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Abstract

“Plan recognition as planning” uses an off-the-shelf
planner to perform goal recognition. In this paper,
we apply the technique to path-planning. We show
that a simpler formula provides an identical result
in all but one set of conditions and, further, that
identical ranking of goals by probability can be
achieved without using any observations other than
the agent’s start location and where she is “now”.

1 Introduction

Goal recognition (GR) is the problem of identifying an
agent’s intent by observing her behaviour. The traditional
approach involves matching observations to a pre-existing
plan in a plan library [Kautz and Allen, 1986; Charniak
and Goldman, 1991]. Recent developments, however, dis-
pense with this overhead and treat the problem instead as
one of “planning in reverse” [Ramirez and Geffner, 2009;
Baker er al., 2009]. Using a classical planner and linking a
goal’s probability to the cost of a plan that achieves it, this
approach draws on the intuition that a rational agent is most
likely to be following the optimal (i.e., minimum cost) or
least sub-optimal [Ramirez and Geffner, 2010] plan for goal.

In this paper,' we examine the probabilistic GR model for
general task-planning, developed in [Ramirez and Geffner,
20101, and reframe it in the strict context of path-planning.
We prove that a simpler account yields an almost identical
result in less than half the time and with less computational
effort. More surprisingly, we also show that a probability dis-
tribution that ranks candidate goals in the same order can be
obtained without referencing any observations (other than the
agent’s starting point and current location).

2 Goal Recognition as Planning

We begin by presenting the technical background.

Ramirez and Geffner’s GR framework operates in a clas-
sical task-planning environment. In STRIPS, a planning do-
main is a tuple D = (F, A), where F is a set of fluents and
A a set of actions a, each with a precondition, add and delete

'This paper is an abridgement of [Masters and Sardina, 2017]
(with minor amendments), best student paper at AAMAS17.
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list Pre(a), Add(a) and Del(a), all subsets of F'. Action a can
occur in state s if Pre(a) C s. The initial state is assumed
fully observable and the domain deterministic: if a occurs in
s, anew state s results such that s’ = (s UAdd(a)) \ Del(a).
A planning problem (F,1, A, G) is a planning domain with
specified initial and goal states I, G C F', and its solution is
aplan ™ = aq, .., a; that maps I to G. Typically, each action
has a cost ¢(a). The cost of 7 is defined cost(m) = > ¢(a;)
and an optimal plan is a solution with the lowest cost.

Ramirez and Geffner (2009) defined a GR problem T =
(D,G,1,0), where: D is a planning domain; G # () a set of
possible goal states; I the initial state; and O = oy, .., 0, k >
0,0; € A, a sequence of observations. The solution to 7" is a
set of goals, the optimal plans for which satisfy observations,
and a plan m = ay, .., a,, satisfies observations o1, .., 0,, if it
embeds them in a way that preserves the order of actions.

A major drawback of the above framework is that it only
identifies a goal if observations conform to an optimal plan,
whereas, realistically, agents behave suboptimally; and in
[Ramirez and Geffner, 2010] the authors presented an alter-
native probabilistic framework which addresses the problem.

A probabilistic GR problem is a GR problem plus a prior
probability distribution. Its solution is a posterior probability
distribution which prefers goals whose plans “best” satisfy
observations. Basing their notion of “best” on the principle of
rational action, Ramirez and Geffner (2010) capture this idea
using the cost difference between the cheapest plan for goal,
given the actions already observed, and the cheapest plan that
could have achieved it, had the agent behaved differently.
Comparing cost differences across goals, the authors arrive at
a probability distribution with the following important prop-
erty: the lower the cost difference, the higher the probability.
Formally, cost difference is a function costdif : 2 % A* — R:

costdif(G, O) = optc(G, O) — optc™ (G, O), (RG1)
where optc(G, O) and optc™ (G, O) denote the optimal cost
of plans that do and do not embed observations, respectively.
The probability distribution itself is computed using:
e X
Ny epx
where X = costdif(G, O), a is a normalising constant across
goals, and [ a positive constant that modulates the shape of
the distribution.?

2RG2, in code referenced from [Ramirez and Geffner, 20101, is

Px(G|O) = (RG2)
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2.1 The Path-Planning Case

Reformulating the above approach in the context of path-
planning, fluents become tied to locations and actions relate
to movements. Whereas in task-planning, a solution plan is
described as a sequence of actions, in path-planning, it be-
comes a path: a sequence of connected nodes in a graph.

