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Abstract
Deep Deterministic Policy Gradient (DDPG) algo-
rithm has been successful for state-of-the-art per-
formance in high-dimensional continuous control
tasks. However, due to the complexity and ran-
domness of the environment, DDPG tends to suf-
fer from inefficient exploration and unstable train-
ing. In this work, we propose Self-Adaptive Double
Bootstrapped DDPG (SOUP), an algorithm that ex-
tends DDPG to bootstrapped actor-critic architec-
ture. SOUP improves the efficiency of exploration
by multiple actor heads capturing more potential
actions and multiple critic heads evaluating more
reasonable Q-values collaboratively. The crux of
double bootstrapped architecture is to tackle the
fluctuations in performance, caused by multiple
heads of spotty capacity varying throughout train-
ing. To alleviate the instability, a self-adaptive con-
fidence mechanism is introduced to dynamically
adjust the weights of bootstrapped heads and en-
hance the ensemble performance effectively and
efficiently. We demonstrate that SOUP achieves
faster learning by at least 45% while improving cu-
mulative reward and stability substantially in com-
parison to vanilla DDPG on OpenAI Gym’s Mu-
JoCo environments.

1 Introduction
Reinforcement learning (RL) [Sutton and Barto, 1998] tack-
les the problem of how agents learn mappings from obser-
vations to actions in order to maximize the cumulative re-
ward when interacting with the environment. Deep rein-
forcement learning adopts large neural network policies and
value functions instead of classical linear function approxi-
mators for robust generalization capacity to deal with high-
dimensional complex tasks. Deep RL has achieved great suc-
cesses in a wide range of challenging problems, such as Atari
games [Mnih et al., 2015], Go game [Silver et al., 2017] and
robotic control tasks [Levine et al., 2016].
In particular, model-free reinforcement learning is an ap-

propriate method for dealing with goal-directed decision-
making problems only according to the reward signals with-
out extra supervision. Deep Deterministic Policy Gradient

(DDPG) [Silver et al., 2014; Lillicrap et al., 2016], as one of
the model-free off-policy algorithms, is more sample-efficient
by utilizing actor-critic architecture with experience replay
and has become increasingly prevalent for state-of-the-art
performance in continuous control tasks. However, DDPG
is susceptible to the complexity and randomness of the envi-
ronment, which results in unstable performance and unguar-
anteed convergence. This issue means extensive hyperparam-
eter tuning is essential for good results [Islam et al., 2017].
In this paper, we aim to improve both sample efficiency and

stability of DDPG. Specifically, based on DDPG, we intro-
duce bootstrap which is demonstrated to be advantageous for
deep exploration [Osband et al., 2016] and propose an algo-
rithm, Self-Adaptive Double Bootstrapped DDPG (SOUP),
to enable efficient exploration together with stability. SOUP
extends the single-head actor-critic architecture of DDPG to
two bootstrapped networks both with multiple heads branch-
ing off independently and trained diversely. When explor-
ing the environment, various possible action candidates are
produced by actor heads according to the same state and
evaluated weightedly by critic heads to determine the high-
potential action collaboratively. To alleviate the inaccurate
evaluation problem caused by critic heads of uneven and
varying capacity, self-adaptive confidence is introduced to ei-
ther increase or decrease the weights in ensemble evaluation
dynamically according to the feedback. In this case, more
justifiable Q-values are estimated by our approach to stabi-
lize training. We evaluate and demonstrate the effectiveness
and efficiency of SOUP on OpenAI Gym’s [Brockman et al.,
2016] MuJoCo continuous control environments, Hopper and
Walker2D [Todorov et al., 2012].
The contributions of the paper are summarized below:
• We extend both the actor and the critic of DDPG to boot-

strapped neural networks for deep exploration.
• Based on the multi-head architecture, we utilize an en-

semble Q-value evaluation to determine a potential ac-
tion for increasing the efficiency of experience replay.

• To address the inaccurate evaluation problem caused by
critic heads of spotty capacity, we propose self-adaptive
confidence strategy to calibrate weights automatically.

