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Abstract

A set of constraints is unsatisfiable if there is no
solution that satisfies these constraints. To analyse
unsatisfiable problems, the user needs to understand
where inconsistencies come from and how they can
be repaired. Minimal unsatisfiable cores and cor-
rection sets are important subsets of constraints that
enable such analysis. In this work, we propose a
new algorithm for extracting minimal unsatisfiable
cores and correction sets simultaneously. Building
on top of the relaxation and strengthening frame-
work, we introduce novel techniques for extracting
these sets. Our new solver significantly outperforms
several state of the art algorithms on common bench-
marks when it comes to extracting correction sets
and compares favorably on core extraction.

1 Introduction
A set of constraints is over-constrained if there is no solution
that satisfies these constraints. Over-constrained problems
often occur in practical applications, including verification,
configuration, diagnosis, etc., [Belov et al., 2012; Liffiton
and Sakallah, 2008b; Junker, 2004]. For an over-constrained
problem, it is important to understand why the problem’s con-
straints are inconsistent and how we can relax constraints
to eliminate these inconsistencies. To do so, two informa-
tive notions were introduced in the literature [Reiter, 1987;
Liffiton and Sakallah, 2008a; Liffiton et al., 2016]. The first
notion is an unsatisfiable core. An unsatisfiable core is a sub-
set of constraints that is unsatisfiable regardless of the rest of
the formula. We are interested in minimal unsatisfiable cores
(MUSes) under the set inclusion relation as they represent
a concise description of the problem’s inconsistencies. An-
other important notion is a correction set, which is a subset
of clauses removal of which makes the remaining formula
satisfiable. Again, minimal correction sets (MCSes) are in-
teresting for a user as we want to satisfy as many constraints
as possible in the remaining formula. As minimal cores and
correction sets are not unique, it is important to build tools and
algorithms to enumerate them. Applications in verification

and knowledge representation rely on the ability to enumerate
these sets [Liffiton and Sakallah, 2008b].

Several new algorithms have been developed during the past
decade for efficient MCS or/and MUS enumeration. They
can be roughly divided into two classes. The first class of algo-
rithms works with the original set of constraints and explores a
lattice of all possible subsets of constraints efficiently to search
for cores or/and correction sets [Liffiton and Sakallah, 2008a;
Marques-Silva et al., 2013; Bacchus and Katsirelos, 2015;
Bacchus et al., 2014; Zielke and Kaufmann, 2015; Bacchus
and Katsirelos, 2016; Zhao and Liffiton, 2016; Previti et al.,
2018]. The second class modifies the formula at each step
and extracts minimal correction sets from the modified for-
mula [Morgado et al., 2012; Marques-Silva and Planes, 2008;
Liffiton and Sakallah, 2009; Alviano, 2017b]. The algorithms
in this class are based on MAXSAT solvers so we call this
class the relaxation and strengthening framework as it itera-
tively transforms an unsatisfiable formula to satisfiable and
vice versa. Our algorithm exploits ideas from both classes. We
work within the relaxation and strengthening framework but
we also keep information about the part of the lattice that we
have explored so far. We extend this framework to perform
core enumeration and propose a minimal correction set rota-
tion technique that is based on ideas of model rotation used
for minimization of cores [Belov and Marques-Silva, 2011].

In this work we advance state-of-the-art in MUS and MCS
enumeration algorithms with the following main contributions.
First, we develop an efficient MCS and MUS enumerator
using the relaxation and strengthening framework. Second,
we propose a new technique for MCS enumeration using a
correction set rotation method. Our method allows checking
minimality of a correction set efficiently without calling a SAT
solver. Third, we propose a new blocking technique that main-
tains dependencies between relaxation variables and selector
variables that enables MUS enumeration using the relaxation
and strengthening framework. Finally, we preform evaluation
in a prototype solver FLINT. FLINT is built on top of the
PM1 core-guided MaxSAT solver [Fu and Malik, 2006]. We
compare it with MARCO, the state-of-the-art method that si-
multaneously extracts MUSes and MCSes. We show that our
approach outperforms MARCO in enumerating these objects.
Moreover, our algorithm, geared toward enumerating MCSes,
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significantly outperforms a variant of MARCO tuned the same
way and one of the best methods for MCSes enumeration on
a standard set of benchmarks [Marques-Silva et al., 2013;
Alviano, 2017b].

