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Abstract

A seller with unlimited inventory of a digital good
interacts with potential buyers with i.i.d. valuations.
The seller can adaptively quote prices to each buyer
to maximize long-term profits, but does not know
the valuation distribution exactly. Under a linear
demand model, we consider two information set-
tings: partially censored, where agents who buy
reveal their true valuations after the purchase is
completed, and completely censored, where agents
never reveal their valuations. In the partially cen-
sored case, we prove that myopic pricing with a
Pareto prior is Bayes optimal and has finite regret.
In both settings, we evaluate the myopic strategy
against more sophisticated look-aheads using three
valuation distributions generated from real data on
auctions of physical goods, keyword auctions, and
user ratings, where the linear demand assumption
is clearly violated. For some datasets, complete
censoring actually helps, because the restricted data
acts as a “regularizer” on the posterior, preventing
it from being affected too much by outliers.

1 Introduction

Consider a seller with an unlimited supply of identical goods
(e.g., digital goods, which have zero or very low marginal
costs of production/storage) who interacts with a stream of
buyers with i.i.d. valuations. The seller does not know the
precise distribution from which valuations are drawn, but can
learn it indirectly through observing the outcomes of interac-
tions with buyers. Lack of information about the valuation
introduces an exploration vs. exploitation trade off: the seller
wants to maximize long-term revenue, but it may be neces-
sary to compromise on some profit in order to learn the de-
mand curve.

Dynamic pricing is a fundamental problem class within
revenue management [Talluri and Van Ryzin, 2005], and
the notion of learning an unknown demand curve has at-
tracted considerable attention within this community recently.
There are numerous variations of this problem: Harrison
et al. (2012) consider a simple hypothesis testing problem
with only two possible demand curves; Farias and Van Roy
(2010) allow the demand to be a function of an unknown
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positive scalar, which is learned using Bayesian updating;
Cope (2006) assumes a fixed number of allowed prices with a
Dirichlet prior on the response probabilities. Most variations
assume sequentially arriving, independent buyers [Blum et
al., 2004; Kleinberg and Leighton, 2003]. Extensions include
non-stationary demand [Besbes and Zeevi, 2011] and finite
inventory [den Boer and Zwart, 2015].

The optimal policy in all of these problems can be char-
acterized using Bellman’s equation, but exact solutions are
typically intractable. In many cases (see, e.g., [Blum et
al., 2004; Broder and Rusmevichientong, 2012; Keskin and
Zeevi, 2014]), a simple myopic (greedy) pricing policy is
sufficient to achieve sublinear regret over time, possibly re-
quiring minor modifications to avoid “confounding prices”
that provide no new information [Harrison ef al., 2012]. In
some cases where special structure is available, such a pol-
icy may even achieve finite (bounded) regret [Mersereau et
al., 2009]. Other proposed approaches reduce the pricing
problem to an instance of the well-known multi-armed bandit
problem [Rothschild, 1974; Kleinberg and Leighton, 2003;
Leloup and Deveaux, 2001]; the set of allowable prices is
discretized, with each price representing an arm of the ban-
dit, allowing the decision-maker to draw on the rich literature
on bandit algorithms with desirable regret bounds [Kleinberg
and Leighton, 2003; Kleinberg, 2005; Auer et al., 2002]. Be-
cause these techniques may not always work well in prac-
tice [Chhabra and Das, 2011; Conitzer and Garera, 2006;
Vermorel and Mohri, 2005], one may also consider alternate
approaches such as knowledge gradient policies [Ryzhov et
al., 2010; Powell and Ryzhov, 2012], which are simple to
implement and often produce competitive empirical perfor-
mance. However, both theoretical and empirical results in this
area are highly dependent on the modeling assumptions made
in defining the problem; for instance, Carvalho and Puterman
(2005) find that a one-step look-ahead strategy achieves sig-
nificantly better finite-time performance than a myopic strat-
egy in an empirical study.

We focus on a different issue in dynamic pricing, namely
the problem of censored information. The decision-maker
typically does not observe valuations directly, and only re-
ceives partial information. Censored information presents
challenges for both statistical inference (it is difficult to per-
form Bayesian updating under censoring) and optimization
(traditional algorithms and results may no longer apply). Har-
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rison et al. (2012) circumvent this issue by using a binary
prior; however, if the set of possible valuation distributions is
continuous (e.g., normal or uniform with unknown parame-
ters), a censored observation will only lead to a conjugate be-
lief model in certain special cases. Das and Magdon-Ismail
(2008) and Chhabra and Das (2011) use moment-matching
approximations to collapse the posterior into the same form
as the prior, whereas Qu et al. (2012) use a density projec-
tion technique (minimizing KL divergence between the true
posterior and the approximate distribution), but such methods
are necessarily approximate.