• We conduct extensive experiments to evaluate the per-
formance of our approach from different perspectives,
including comparisons on bootstrapped models, confi-
dence strategies and multiple heads.
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Figure 1: Comparison of different bootstrapped models with three
heads: (a) Vanilla DDPG; (b) MA-BDDPG (multi-critic); (c) Multi-
DDPG (multi-actor); (d) DBDDPG (ours).

2 Related Work
An intuitive approach to alleviate inefficient exploration issue
is parallelism, which means training multiple agents to collect
experiences simultaneously. Bootstrapped DQN [Osband et
al., 2016] is a first attempt to introduce bootstrap [Efron and
Tibshirani, 1994] to the discrete RL method, DQN [Mnih et
al., 2015]. It leverages uncertainty estimates of the neural
network for deep exploration benefiting from a multi-head ar-
chitecture, which simulates training different DQNs indepen-
dently. In recent years, many exploration strategies have been
proposed in different directions such as self-supervised cu-
riosity [Pathak et al., 2017], parameter noise [Plappert et al.,
2018], unsupervised auxiliary tasks [Jaderberg et al., 2017]
and Q-ensemble [Chen et al., 2018].
Though DDPG seeks to ease the instability by target net-

work technique, recent work points out that it sometimes suf-
fers from drastically oscillations in performance on unstable
environments [Henderson et al., 2017]. Q-prop uses a control
variate to stabilize DDPG by reducing the variance of gradi-
ent estimator [Gu et al., 2017]. A3C achieves a stabilizing
effect by training parallel agents with accumulated updates
asynchronously [Mnih et al., 2016].
Recent work has attempted to improve DDPG with boot-

strap. MA-BDDPG [Kalweit and Boedecker, 2017] adopts
bootstrapped DQN as the critic in DDPG and extends replay
memory by a model-based approach for sample efficiency.
Nevertheless, it utilizes an uncertainty variate to limit inaccu-
rate model usage, highly noisy synthesis data still fluctuates
the training erratically with insufficient exploration. Multi-
DDPG [Yang et al., 2017] employs a multi-actor architecture
for multi-task purpose while merely transforming the critic
to multiple outputs. If the critic, however, is not sufficiently
trained, it cannot capture all informative feedback for training
multiple actors of spotty capacity, which induces instability.
In contrast to the inadequate single bootstrapped models,

our work enhances both the actor and the critic as boot-
strapped networks (see Figure 1 for clear comparison). Ben-
efiting from double bootstrapped DDPG (DBDDPG), more
potential action candidates are generated by multiple actor
heads and evaluated by multiple critic heads collaboratively,
which improves the efficiency of exploration and stability.

3 Background
3.1 Notation
We model a standard reinforcement learning setup including
an agent interacting with an environment E and receiving a

reward r at every time step t, as a Markov decision process
(MDP). MDP can be defined as (S,A,P,R, γ, p0), where S
is the state space, A is the action space, P : S × A 7→ S
is the state transition function, R : S × A 7→ R is the re-
ward function, γ ∈ (0, 1] is the discount factor and p0 is
the initial state distribution. Besides, we consider a policy
as π : S 7→ A, which means the agent outputs an action after
observing a state. Note that a policy may be stochastic, but in
our case, we only consider deterministic policy. After apply-
ing at in st, the agent receives a new state st+1 and a reward
rt, where st+1 ∼ P(st+1|st, at) and rt = R(st, at). We de-
note the return from a state st as the cumulative γ-discounted
rewardRt =

∑T
i=t γ

i−tR(si, ai). The goal of reinforcement
learning is to learn an optimal policy that maximizes the ex-
pected return from the initial state J = Eri,si∼E,ai∼π[R0].
The action-value functionQπ(st, at), also calledQ-function,
is the expected return starting from state st, taking action at,
and thereafter following policy π:

Qπ(st, at) = Eri⩾t,si>t∼E,ai>t∼π[Rt|st, at]. (1)

More generally, Equation (1) can be described as a recursive
format by Bellman Equation:

Qπ(st, at) = Ert,st+1∼E [R(st, at)
+γEat+1∼π[Q

π(st+1, at+1)]].
(2)