2 Background
Basic definitions. A satisfiability problem ϕ consists of a
set of clauses {C1, . . . , Cm} over a set of Boolean variables
vars(ϕ). A literal l is either a variable x ∈ vars(ϕ) or its
negation x. A clause C is a disjunction of literals (l1 ∨ · · · ∨
ln). An assignment I of the variables vars(ϕ) is a mapping
vars(ϕ) 7→ {0, 1}. A clause C is satisfied by an assignment,
I(C) = 1, iff I(l) = 1 for some l ∈ C, otherwise C is
falsified by I and I(C) = 0. A set of clauses ϕ is satisfied by
an assignment, I(ϕ) = 1, iff I(C) = 1 for all C ∈ ϕ.

Cores and correction sets. We define two important objects
of interest for unsatisfiable formulas: a minimal unsatisfiable
core and a minimal correction set.
Definition 1 (MCS). A minimal correction set is a subset
of clauses MCS ⊆ ϕ such that ϕ \ MCS is satisfiable and
∀C ∈ MCS: (ϕ \MCS) ∪ {C} is unsatisfiable.
Definition 2 (MUS). A minimal unsatisfiable set is a subset
of clauses MUS ⊆ ϕ such that MUS is unsatisfiable and
∀C ∈ MUS: MUS \ {C} is satisfiable.
Example 1 (Running example). Consider a formula with
five clauses: ϕ = {C1, . . . , C5}, where C1 = (x1),
C2 = (¬x1 ∨ x2), C3 = (¬x2), C4 = (¬x1 ∨ x3),
C5 = (¬x3). We have two minimal unsatisfiable cores
{(C1, C2, C3), (C1, C4, C5)}, and five minimal correction
sets {(C1), (C2, C4), (C2, C5), (C3, C4), (C3, C5)}.

During the enumeration procedure, we introduce relaxation
variables, b, that are added to original clauses. For example, an
original clause C1 can be replaced with C = (C1 ∨ b), where
b is a relaxation variable. We denote C without relaxation
variables orig(C) and the set of relaxation variables in the
clause C rel(C). In this example, orig(C1 ∨ b) = {C1}
and rel(C1 ∨ b) = {b}.

Each MCS is a hitting set of MUSes if we look at each
MCS as a set of clauses. Dually, each MUS is a hitting set of
all MCSes [Reiter, 1987].

Power sets of clauses. [Liffiton et al., 2016] considered
MUS/MCS enumeration as an exploration of the power set
of all clauses in a formula. These subsets form a lattice by the
subset relation. They introduce a notion of a map, which is
a Boolean formula that encodes the lattice covered so far. To
encode this formula, one selector variable si for each clause
Ci is introduced, S = {s1, . . . , sn}. Each time we encounter
a subset of clauses C ′ ⊆ ϕ and learn that it is a core or a
correction set, we update map using the following correction
set blocking clauses (1) or core blocking clauses (2) 1.

C ′ is a correction set map = map ∪ {∨Ci∈C′si} (1)

C ′ is a core map = map ∪ {∨Ci∈C′ s̄i} (2)
1In [Liffiton et al., 2016], the first constraint is defined for a

complement of a correction set.

Example 2. Consider the instance from Example 1. We
introduce five selector variables (s1, . . . , s5) as we have
five clauses. Suppose we discover that a subset of clauses
{C1, C2, C3} is a MUS. We update map by adding a new
clause (s̄1 ∨ s̄2 ∨ s̄3). Suppose we learn that {C1} is a MCS.
We add a clause (s1) to map.

Note that map contains two types of blocking clauses. The
first type contains clauses to block MCSes and the second
type contains clauses to block MUSes. We call the former
mapmcs and the latter mapmus, map = mapmcs∪mapmus.

3 Enumeration Algorithm
3.1 Overview
Our algorithm is built on top of a framework proposed
in [Marques-Silva and Planes, 2008; Morgado et al., 2012;
Alviano, 2017b] that performs a sequence of relaxations and
strengthenings of the formula to obtain MCSes. At a high
level, it performs a sequence of rounds until a termination
condition is met. Each round consists of two phases: Relax
and Strengthen. Figure 1 provides a schematic representation
of this framework. In the Relax phase, the algorithm starts
with an unsatisfiable formula and weakens it by relaxing its
cores until it becomes satisfiable. The first phase is, effectively,
a call to a MaxSAT solver. The resulting satisfiable formula
is passed to the second phase, Strengthen. In the Strengthen
phase, solutions of the satisfiable formula are enumerated
and are blocked making the formula unsatisfiable again. Re-
laxations and strengthenings ensures that these solutions are
MCSes of the formula. Then the algorithm verifies the ter-
mination condition which checks whether all MCSes have
been enumerated. If so, it comes to the final stage where the
remaining MUSes are enumerated using hitting set duality be-
tween MCSes and MUSes. Otherwise, the algorithm iterates
with another round of strengthening and relaxation. The exist-
ing algorithms differ in the underlying MAXSAT algorithms
used to relax the formula and the way they block solutions to
strengthen the formula.