Contributions First, we consider partially censored infor-
mation, where customers reveal their true valuations only af-
ter buying the product; they do not do so if they do not buy.
Intuitively, once the customer has purchased a digital good,
she will presumably never need to purchase it again, and thus
would be willing to reveal her true valuation to the seller. The
partially censored case admits a conjugate Bayesian belief;
with a Pareto prior, the posterior remains Pareto for both buys
and no-buys. When the true valuation distribution is uniform,
corresponding to linear demand, we show that myopic pric-
ing is optimal and that the cumulative regret incurred by this
strategy is finite.

In the case of fully censored information, we derive two
statistical approximations (moment-matching and Kullback-
Leibler divergence minimization) to collapse the posterior
to a Pareto distribution. We experimentally compare the
myopic policy against a knowledge gradient (one-step look-
ahead) policy with respect to several baselines on real datasets
(consisting of valuations from three different real-world data
sources) where the valuation distribution differs significantly
from the assumed uniform distribution. We find that the
myopic policy now underperforms under fully censored in-
formation; when the valuation distributions are heavy-tailed,
full censoring can actually help by acting as a regularizer that
prevents overreaction of the (misspecified) prior to outliers.
These results provide insight into both when and why myopic
algorithms can be successful in dynamic pricing problems, as
well as when it is better to turn to algorithms with more looka-
head.

2 The Model

We assume that the seller interacts with one buyer at a time,
and wishes to set prices sequentially so as to maximize infi-
nite horizon discounted revenue m = Zfi 0 &tm,, where § is
a discount factor and 7, is the profit from the transaction that
occurs at time ¢. The buyers’ valuations are i.i.d draws from a
known distribution function f,(x) with unknown parameters.
At each time ¢, the seller quotes a price ¢;. An arriving buyer
with valuation v; sees the quoted price, and chooses not to
buy if v; < ¢, and chooses to buy otherwise. If she chooses
to buy, she reveals her valuation v, to the seller in the partially
censored setting, but not in the fully censored setting.

We assume that the underlying valuation distribution is
uniform on [0, Z], but Z is unknown. The seller faces an
exploration-exploitation dilemma due to the uncertainty in
the value of Z. This is equivalent to a linear demand as-
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sumption in the single-unit posted price setting, since the
probability of a purchase is linear in the price; linear de-
mand models are standard in the literature [McLennan, 1984;
Harrison et al., 2012]. The Pareto distribution is a natural
choice for representing our prior beliefs about Z [DeGroot,
19691, since it is conjugate in the case where the actual obser-
vations from the distribution are revealed (although not nec-
essarily in the censored cases we examine).

There exists a single optimal price if the valuation dis-
tribution f,(«) is known to the seller. In our model, this
is equivalent to knowing the value of Z a priori. First,
note that Pr(Buy|¢,Z) = 1 — £ if ¢ < Z, and 0O oth-
erwise. Then the single optimal price can be calculated as
Topt = maxy(q Pr(Buy|g, Z)) = qop = %.

Since the underlying valuation distribution is uniform, we
model the seller as maintaining a Pareto prior on Z, the un-
known parameter of the uniform distribution. The Pareto is
the conjugate prior for the uniform in this case. The seller’s
beliefs are then fully represented by the two parameters (a
and b) of the Pareto distribution fz(x;a,b) = x‘@% x >b.
Note, that the expected value of Z is not finite if ¢ < 1. In or-
der for the seller to always have finite mean belief distribution
we assume that ¢ > 1 at all times.

3 Pricing with Partially Censored
Information

Here we deal with a setting in which the buyer discloses her
true valuation if and only if she decides to buy.