3.2 Deep Deterministic Policy Gradient
Model-free reinforcement learning achieves the goal directly
without modeling the environment dynamics. Our approach
is built upon the DDPG algorithm [Lillicrap et al., 2016],
a model-free, off-policy actor-critic [Konda and Tsitsiklis,
2000] approach consisting of a Q-function (the critic) and a
policy function (the actor) to tackle high-dimensional contin-
uous action tasks. The actor µ and the critic Q, are estimated
by deep function approximators, parameterized by θµ and θQ.
Besides, DDPG uses slowly updated target networks, param-
eterized by θµ

′
and θQ

′
, to stabilize the training. Experience

replay technique stores the experience tuples (st, at, st+1, rt)
in the replay memory, from where a minibatch of n samples
are generated randomly to break up the temporal correlations
within different training episodes for variance reduction.
DDPG optimizes the critic by minimizing the loss:

L(θQ) = 1

n

∑
i

(yi −Q(si, ai|θQ))2, (3)

where

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ

′
), (4)

and the actor by using policy gradient [Silver et al., 2014]:

∇θµ ← 1

n

∑
i

∇aQ(si, a|θQ)|a=µ(si|θµ)∇θµµ(si|θµ). (5)

The target networks are slowly updated by:

θQ
′
← τθQ + (1− τ)θQ

′
,

θµ
′
← τθµ + (1− τ)θµ

′
,

(6)

with τ ∈ (0, 1].
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Figure 2: Structure of SOUP. When the actor (green) observes a
state, each actor head generates an action vector. Given the same
state, the critic (blue) concatenates the vectors in the hidden layer
and produces a Q-value matrix while the confidence module (pur-
ple) outputs a confidence vector. Combining these two tensors, E-
Critic layer generates an E-Q-value vector, followed by E-Actor
layer determining the final E-action with the maximum E-Q-value.

4 Self-Adaptive Double Bootstrapped DDPG
In this paper, we propose Self-Adaptive Double Bootstrapped
DDPG, abbreviated with SOUP (see Figure 2 for an overview
of the approach), to enhance exploration while retaining sta-
bility. To explain the full algorithm more clearly, DBDDPG
is first described in Section 4.1, as the major framework com-
bining bootstrapped architecture with DDPG. Following that
in Section 4.2, we demonstrate how self-adaptive confidence
works for balancing the weights of bootstrapped heads.

4.1 Double Bootstrapped DDPG
The core architecture of this work is DBDDPG, which in-
troduces bootstrap [Efron and Tibshirani, 1994] completely
to both actor and critic (see Figure 1 for clear comparison
with previous work). They both consist of a shared body for
feature extraction and K heads respectively, Q1:K and µ1:K ,
but with different random initialization. The advantage of the
shared architecture is that it can capture most of the benefits
of bootstrapped architecture with substantially fewer param-
eters and less computation cost comparing with training mul-
tiple models directly. Similar to DDPG, the target networks
of the heads,Q′

1:K and µ′
1:K , are slowly updated for stability.

Ensemble Q-value Evaluation
When the actor interacts with the environment given a state
st, K actor heads generate multiple action candidates At =
{akt |akt ∈ RdA , dA = dimA}Kk=1, which are embedded to
the critic [Lillicrap et al., 2016]. Multiple critic heads output
a Q-value matrix Vt ∈ RK×K according to st and At. En-
semble critic (E-Critic) layer performs a weighted sum oper-

ation on the Q-value matrix to transform it into an ensemble-
Q-value (E-Q-value) vector vt ∈ RK , which represents the
potential values of the action candidates in At. The E-action
at with the maximum E-Q-value determined by ensemble
actor (E-Actor) layer according to Equation (7), is chosen to
execute receiving a new state st+1 and a reward rt. More-
over, a random mask mt = (m1,m2, ...,mK)t is generated
with Bernoulli distribution concurrently. A new transition
(st, at, st+1, rt,mt) is stored in replay memory. In this case,
only the experiences with high-potential actions are saved in-
stead of the spotty ones that have the uneven potential to get
rewards, which improves the efficiency of experience replay.

at = argmax
a
{

K∑
i=1

citQi(st, a|θQi )|a=µk(st|θµ
k )
}Kk=1, (7)

where cit ∈ (0, 1] is the confidence of critic head Qi for en-
semble Q-value evaluation. Normally, we set cit = 1.0.
In the training phase, the k-th pair of actor head and critic

head is randomly activated to learn during every episode. The
selected heads together with their respective shared bodies
and target networks are trained as a vanilla DDPG given a
minibatch of samples. The i-th experience with maskmk

i = 0
is ignored or negated for the purpose of bootstrap. A more
detailed procedure can be viewed in Algorithm 1.