Definition 1. A path-planning domain is a triple D =
(N,E,c) where: N # () is a set of nodes (or locations);
E C N x N is aset of edges between nodes; and ¢ : £ — Rg
returns the non-negative cost of traversing each edge. |

A path 7 in D is a sequence of locations m = ng, ny,...,ng
such that (n;,n,+1) € E, for eachi € {0,1,...,k — 1}.
7* denotes the i-th node n; in 7, and |7| denotes the length
of m, being the total number of edges k in 7. 7(i,j) =
wt, 7L, .. 7 denotes the subpath of 7 from 7° to 7/ (inclu-
sive). The cost of a path is the cost of traversing all edges in 7,
that is, cost(m) = Zf;ol c(w?, w1, The set of all paths in
the domain is denoted by II, and the set of all paths 7 starting
at 7 = n; and ending at 77l = ns is denoted by I(n1,n2).
Definition 2. A path-planning problem is a tuple Q =
(D, s,g), where: D is the path-planning domain; s € N is
the start location; and g € NN is the goal location. | |

The solution to Q is a path 7 in D such that 7° = s, 7™l =
g; the set of all of them being I1(s, g). An optimal path is a
solution with lowest cost. IT* (s, g) is the set of all such paths.

Waypoints are nodes that must be visited and a path via
waypoints embeds them in a way that preserves their order.
The optimal cost via waypoints W of a path from n; to n; is
denoted by optc(n;, W, n;). If W = (), we write optc(n;, n;),
and if 7° = wp and 7!™ = wy, we write optc(W). We gener-
alise the set of all solution paths II(s, g) to those embedding
waypoints W as II(s, W, g). Similarly, II*(s, W, g) denotes
paths that are optimal w.r.t. cost among paths in II(s, W, g).

Definition 3. A path-planning GR problem is a tuple P =
(D, G, s, 0, Prob), where: D is a path-planning domain; G C
N is the set of possible goals; s € N is the start location;
O =o01,...,05, k > 0,0; € N, is a sequence of locations
(not actions, nor necessarily a path) where the agent has been
observed; and Prob is the prior probabilities of the goals. W

The solution to P is a probability distribution across G ob-

tained using a reformulation of (RG1), grounded in path-
planning as costdifpg : N x N x N* — R:

costdifys (s, g,0) = optc(s, O, g)—optc” (5,0, g).> (RG3)
where optc™ (s, O, g) denotes the optimal cost of navigating
from s to g without embedding waypoints, that is:

optc”(s,0,9) = mi cost(r).

n

mell(s,g)\II(s,W,g)

Finally, the probability distribution is derived as for task-

planning, by taking X = costdifps(s,g,0) into Equa-

tion (RG2). For legibility, we call the resulting function Pgg:
€7B costdify(s,9,0)

PRG(g|Ov 5) = a(l + e—ﬂcoszdszc(s,g,O)) :

(RG4)

provably equivalent to the account there and in [Ramirez, 2012].
3We now make explicit the starting point s, implicit in (RG1).
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3 A Simpler Cost Difference

We now present the first of our main technical contributions: a
modified cost difference formula which is simpler to compute
than (RG3) and faster to calculate. Based on the intuition that,
in the great majority of cases, the optimal path that “does not
pass through all observed locations” is the optimal path, in-
stead of computing optc™ (s, O, g) we deduct the more readily
available “optimal path cost”, arriving at:

costdif, (s, g, 0) = optc(s, 0, g) — optc(s, g). (1)

This alternative formulation is not only computationally less
demanding (there is no requirement to reason negatively
about the observations) but also, since the optimal path cost
to each potential goal is not dependent on the observations, it
can be pre-computed once at the outset. Note that if the po-
tential start node and all candidate goal locations are known,
as they are in the case of an airport terminal, for example,
which has a fixed, finite number of entrances and boarding
gates, then oprc(s, g) for all g € G can be pre-computed and
stored for retrieval as needed in constant time.

As the following theorems state, formula (1) generates an
identical result to formula (RG3)in all cases bar one; and even
then, the difference has minimal impact on the overall prob-
ability distribution. Moreover, in one corner-case, (1) actu-
ally enables calculation of a posterior probability distribution
when the original, more involved, formula (RG3) may not.