3.1 The Seller’s Bayesian Updates

The seller quotes a price q to an arriving buyer, and the buyer
either decides to buy and disclose her valuation to the seller,
or leave. Depending on the information, the seller gets from
the buyer’s decision, she updates her belief on Z as follows
for the two cases:

The Buyer Buys: When the buyer chooses to buy, she also
discloses her valuation, which comes from a uniform distri-
bution. With some algebra, it is straightforward to show that
the posterior remains Pareto:

fz(z;a 4+ 1, max(v,b))
0 otherwise

x > max(v, b)

fz(xz|Buy) = {
The Buyer Does Not Buy: As long as the current price is less
than the parameter b of the Pareto distribution, the posterior
is also Pareto. We argue later that prices above b should be

excluded from consideration; thus, in the partially censored
setting, we will always have a Pareto posterior.

g<x

q
Pr(-Buylg,Z = z) = { 1 otherwise

Pr(-Buyle) = [ Pr(-Buyle.Z = )f(a) da

Folal-uy) = ZZPHCBwI) _f ot @20
Pr(—Buy) Pr(fB;fy\q) z<q

Therefore, we see that if b > ¢ (the price) then the posterior
is fz(x;a+ 1,b) (i.e., Pareto with parameters a + 1 and b).
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3.2 Strategies

Now we turn to the problem of choosing how to set the price
g: at any point in time ¢{. Two strategies are discussed: (1)
the Bayesian myopic pricing strategy and; (2) the knowledge-
gradient (i.e., one-period Bayesian look-ahead) strategy.

Bayesian Myopic Pricing Strategy
The simplest strategy is to price the item greedily, in order
to maximize the expected profit from the next interaction
with a buyer. At time t: E(my,,.) = maxg (E(m)) =
maxg, (¢ Pr(Buy|g,)). This myopic profit is maximized
when max(b,q;) = band ¢ = %

bla+1)
BT tuyopic) = T ia

For details, see the supplementary information.

and it is:

ey

Knowledge-Gradient

The knowledge-gradient (KG) strategy is a one-period
Bayesian look-ahead strategy. The seller assumes that, start-
ing from the next round, her beliefs will be fixed forever, and
she will choose the myopic price every time after that. Math-

ematically: mx g = maxg, (7 + % (thMyopic)). Then:
)

1% ( Pr(—Buy|q:) max(E(m; 1) -puy))

+ Pr(Buy|q:) max(E(ﬂt+1‘Buy)))) 2)

Surprisingly, the KG optimal price (from Equation 2) is equal
to the myopic price.

E(rke) = max (E(me) +

Theorem 1. The KG optimal price for the uniform [0, Z] val-
uation distribution with left-censored observations is equal to
the myopic price when the seller maintains a Pareto prior on

The proof can be found in the supplementary information;
however, we give a brief sketch. To calculate the price set by
the KG policy, we first calculate the expected myopic profit
for the (¢ + 1)™ round. As seen in Section 3.1, the poste-
rior distribution when the buyer does not buy depends on the
value of max(b, ¢;), so it is necessary to evaluate two cases,
depending on which of these two quantities is larger.

3.3 Optimality of the Myopic Strategy

To argue the optimality of the Bayesian myopic strategy, we
first restrict the set of allowable strategies in the following
manner. We consider only those strategies that, for any ¢,
choose prices ¢; below the current value of the Pareto param-
eter b. From Section 3.2, we know that the myopic strategy
satisfies this condition.

bla+1)

Qtrtyopic — T oa <b fora>1

Now consider a model where the seller gets perfect in-
formation after each interaction with a buyer. That is, the
seller observes the exact valuation of the buyer regardless of
whether the buyer purchases the product. The updates in this
complete-information setting for both buying and not buying
are Pareto:

fz(w;a,blv) = fz(x;a + 1, max(b, v))

After k buyers have visited, let m(k) represent the maximum
of the valuations of these k& buyers. If the seller starts with
initial parameters (¢ = ag,b = bg) for a Pareto prior on
the value of Z (v ~ UJ0, Z]) at time ¢ = 0, the posterior
distribution after k buyers have visited is given by:

fz(x; ak, bplk) = fz(x; a0 + k, max(by, m(k)))

Note that the parameter by also provides the information that
the seller initially assumes Z > by because fz(x; ag,by) =0
for x < by for the Pareto distribution, so it is advisable to
choose a small value for by.