Bootstrapped Architecture Drives Deep Exploration
Bootstrap [Efron and Tibshirani, 1994] generally works rely-
ing on the random sampling with replacement process, which
is demonstrated to be helpful for variance reduction in ensem-
ble training such as Bootstrap Aggregating algorithm. [Os-
band et al., 2016] analyzed and empirically suggested that
this requirement can be simply attained by different random
initialization of the network weights of different heads. We
adopt this technique as a prior to induce initial diversity. In
this case, the bootstrapped architecture of DBDDPG is a sim-
ulation of training multiple models in parallel on different
sub-dataset by stochastic minibatch independently. Further-
more, actor heads can generalize diversely in the action space,
leading to more potential directions for deep exploration.

Double Bootstrapped Architecture Enhances Stability
Intuitively, a couple of actor head and critic head in dou-
ble bootstrapped architecture are always bound together as
a single DDPG. Note that though such multiple “DDPGs”
share the same replay memory, they are trained on differ-
ent experiences according to the random mask. Moreover,
“DDPGs” not only generate diverse available action candi-
dates, which is more sample-efficient than single-actor boot-
strapped model, but also determine the outputs by multiple
critic heads’ weighted evaluation collaboratively. In contrast
to single-critic bootstrapped model, the potential of an action
is estimated more reasonably and accurately by various critic
heads, instead of spotty estimations from a single critic. In
other words, double bootstrapped architecture improves sta-
bility by alleviating the uncertainty of evaluation and averting
irreversible degradation of a single critic in unstable systems.

4.2 Self-Adaptive Confidence
Though DBDDPG achieves more cumulative reward than
DDPG, we find that it sometimes suffers from oscillations
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during the preliminary phase of training. We ascribe this
problem to the extremely difficult part of double bootstrapped
architecture, which is caused by critic heads of spotty capac-
ity varying throughout training. In this case, Q-values eval-
uated by critic heads that are not well trained or trapped into
local optima, are inaccurate for ensemble decision. This unin-
formative and defective supervision leads to oscillations since
the model is trained in the wrong direction.

Confidence Strategies
The main motivation of this idea is to counteract the adverse
effects caused by critic heads of spotty capacity when esti-
mating the E-Q-values as Equation (7). cit can be described
as the confidence, which means how confident the i-th critic
head is in its evaluation,Q-value, according to the action. It is
straightforward to balance the spotty evaluation by adjusting
the confidence. We try strategies such as no confidence, fixed
confidence and decayed confidence. However, none of these
approaches achieve promising stability against oscillations.
Notably, they tend to suffer from the over-confidence problem
during certain periods. In other words, the critic heads always
retain high confidence in their evaluation whether reasonable
and accurate or not. In this case, spotty ensemble Q-values
of uneven estimations may easily mislead the supervision and
result in instability.

Self-Adaptive Strategy
To tackle this problem, DBDDPG requires an external “con-
troller” taking full advantage of the informative feedback to
calibrate the confidence automatically. We further propose
Self-Adaptive Confidence (SAC), a new strategy designed for
bootstrapped architecture. Different from the previous meth-
ods, SAC adjusts the confidence dynamically according to the
reward signals (see Figure 2). The confidence module is con-
structed similarly to single-head actor network with K out-
puts ct = {ckt |ckt ∈ (0, 1]}Kk=1 as the bootstrapped heads.
Perception Phase When interacting with the environment,
the confidence module perceives a state st and generates a
confidence vector ct concurrently for assisting critic heads’
evaluation. Any confidence ckt is created based on the perfor-
mance history of the k-th critic head, including the feedback
and confidence. Following that, the E-Critic layer estimates
the E-Q-values for action selection, by performing a product
operation on the confidence vector ct and Q-value matrix Vt.
Calibration Phase After perception phase, reward signal is
returned that represents whether the previous action and con-
fidence are reasonable or not. This feedback supervises the
training of both DBDDPG and the confidence module. Dur-
ing the training phase, the confidence network C is updated
by policy gradient [Sutton et al., 2000] as Equation,

