul-
timedia, pages 369-377, 2017.

[Zhao et al., 2017c] Sicheng Zhao, Hongxun Yao, Yue Gao, Ron-
grong Ji, and Guiguang Ding. Continuous probability distribu-
tion prediction of image emotions via multi-task shared sparse
regression. [EEE Transactions on Multimedia, 19(3):632-645,
2017.

[Zhao et al., 2018a] Sicheng Zhao, Guiguang Ding, Yue Gao, Xin
Zhao, Youbao Tang, Jungong Han, Hongxun Yao, and Qingming
Huang. Discrete probability distribution prediction of image e-
motions with shared sparse learning. IEEE Transactions on Af-
fective Computing, 2018.

[Zhao et al., 2018b] Sicheng Zhao, Guiguang Ding, Jungong Han,
and Yue Gao. Personality-aware personalized emotion recogni-
tion from physiological signals. In International Joint Confer-
ence on Artificial Intelligence, 2018.

[Zhao et al., 2018¢] Sicheng Zhao, Yue Gao, Guiguang Ding, and
Tat-Seng Chua. Real-time multimedia social event detection in
microblog. IEEE Transactions on Cybernetics, 2018.

[Zhao et al., 2018d] Sicheng Zhao, Hongxun Yao, Yue Gao,
Guiguang Ding, and Tat-Seng Chua. Predicting personalized im-
age emotion perceptions in social networks. IEEE Transactions
on Affective Computing, 2018.

[Zhu er al., 2017] Xinge Zhu, Liang Li, Weigang Zhang, Tianrong
Rao, Min Xu, Qingming Huang, and Dong Xu. Dependency ex-
ploitation: a unified cnn-rnn approach for visual emotion recog-
nition. In International Joint Conference on Artificial Intelli-
gence, pages 3595-3601, 2017.