Now, return to our setting, where the buyer discloses her
valuation if she chooses to buy, but not otherwise. Since we
are only considering strategies that price below the current
value of the Pareto parameter b, the conjugacy of our be-
lief model is preserved even with censored information. Let
my (k) represent the maximum of all the valuations observed
among those who chose to buy after a sequence of buyers has
arrived. After k buyers have visited the seller, the posterior
distribution is given by:

fz(x|k) = fz(x;a0 + k, max(by, mp(k)))

Observe that the a parameter of the Pareto distribution
is always equal (incremented by 1) in both the complete-
information and partial-information models. Let b.(k) and
b, (k) represent the b parameter for the Pareto distribution af-
ter k buyers have arrived for complete and partial informa-
tion respectively. We now show that b, (k) is actually equal
to b.(k) for any allowable strategy, as long as the two sellers
start with the same prior.

Theorem 2. At any time k > 0, the parameters of the poste-
rior distribution in our settings (partially-censored informa-
tion about buyers’ valuation) for a Pareto prior are equal to
the parameters of the posterior distribution with complete in-
formation using any pricing strategy that prices the item less
than the b parameter of the Pareto distribution about the buy-
ers’ valuation if the initial value of the parameters is chosen
to be equal (i.e., by(k) = bc(k) if the same by is chosen for
both complete information and partial information model).

The proof proceeds by induction on the time index k; in
each such time index, it is again necessary to separately con-
sider two cases, depending on whether or not the next buyer
buys. The details can be found in the supplementary informa-
tion.

Corollary 3. Among all strategies in the allowable set, the
myopic pricing strategy is optimal.

Since every strategy in the allowable set produces the same
sequence of posterior distributions under either complete in-
formation or partial censoring, it follows that the same ex-
pected revenue is achieved in both cases. However, the
myopic strategy is optimal in the case of complete informa-
tion, since there is no benefit from exploration. It follows that
it continues to be optimal under partial censoring.

It remains to argue that the myopic strategy continues to
be optimal when we expand the set of allowable strategies
to allow arbitrary pricing decisions (include those above the
Pareto parameter b). We offer the following intuition in sup-
port of this idea:
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1. Non-myopic decisions can be optimal if they allow us
to collect new information that compensates for lost rev-
enue over time. However, in our setting, higher prices
increase the likelihood of a lost sale, and thus the risk
that we will receive less information rather than more.

2. Reducing our ability to collect information should also
reduce the revenue we can generate. Thus, the maximum
achievable revenue under partial information should not
be greater than the maximum revenue under complete
information. However, the revenues generated by the
myopic strategy are the same in both settings.

We conclude that the myopic strategy is optimal for the
uniform-Pareto pricing problem with censored information.
This result relates to earlier work by Harrison et al. (2012)
and Mersereau et al. (2009) on greedy and semi-greedy poli-
cies in Bayesian dynamic pricing.

3.4 Regret Bounds

For a multi-armed bandit with independent arms the regret
grows as (log T') [Lai and Robbins, 1985]. Mersereau ef al.
(2009) demonstrate the existence of finite regret in a special
case with correlated arms where the expected reward of each
arm is a linear function of an unknown scalar with known
prior. The existence of finite regret in general means that the
algorithm learns very fast. We show that the myopic Bayesian
algorithm in our model also has finite regret, implying that it
learns Z quickly.

Theorem 4. The regret for the myopic Bayesian policy for
the partially-censored information setting (i.e, the buyers dis-
close their valuation in case of a buy) when the true valua-
tions are drawn from the uniform distribution in [0, Z|, where
Z is unknown and the seller maintains a Pareto prior, is finite.

Essentially, the proof first derives the bound for the
complete-information case, and then observes that the ex-
pected revenue of the myopic policy is the same under both
complete information and partial censoring, meaning that the
same bound holds in both cases. Details can be found in the
supplementary information.

4 Pricing with Fully Censored Information

Now, we turn to the case of completely censored information.
The additional complicating factor for the Pareto prior arises
when an arriving agent chooses to buy, in which case the pos-
terior

(A=3)fz(=)
fZ(x|Buy) = Pr(Buy|q)

x > max(q, b) 3)

0 otherwise

is no longer Pareto. If the arriving agent does not buy, the
updates are the same as in the partially censored case. The
posterior is Pareto (fz(z;a + 1,b)) if b > ¢, otherwise it is
not.

x) Pr(—Buy|z mif# r2q

F (2] ~Buy) fZ(fz (—Buylz) _ PrCBuD)
r(—Buy) FrcBnly L <4
C))
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One way to tackle non-conjugacy is to constrain the poste-
rior to have the same form as the prior. We consider two pos-
sibilities, moment matching on the first two moments (follow-
ing [Chhabra and Das, 2011; Das and Magdon-Ismail, 2008])
which can in many cases be proved to be consistent [Chen
and Ryzhov, 2016], and density projection, where the KL di-
vergence of the approximate distribution from the true distri-
bution is minimized [Qu ef al., 2012], an approach also often
used for model evaluation [Burnham and Anderson, 2002].