θC ← θC + α∇θC logπθC (st, at)Q
π(st, at), (8)

where α is the learning rate. Note that in the experiments,
we use reward rt as an unbiased sample of Qπ(st, at), as
the REINFORCE algorithm [Williams, 1992]. Following this
policy, SAC eliminates the over-confidence problem by cali-
brating the weights dynamically and more reasonably. Intu-
itively, the confidence of critic head increases due to positive
reward while decreases due to negative reward for penaliza-
tion. Therefore, self-adaptive confidence stabilizes DBDDPG

Algorithm 1 Self-Adaptive Double Bootstrapped DDPG

Input: number of heads K, maximum training episode E,
masking distributionM and mini-batch size n.
Initialize: Randomly initialize critic and actor networks
both withK heads {θQk , θ

µ
k}Kk=1, assigning copies to target

networks {θQ
′

k , θµ
′

k }Kk=1. Initialize confidence network θC

and replay buffer R.
for episode e = 1, E do

Initialize a random process N for action exploration
Receive initial observation state s0
Randomly select the k-th pair of critic and actor heads
for step t = 1, T do

K actor heads generate candidates
Select action at according to (7) and apply N
Execute at then observe reward rt and state st+1

Sample bootstrapped mask mt∼M
Store transition (st, at, st+1, rt,mt) in R
Sample a random minibatch of n transitions
Update critic head Qk according to (3) and (4)
Update actor head µk according to (5)
Update the k-th target networks according to (6)
Update the confidence network according to (8)

end for
end for

by more justifiable E-Q-value evaluation throughout any pe-
riod of training, which leads to robust generalization.

5 Experiments
We evaluate our algorithm on following continuous robotic
environments implemented in MuJoCo simulator [Todorov et
al., 2012] from OpenAI Gym [Brockman et al., 2016] (see
Figure 3 for a visualization).
Hopper-v1 In this environment, a two-dimensional one-

legged robot is rewarded by hopping forward
as fast as possible (S ⊆ R11,A ⊆ R3).

Walker2d-v1 This environment extends Hopper to a bipedal
robot in 2D-space, rewarded by walking for-
ward as fast as possible (S ⊆ R17,A ⊆ R6).

(a) (b)
Figure 3: Illustration of locomotion tasks on MuJoCo continuous
control environment: (a) Hopper and (b) Walker2D.
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Figure 4: Performance of different bootstrapped models with five
heads in different environments, Hopper (left) andWalker2D (right).
The shaded area depicts the mean ± the standard deviation. SOUP
outperforms other models in both reward and stability.

We conduct the following experiments to evaluate and ana-
lyze the performance of SOUP:
1. we compare our model with and without self-adaptive

confidence against other bootstrapped models.
2. we compare the impacts of different confidence strate-

gies mentioned in Section 4.2.
3. we compare the performance achieved by a different

number of bootstrapped heads.
To ensure comparability, unless otherwise stated, we keep the
common hyperparameters and the network architecture the
same in the experiments. We denote the hidden layer sizes as
(N , M) where the bold number indicates the head layer size.
For double bootstrapped DDPG, we use (256, 256, 128) for
the critic and (256, 128) for the actor. Adam [Kingma and
Ba, 2015] is adopted for training actor and critic networks
with a learning rate of 1e−4 and 3e−4 respectively. We use
a discount factor γ = 0.99, a soft update rate τ = 1e−3, a
minibatch size n = 1024 and a replay memory size R = 1e6.
All activation layers use Leaky ReLU [Maas et al., 2013] and
the output layer of the actor uses TanH followed by the scale
and shift operations. In order to emphasize improvements in
exploration efficiency brought by the bootstrapped architec-
ture, exploration at action level is governed by simple Gaus-
sian noise with a decayed rate. We measure the performance
by averaged return, maximum return, speedup, episode that
first exceeds a threshold and evaluate the stability by stan-
dard deviation over 10k episodes with different random seeds
varying throughout training. Figure 4, 5, 7 represent the mean
return by lines and std return by shaded areas.