Theorem 1. Let O be an observation sequence such that
optc(s, O, g) > optc(s, g) (i.e., the observed behaviour is not
optimal). Then, costdifg;(s, g, O) = costdif, (s, g, O).

In words, if the observed path is suboptimal—as, arguably,
it would be most of the time—the simpler formula (1) yields
exactly the same value as the original formula (RG3).

Theorem 2. Let O be an observation sequence such that
optc(s,0,g9) = optc(s,g) (i.e., the observed behaviour
is optimal). If TTI*(s,g) \ 1U*(s,0,9) # 0, then
C()StdifRG(Sv 9, O) = COStdl:fl (Sa 9, O)

In words, even if the observed behaviour is optimal, if there
are other ways of behaving optimally, again formula (1) is
exactly equivalent to the original formula (RG3).

Theorem 3 sets out the only case where the two formulas
return different results. Consider the following example.

Example 1. One goal location is a house with front and back
doors. An agent is observed at the front gate which is on the
only optimal path. Using formula (1) the cost difference for
this goal is zero (the observed path is the optimal path) but
using formula (RG3) cost difference—assuming cost equates
to distance—is a negative value (the optimal path not em-
bedding observations is longer than the path that does embed
them because it involves a detour to reach the back door). [

Theorem 3. Let O be an observation sequence and g € G.
Then, costdifrs(s, g, O) # costdif, (s, g, O) iff IT*(s, 0, g) =
IT*(s, g) (i.e., all optimal paths embed the observations).

This strengthens Theorem 2 by asserting that both formulas
yield identical results in all cases bar one: when observations
are not only sufficient for optimal behaviour, but also neces-
sary, i.e., there is no other way of acting fully rationally.
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In considering this corner case, recall that cost difference is
just a stepping stone towards generating a probability distri-
bution. Often, we do not need to know exactly how probable
the goals are, only their relative order or, more particularly,
which goal is most probable. With this in mind, we prove (in
Theorem 4) that, even if an agent is observed taking an ex-
clusively optimal path to a goal (i.e., all optimal paths embed
the observations), unless observations also conform to an op-
timal path for some other goal, the relative ranking of goals
by probability is unaffected by use of the simpler cost differ-
ence formula, which still results in successful identification
of the most probable goal.

Before proceeding, we make the following auxiliary obser-
vation, which formally restates the intuition that the lower the
cost difference, the more probable the goal.

Observation 1. Let f(g, O) be a cost difference function and
Px a template of the probability distribution in (RG2). If
f(91,0) < f(g2,0), then Py(g1]0) > Py (g2|0).

Now, let Pgg(-) be the probability distribution ob-
tained from (RG2) when X = costdifgs(s,g,0) (Equa-
tion (RG3)) and P; (-) the distribution obtained when X =
costdifi (s, g, O) (Equation (1)).

Theorem 4. Let O be an observation sequence and suppose
that, for some potential goal g € G, it is the case that:

1. TI*(s, 0, g) = II*(s, g), that is, observations are exclu-
sively optimal; and

2. forevery g’ € G\ {g}, optc(s,0,9") > optc(s, q’), that
is, observations would result in suboptimal paths to all
the other possible goals.

Then, for all g1, g2 € G and g1 # g2, P1(g1]0) > P1(g2|O)
if and only if Prc(g1|O) > Prc(g2|O).

There remains one variation of exclusive optimality so far
excepted. It is the case where observations coincide with the
only optimal path to multiple goals (rather than one). We
have argued that exclusive optimality for one goal is unusual;
clearly, for multiple goals, it is even more so. Should the
situation arise, however, the complex formula (RG3) would
return multiple (negative) cost differences, which could be
ranked, whereas the simple formula (1) ranks all goals for
which observations match the optimal path equally.

Arguably, this situation is not only extremely unlikely, it
also concerns the very set of goals in which this probabilistic
account [Ramirez and Geffner, 2010] is least interested.