4.1 Moment Matching Approximation

LetEy(Z) and Ey(Z?) represent the first two moments about
the mean of the true posterior distribution. We find (a’, b') of
the Pareto distribution f,(z;a’,b") such that its first two mo-
ments are the same as those of the posterior distribution. The
derivation is algebraic, and can be found in the supplementary
information.

4.2 Approximation Using Density Projection

Another possibility is to choose the Pareto distribution that
minimizes the KL divergence (or relative entropy) from the
true distribution. Formally, given two densities p and g,

Diplla) = [, p(@)log (85) do = ~H(p) + H(p,q)
where H (p) is the entropy of p and H(p, ¢) is the cross en-
tropy of p and ¢. In our case, p, the true distribution, is the ex-
act posterior distribution calculated using Bayes rule in Equa-
tions 3 and 4 above, and q is the Pareto distribution which we
want to use as a proxy to the true distribution in order to char-
acterize the belief state of the seller. In this technique, we
want to find parameters (a’, b') to the Pareto distribution such
that D(p||q) is minimized. Here, minimizing KL divergence
is equivalent to minimizing cross entropy(H (p, q)) because
the entropy (H (p)) of the true posterior is constant. The de-
tails of the computation are deferred to the supplementary in-
formation.

4.3 Pricing Strategies

Myopic The myopic price is only dependent on the current

state parameters; hence, it is the same for the completely and

the partially censored case. From Equation 1, if the state pa-
b(a+1)

rameters are a and b then the myopic price is =5 _—.

Knowledge Gradient (KG) Optimal In order to compute
the KG optimal price at any time ¢, we first have to compute
the myopic profit at time t + 1. For doing so, we first calcu-
late the approximate posterior distribution using either of the
two methods discussed above. Then the myopic profit can be
calculated using Equation 1. The KG price can then be calcu-
lated by maximizing the expected one-step-look-ahead profit
using Equation 2.

5 Experimental Analysis
5.1 Data

In order to evaluate the algorithms when the uniformity as-
sumption is violated, we conduct experiments using three dif-
ferent datasets. Space restrictions preclude a full explanation
of the datasets and preprocessing here, but are available in the
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Figure 1: Example histograms showing the value distribution for eBay data, one joke from Jester, and one search keyword.

supplementary information. We use three datasets that can be
considered to give valuation information. These are (1) eBay
auctions, which contains bidding information from eBay for
several auctions of Palm Pilot M515 PDAs, (2) Jester, which
contains ratings for a set of 100 jokes by 29,483 users on a
scale from -10.00 to 10.00 (continuous rating) from Jester, an
online joke recommender system [Goldberg et al., 2001], and
(3) Yahoo! advertiser bids, which contains data on adver-
tisers’ bids on the top 1000 keywords for sponsored search
auctions from June 15, 2002 to June 14, 2003. For datasets
(1) and (3), we take each user’s single highest bid and assume
that to be their valuation. As can be seen from the examples in
Figure 1, the resulting distributions are significantly different
from uniform.

5.2 Baseline Algorithms

Partially Censored Observations For the partially cen-
sored case we consider a modified Gittins index strategy as a
baseline. We first discretize the prices — each price is equiv-
alent to an arm of a multi-armed bandit. The seller main-
tains a Beta prior B(«, 3) on the probability of success of
each arm. Using this, the Gittins indices (or the dynamic al-
location indices) are calculated for all the arms and the arm
with the highest index is selected [Leloup and Deveaux, 2001;
Chhabra and Das, 2011]. On playing the arm, the parameter
« is incremented if the buyer decides to buy and S is incre-
mented if the buyer decides not to buy.

This Gittins strategy is optimal for a multi-armed ban-
dit when all the arms are independent. While the arms for
the pricing problem are not independent, this approach has
shown good results in past work [Leloup and Deveaux, 2001;
Chhabra and Das, 2011]. We experiment with some varia-
tions of the Gittins strategy to incorporate dependence.