5.1 Testing with Bootstrapped Models
Though our work is inspired by Bootstrapped DQN [Osband
et al., 2016], it is not taken into comparison since DQNworks
for discrete action space while DDPG works on continuous
tasks. For simplicity, MA-BDDPG [Kalweit and Boedecker,
2017] andMulti-DDPG [Yang et al., 2017] can be regarded as
multi-critic and multi-actor single bootstrapped models. Our
approach DBDDPG extends both actor and critic networks to
bootstrapped architectures.
Figure 4 shows the performance of DBDDPG with and

without self-adaptive confidence against other models. We
equip all bootstrapped networks with K = 5 heads. In Hop-
per, MA-BDDPG performs similarly to DDPG in the begin-
ning due to the insufficient single-actor exploration and noisy
synthetic rollouts. In contrast, Multi-DDPG achieves higher

Figure 5: Performance of DBDDPG with five heads and different
confidence strategies in different environments, Hopper (left) and
Walker2D (right). Self-adaptive confidence outperforms common
confidence methods in cumulative reward and learning speed.

reward benefiting from multi-actor exploration. Nonethe-
less, it doesn’t keep reward raising throughout the training
since single critic cannot always evaluate Q-values accu-
rately for multiple actor heads of various capacity. How-
ever, with the same multi-actor architecture, DBDDPG ex-
plores analogously to Multi-DDPG at first but significantly
outperforms it after training, since multi-critic ensemble es-
timations are much more accurate and reliable for multi-
actor potential evaluation of actions. After combining with
self-adaptive confidence, SOUP scores the highest averaged
reward faster than DBDDPG while retaining stability. In
Walker, though SOUP explores less than DBDDPG in the ini-
tial phase which may due to the slightly poor initialization, it
exceeds soon because of more justifiable evaluation enhanced
by self-adaptive confidence. This self-correction of ensemble
weights effectively supervises the training.
Table 1 tabulates detailed results of the bootstrapped mod-

els. In table 1, DBDDPG with five heads consistently out-
performs other models in terms of sample efficiency. Com-
paring with vanilla DDPG, it achieves higher averaged re-
wards by at least 36% in Hopper and 42% in Walker, with the
same computation cost for training. Moreover, after adopting
self-adaptive confidence, SOUP substantially accelerates the
learning with speedup of factor α ∈ [0.45, 0.65]. It improves
mean return by at least 44% in Hopper and 73% in Walker in
comparison to DDPG without inducing instability.

5.2 Testing with Confidence Strategies
In this experiment, we evaluate the performance of following
confidence strategies including:
• No Confidence ci = 1.0 as original DBDDPG.
• Fixed Confidence ci = α, cj(j ̸=i) = 1−α

K−1 when esti-
mating action ait and vice versa. We fix α = 0.5.

• Decayed Confidence ci diminishes from 1.0 to 1
K con-

tinuously with a decayed factor τ = 0.9995.
• Self-Adaptive Confidence ci is automatically adjusted

by confidence network according to the reward signal.
Figure 5 shows the performance of DBDDPG with differ-

ent confidence methods, especially in stability denoted by the
shaded area. The larger area means more unstable training. In
Figure 5, except self-adaptive confidence, other methods per-
form with more fluctuations especially during either prelim-
inary or middle phase. As the aforementioned explanation,
this phenomenon is caused by inaccurate Q-values evaluated
from critic heads of spotty capacity such as in premature or
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Env. Metric DDPG MA-BDDPG Multi-DDPG Ours (K=5) Ours (K=5*) Ours (K=10) Ours (K=10*)

Hopper

Avg Return 1217 ± 762 1380 ± 622 1346 ± 597 1656 ± 418 1758 ± 349 1982 ± 269 2154 ± 236
Max Return 3920 3892 3860 4000 4269 4365 4399
Episode 2486 2460 1637 1466 1114 1155 1366
Speed Up - 0.07 0.41 0.48 0.61 0.56 0.65

Walker

Avg Return 1611 ± 683 1869 ± 520 2095 ± 553 2286 ± 428 2795 ± 403 2835 ± 367 3218 ± 315
Max Return 5883 5626 5942 6072 6186 6309 6406
Episode 2307 2111 2001 1465 1385 1212 900
Speed Up - 0.42 0.49 0.63 0.65 0.65 0.74

Table 1: Results of different models based on DDPG in different environments (Hopper and Walker) in the 10k episodes. MA-BDDPG
and Multi-DDPG are equipped with the same number of heads (K = 5). We denote DBDDPG with self-adaptive confidence by adding *.
Episode represents the first episode to cross specific reward threshold (Hopper-2000; Walker-3000) according to [Gu et al., 2017]. Speedup
is measured by averaged return crossing specific averaged reward threshold (Hopper-1000; Walker-1500) in comparison to DDPG.