Finally, in the extreme case, where observations conform
not just to the only optimal path to a goal g but to the only path
per se, the cost of a path that does not conform to observa-
tions is infinite (because no such path exists). In this case, as
Ramirez and Geffner (2010) point out, (RG3) ought to return
—oo giving g the highest possible probability within the dis-
tribution. However, since —oc is not a number, the result may
be undefined with the flow-on effect that normalised scores
for the rest of the distribution may also be undefined.

In any practical implementation, of course, the problem is
easily rectified by allocating some minimum value instead of
—o0 or treating this case separately. In an identical situation,
however, Equation (1) (based on optimal cost from start to
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goal rather than “optimal cost given not the observations”)
returns zero and the issue does not arise.
To summarise the advantages of the simpler formula (1):

costdif;(s,g,0) returns the same
costdify;(8, g, O) in all cases bar one;
the one case where the formulas do not return identical

results relates to fully rational behaviour, which is pre-
cisely not the motivation of the probabilistic GR model;

result as

even when costdif; (s, g, O) returns a different result, it
is unlikely to impact the overall probability distribution;

in the most extreme case—when no path to goal avoids
the observations— it returns a meaningful result when
costdify;(8, g, O) may return no result at all; and

costdifi (s, g, O) is computationally advantageous: it re-
quires no ‘negative’ reasoning (so any standard path-
planner can be used off-the-shelf); furthermore, in many
domains, its second term may be pre-computed.

4 Single-Observation* Recognition

We now come to our second core contribution. As shown, in
all but one extreme corner case, formula (1) can be used inter-
changeably with (RG3). Here, we go further and demonstrate
that—if the starting location is known (e.g., because there is
one common entrance to a building or terminal)—the ranking
of goals, as judged by the probability distribution P (-) and
generated using formula (1), can be achieved without refer-
ence to the observation sequence.

At first sight, the finding is counter-intuitive. Indeed, it im-
plies that we can perform goal recognition without observing
how the agent behaves over time! Nevertheless, if we know
an agent’s start location and the location of each candidate
goal, we require only her current location in order to calcu-
late a probability distribution within which goals are ranked
in exactly the same order as if we had used formula (1).

Our single-observation formula, costdify : N x N x N
R is defined as:

where n stands for the most recently observed location of the
agent whose destination we are trying to determine (i.e., n =
O!9). Let Py(-) be the probability function obtained by tak-
ing X = costdif,(s, g,n) in (RG3).

Theorem 5. Let O be an observation sequence. For all
91,92 € G, P1(91]0) > Pi(92|0) iff P2(91]0) > P2(g2).

Proof. From Observation 1, P;(g1|0) > Pi(g2]O) if and
only if costdif, (s, g1,0) < costdifi (s, g2, O). Recall, from
Equation (1), that for each ¢ € {1,2}:

costdify (s, :, 0) = opic(s, 0, g;) — opic(s, gy),
where the first term can be written as:
opte(s, 0, g;) = optc(s,0°) + optc(O) + optc(01°1, g;).
“We previously used the term “observation-free”. However, the

method does depend on observing one location (usually the agent’s
current location) with respect to which probabilities are required.
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Let n; = O!9! be the last observation in O. From Observa-
tion 1, recall that the relative ranking between g; and go with
respect to their posterior probabilities can be deduced directly
from the relative value of their cost difference formulas. So,
let us expand that value:

costdify (s, g1, 0) — costdif, (s, g2, O)
= [optc(s, 0°) + optc(O) + optc(n, g1) — opte(s, g1)]—
[optc(s, O%) + optc(O) + optc(ny, g2) — optc(s, g2)]
= optc(s,0°) + optc(O) + optc(ny, g1) — optc(s, g1)—
opte(s, 0°) — optc(O) — optc(nu, g2) + optc(s, g2)
Optc(nly gl) - 0ptC(S,gl) - optc(nlv 92) + 0ptC(S./ 92)
[opte(ni, g1) — opte(s, g1)] — [opte(ni, ga) — opte(s, ga)]
COStdl.f2(S7 g1, nl) - costdlf?(sv g2, nl)'

It follows then that costdif; (s, g1, O) > costdifi (s, g2, O) iff
costdifs(s,g1,0) > costdify(s, g2, O). Thus, from Observa-
tion 1, P1(g1|0) > P1(g2|0) iff P2(g1]0) > P2(g2). O

The finding is useful and unexpected. All parameters are
independent of the observation sequence (modulo where the
agent is “now”) and can be obtained using a standard path-
planner: no specialised path-finding system is needed to rea-
son about observations. Furthermore, if all start and candi-
date goal locations are known—as would typically be the case
in most domains—formula costdif,(s, g, n) can be fully pre-
computed offline for any node n € N in the domain.