In order to discretize the arms from the dataset of unique
bidders, we find the minimum and the maximum bids and
discretize the price uniformly in that range. We fix the num-
ber of arms at 20. We report on two variants of the Gittins
index strategy: (a) Partially censored Gittins, where, when
the seller observes the true valuation of the good (in case of a
buy), we update the beliefs on all the arms based on the true
valuation seen. In case of a no buy, the seller increments the
[ parameter of all the arms with price greater than or equal to
the current arm (since higher prices would also have failed).
(b) Complete information Gittins, which we use as an upper
bound of the performance of a Gittins-index style strategy —
in this case, we give the seller additional information by also
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assuming the prospective buyer reports her true valuation in
the case of a “no buy.”

Fully Censored Observations For fully censored obser-
vations, we use (a) a similar modification of the Gittins-
index based strategy, originally suggested by Chhabra and
Das (2011), which uses “smart” priors. (b) UCBI, which
is a multi-armed bandit algorithm with logarithmic regret in
time; (c) The LLVD algorithm of [Chhabra and Das, 2011],
which also assumes linear demand, but uses a Beta prior and
is significantly more complex in its pricing strategy. For
the bandit-based algorithms we select 20 prices correspond-
ing to 20 arms of the bandit between the minimum and the
maximum values of the the specific dataset uniformly. We
use similar priors for the LLVD and Pareto-based strategies
(a = B = 1.5 for the Beta; a = 2.1 and b = 2.3 for the
Pareto). We constrain a > 1.01 for the Pareto distribution, so
the seller’s belief distribution always has a finite mean.

5.3 Experimental Setup and Results

We show average “learning curves” for three representative
datasets and also investigate performance in the large by av-
eraging revenues across all the different Jester and Yahoo!
keywords data.

Learning Curves We used the data from eBay auctions,
one Yahoo! keyword, and one joke from Jester. For eBay
and Yahoo!, we average our results over multiple random per-
mutations of the bids. The Jester dataset is larger, so we in-
stead repeatedly sampled 500 unique buyers from the valua-
tion data. We ran 1000 experiments for each dataset, allow-
ing our seller strategies to interact with a stream of potential
buyers with valuations in the permuted order. The discount
factor, 0, was set to 0.95.

Figures 2 and 3 show the results for the partially censored
and fully censored cases respectively. In each figure, the X
axis represents time (equivalent to number of buyers who
have visited so far) and the Y axis represents the ratio of the
profit earned until that time and total profit achievable by a
single fixed price strategy with prior knowledge of the true
underlying valuation distribution.

With partially censored information, the myopic strategy
(which is equivalent to KG), performs better than not only
the partial-information Gittins strategy but also sometimes
the complete information Gittins strategy for the eBay and
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Figure 2: Learning curves in the partially censored case. Each graph shows the normalized cumulative profit averaged over 1000 iterations
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cases even when the underlying uniform distribution assumption on the valuation data is violated.

Jester data (2 (a) & (b)). However, in Figure 2 (c), we see
that the Pareto-prior based strategy does not perform well,
converging to a highly suboptimal price; this is because the

Yahoo! bids are fat-tailed in a way that interacts badly with Jester dataset Yahoo! dataset
. . L S
the Pa.reto prlor' The true Optlmal prlce ls. $5 bUt the Selle.r rategy 7"dl_sc()unlcdv 7rur_ulisv:ounlv:ds 7rdi_scounlcds Wuqdiscmmlcdv
sometimes observes a higher valuation during a buy; the uni- Hwins Hwins #wins #wins
formity assumption pushes the seller’s prior to a bad belief, P e || 7700020, [ OGEEO00I, 1] 0594500055, | O TASEO.0042,
and the seller is unable to re-adjust appropriately. aI 0767700024, | 0.9734£0.0003, || 0.543720.0079, | 0.7963£0.0064,
. . . . Gittins 0 39 8 59

Interestingly, we do not observe this kind of bad behavior 09077E0.0024. | 0.973550.0009 || 0.6300050.0065. | 038 190,035

for the myopic or KG strategies using the moment-matching Myopic || 100 61 83 19

approximation in Figure 3. The censoring of data is actually
playing a regularization role here, preventing the seller’s be-
lief from being pushed too far in the wrong direction from
observing outliers.