Figure 6: The dynamic changes of confidence in Hopper environ-
ment. Note that, the curves have been smoothed for more clear visu-
alization. SOUP with three heads fine-tunes the confidence of critic
heads according to the reward, which stabilizes the training.

sub-optimal convergence. The defective supervision misleads
the training which results in drastically oscillations.
Self-adaptive confidence substantially improves the stabil-

ity of DBDDPG, denoted by narrower shaded area in Fig-
ure 5. Different from other strategies with inflexible confi-
dence, our approach achieves both dynamically adaptable ad-
justment and reasonable self-correction, according to the re-
ward and the capacity of the corresponding head. Figure 6
exactly demonstrates the flexibility and adaptability of our
method during training. At first, the confidence fluctuates due
to the random initialization. After the warm-up, they are dy-
namically calibrated by policy gradient, such as decreased for
penalization against over-confidence and increased for posi-
tive reward. In other words, self-adaptive confidence adjusts
the ensemble weights to enhance more justifiable estimations,
which achieves robust stability effectively and efficiently.

5.3 Testing Multi-Head Architecture
In this experiment, we evaluate the performance of SOUP
with a different number of bootstrapped heads. Figure 7
shows that generally with more heads, our approach achieves
higher averaged reward faster by more efficient exploration,
which further enhances the efficiency of experience replay.
Nonetheless, in Hopper, the 10-head explores inefficiently in
the beginning, comparing with the 5-head. We ascribe this
problem to the fact that five heads are sufficient for exploring
this task. In this case, the 10-head is more time-consuming,
which requires more episodes to balance the capacities of

Figure 7: Performance of SOUP with a different number of
bootstrap heads K in different environments, Hopper (left) and
Walker2D (right). SOUP with ten heads outperforms models with
fewer heads in cumulative reward and stability.

more heads, than the 5-head. However, the 10-head achieves
better performance after training in both tasks.
Note that, SOUP has a bottleneck of performance limited

by the original capacity of vanilla DDPG. In our experiments,
we find that SOUP with more than ten heads improves the
performance slightly than the 10-head with the same hyper-
parameters, yet more computation cost for interaction. A
more reasonable way is to utilize a small number of heads
to capture most of the benefits of bootstrapped architecture
with fewer parameters and less computation cost.
The consistently better performance highlights the effec-

tiveness and efficiency of double bootstrapped architecture:
multiple actor heads generate more action candidates to im-
prove sample efficiency by deep exploration. Multiple critic
heads evaluate more justifiable and accurate Q-values for en-
semble decisions on high-potential actions to enhance the ef-
ficiency of experience replay, which also improves the perfor-
mance and learning speed. Moreover, in order to counteract
the adverse effects caused by critic heads of spotty capacity
varying throughout training, self-adaptive confidence adjusts
and balances the confidence dynamically for stability.

6 Conclusion
In this paper, we present Self-Adaptive Double Bootstrapped
DDPG (SOUP), an algorithm improving both exploration and
stability for complex continuous tasks. SOUP extends the
actor-critic architecture of DDPG to completely bootstrapped
networks for efficient exploration and collaborative decision-
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making. Moreover, a self-adaptive confidence mechanism is
proposed to dynamically calibrate the weights of the Q-value
evaluation from critic heads of spotty and varying capacity,
which significantly stabilizes the training.
We demonstrate the effectiveness and performance of

SOUP in three experiments on MuJoCo environments by
comparisons on bootstrapped models, confidence strategies
and multiple heads. We show that SOUP achieves more sta-
ble learning with faster speed by at least 45% and improves
the performance substantially by efficient exploration.
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