The implications are significant. We can create a sort of
“heat map” of the domain, showing the probability of each
goal according to where the agent entered. If we have a goal
of interest (e.g., a valuable location to monitor and protect),
we can focus attention fully on locations where that goal
becomes the most probable. That is, rather than tracking an
agent’s movements all over the terrain, we can just monitor
the “hot” spots and only start tracking her in earnest if she
arrives at one of them.

We close by noting that the above result is not dependent
on formula (RG4) but is applicable whatever manipulation is
used to derive the probability distribution, provided it satisfies
the property that the lower the cost difference, the higher the
probability, and relative cost differences are preserved.

S Experimental Results

We tested formulas (RG3), (1) and (2) on 990 problems
adapted from the well-known Moving-AI° path-planning
benchmarks [Sturtevant, 2012] to confirm (a) that the case of
exclusive optimality (as in Theorem 3) is rare and that other-
wise the simpler formula yields identical posterior probability
distributions to the more complex formula; (b) that all three
accounts return posterior probability distributions that rank
goals the same; and (c) using either of the modified formulas
presented here cuts processing time by more than half.

We adapted the Moving-Al problems for GR by adding
candidate goals at random locations, used Weighted-A* [Pohl,
1970] to generate a continuous path to the real goal then ex-
tracted observation sequences varied by: path quality (opti-
mal, suboptimal, greedy), observation density (sparse 20%,
medium 50%, dense 80%) and distribution (random locations
along the path or a consecutive prefix beginning at the start).

>http://movingai.com/
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Prc P Py
Obs Time | Time Match | Time Match A
20%P | 24.596 | 3.835 100% | 1.780 34.6% 0.040
20%R | 10.346 | 2.112 100% | 2.062 53.8% 0.025
50%P | 31.934 | 1.706 100% | 1.681 38.5% 0.034
50%R | 18.962 | 2.110 100% | 2.073 57.7% 0.024
80%P | 33.274 | 1.876 100% | 1.848 423% 0.035
80%R | 26.073 | 2.111 100% | 2.062 57.7% 0.023

Table 1: Landscapes - suboptimal

156 problems. Average goals: 4.35. Average path cost:
280.74. A displays average difference for non-matches. We
obtain Py as P, but adding a constant to each cost difference.

We calculated optimal path costs using standard A* [Hart et
al., 1968]° and obtained optimal costs “given not the observa-
tions” by modifying A* so that it pruned from consideration
any path that encountered all observed locations.

Our results confirmed the hypotheses. Importantly, the cor-
ner case—where observations conform to the only optimal
path—did not arise in any randomly generated scenario. Ta-
ble 1 summarises a representative subset of our results. We
found that formula (RG3) performed even more slowly than
expected (perhaps reflecting the calculation’s inherent com-
plexity): in some cases the simpler formula (1) performed
twelve times faster. Probabilities based on formula (1) always
exactly matched those based on (RG3); probabilities gener-
ated using formula (2) were usually different but in all cases
use of the single-observation formula successfully identified
the same goal as having the highest, or equal highest, poste-
rior probability as either other formula.

6 Conclusion

We have examined GR techniques introduced by Ramirez
and Geffner (2010) and applied them in the context of path-
planning. We have shown that a simpler cost difference for-
mula returns an identical result to the original in all but one
case, which we characterise. We argue, in line with intuitions
expressed in [Ramirez and Geffner, 2010], that this is a case
of little interest and, in fact, it did not even arise in automated
tests. Further, we have presented an alternative formula (2)
that does not depend on the observation sequence but never-
theless generates a posterior probability distribution that ex-
actly preserves the ranking of goals from the simplified ac-
count and, by extension, results in an identical ordering to
formula (RG3) in all cases bar one. This formula has the ben-
efit that it can be pre-computed in many realistic domains. So
one can create a sort of “heat map” of posterior goal prob-
abilities from which to identify a perimeter that should be
monitored around any goal of interest, knowing that, at all lo-
cations within the perimeter, that goal is the most probable.
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