Large Scale Analysis We want to test the performance of
the algorithms “in the large”, so we take all 100 jokes from
Jester and the 100 keywords with the highest numbers of
unique bidders from Yahoo! (Winsorizing the data at the 1st
and 99th percentiles). For each dataset created in this man-
ner, we run multiple iterations, selecting 500 unique users for
each iteration for each joke, and randomly permuting the bid-
ders for each Yahoo! keyword. We compute the average dis-
counted and undiscounted profits (normalized by the profit of
the clairvoyant fixed-price strategy), as well as counting how
many times each algorithm “won” a dataset by being the best
performer on it. The discounted profit is the measure that the

4999

algorithm is trying to optimize, while the undiscounted profit
gives a better idea of learning performance in the long run.

Table 1: Average discounted and undiscounted profits achieved by
different strategies on the ratings of 100 jokes from Jester and the
bidding data for 100 keywords from Yahoo! sponsored search auc-
tions in the partially censored setting. PC Gittins is the partially cen-
sored strategy and CI Gittins is the Gittins index strategy with access
to all valuations. These results are averaged over 1000 iterations.

In the partially censored setting (Table 1), the myopic
strategy performed best on both datasets in terms of dis-
counted revenue. However, in terms of undiscounted rev-
enue, the Gittins-index strategies performed better on the Ya-
hoo! datasets, probably because of the problem with the prior
on fat-tailed data mentioned above. Surprisingly, the Gittins-
index strategy that only uses partial information has higher
average normalized discounted profit compared to the one
with access to complete valuation information on the Yahoo!
datasets. While the complete information variant learns bet-
ter in the long-term (see the undiscounted profits), the partial
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information variant is clearly performing better early on.

Jester dataset Yahoo! dataset
Strategy
Tdiscounted» Tundisc , T disc , Tundiscounted»
#wins #wins #wins #wins
0.864610.0037, 0.925440.0064, 0.665610.0245, 0.662610.0270,
LLVD 74 37 19 14
KG- 0.832240.0027, 0.923240.0051, 0.668040.0219, 0.683040.0230,
MM 0 0 22 15
KG- 0.476940.0113, 0.836940.0119, 0.591440.0412, 0.699410.0356,
KL 0 0 21 31
0.719540.0034, 0.907240.0064, 0.609410.0321, 0.631340.0301,
Myopic{| 0 0 6 9
MM
0.333240.0101, 0.339940.0100, 0.544340.0501, 0.531130.0409,
Myopic{| 0 0 9 6
KL
0.809940.0149, 0.936510.0038, 0.477840.0355, 0.546510.0298,
Gittins 26 58 14 4
0.679240.0038, 0.920040.0031, 0.556040.0192, 0.63451+0.0227,
UCBI 0 5 9 21

Table 2: Average discounted and undiscounted profits achieved by
different strategies on the ratings of 100 jokes from Jester and the
bidding data for 100 keywords from Yahoo! sponsored search auc-
tions in the completely censored setting. These results are averaged
over 100 iterations.

The fully censored setting (Table 2) yields several interest-
ing observations: (1) Myopic strategies are outperformed by
those that look ahead and try to balance exploration and ex-
ploitation. Thus, it is clear that there is a benefit to not being
myopic in practice. (2) LLVD and KG-MM perform better in
terms of discounted profit on Yahoo! in the completely cen-
sored setting than the myopic algorithm (which is also KG) in
the partially censored setting. This is because the absence of
valuation information prevents the prior from being driven far
afield by outliers or observations from the heavy tails of the
keyword valuation distribution. The completely censored in-
formation updates are more robust to violations of the model-
ing assumptions. (3) Moment matching outperforms the den-
sity projection approach (similar to results reported by Zhang
and Song (2017)), which can suffer some spectacular failures.
This shows that the form of the Pareto distribution is in itself
not a problem, but the interaction of the prior and the approx-
imate update can be.

6 Conclusions

Recent work in dynamic pricing with learning has found
that myopic strategies are surprisingly effective, but has fo-
cused on regret bounds and asymptotic optimality. We show
that, for the important class of uniform valuation distributions
(which model linear demand) and the appropriate conjugate
prior (Pareto), the myopic strategy is, in fact, Bayes optimal
even when the seller receives partially censored information.
We extend the model to a practical Knowledge Gradient (KG)
algorithm for the fully censored setting, and then evaluate the
algorithms on realistic datasets, where the demand model is
violated. Our results help in achieving a deeper understand-
ing of when myopic strategies can be optimal or close to it,
and when they fail (for example, with heavy-tailed distri-
butions and partially censored information). An interesting
insight is that fully censored information can sometimes be
beneficial, by acting as a regularizer that helps make the al-
gorithm robust to model misspecification.
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