Here we extend this framework in several ways. First,
we show that with a new solution blocking technique we
can extend this framework to MUS enumeration (RelaxCore
and EnuMus procedures are highlighted using italic gray in
Figure 1). Second, we show that we can exploit proper-
ties of the solutions to build an efficient MCS extractor (the
MCSRotation procedure is highlighted using italic gray in 1).
Finally, we prove correctness of the algorithm.

Algorithm 1 contains the main loop of the proposed enumer-
ation algorithm EnuMMerator. We will describe our Relax
and Strengthen functions below. We start by describing global
variables and structures that we use. Relax and Strengthen
modify a working formula ψd and update global variables
projs, map and cards that maintain necessary informa-
tion about minimal cores and correction sets for the algorithm
to operate. The set projs connects relaxation variables, b,
and selector variables, s. Each time a new bij variable is
added to a clause Cj , we connect bij with sj as bij ⇒ s̄j .
These constraints ensure that if Cj is relaxed, i.e. any of
its relation variables is 1, then the corresponding selector
variable sj = 0. The set map stores information about
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Figure 1: A schematic workflow of the relaxation and strengthening framework. We highlighted using italic gray new components of the
framework that we propose in this work. RelaxCore contains additional constraints that connect projection and selector variables, EnuMus is a
new MUS enumeration procedure, and MCSRotation is an MCS rotation based mechanism.

MCSes and MUSes found so far. Finally, cards stores all
constraints produced by Relax. We will use a shortcut ρ to de-
note ∧cards∧map∧projs. Using MAXSAT terminology,
note that ρ cannot be relaxed, e.g., they are ‘hard’ clauses, in
contrast to ψd, that are called ‘soft’ clauses.

Algorithm 1 EnuMMerator

Input: φ = {C1, . . . , Cn}
1 global cards = {},map = {},projs = {}
2 d = 0, ψd = φ
3 while true do
4 ψd+1

∗ = Relax(ψd)

5 ψd+1 = Strengthen(ψd+1
∗ )

6 if Terminate(ρ) then
7 return HSEnumMUS(map)
8 d = d+ 1

Algorithm 2 Relax

Input: ϕ
Output: ϕi

1 i = 0, ϕi = ϕ
2 while true do
3 (issat, κi, I) = SolveSAT(ϕi ∧ ρ)
4 if issat then
5 return ϕi

6 EnuMus(κi)
7 ϕi+1 = RelaxCore(ϕi, κi)
8 i = i+ 1

Relax
Algorithm 2 shows the Relax procedure, which extends
PM1 [Fu and Malik, 2006]. Given an unsatisfiable formula
ϕ0 ∧ ρ, Relax performs a sequence of its relaxations. The
algorithm can only relax clauses in ϕi. At each step, it calls
a SAT solver to check whether the current formula ϕi ∧ ρ is
satisfiable (line 3). If so, it terminates. Otherwise, it finds a
core κi ⊆ ϕi, relaxes the formula ϕi by relaxing clauses in
κi by calling RelaxCore in line 7. On termination, the result-
ing formula ϕi is such that ϕi ∧ ρ is satisfiable. Moreover,
each solution of ϕi ∧ ρ is a MCS of minimal cardinality of
ϕ [Morgado et al., 2012].

Algorithm 3 RelaxCore

Input: ϕi, κi
Output: ϕi

1 B = {}
2 for Cj ∈ κi do
3 B = B ∪ {bij} where bij is fresh
4 ϕi = (ϕi \ {Cj}) ∪ {(Cj ∨ bij)}
5 cards = cards ∪ {

∑
bij∈B

bij = 1}

6 projs = projs ∪bij∈B {bij ⇒ s̄j}

7 return ϕi

Next we consider the core relaxation procedure RelaxCore
(Algorithm 3), which relaxes soft constraints ϕi using the
core κi. RelaxCore introduces a relaxation variable bij for
each clause Cj ∈ κi (lines 3– 4). Then we add a cardinality
constraint to ensure that exactly one of the relaxation variables
can be set to true (line 5).

We extend the PM1 Relax in two ways. First, we enhance
RelaxCore with a selector variable-based blocking technique.
We implement a mapping from relaxation variables to selector
variables using projs (line 6). Each time a new bij variable is
added to a clause Cj , we connect bij with sj as bij ⇒ s̄j . This
guarantees that if a clause Cj is disabled by I , i.e. I(bij) =

1, bij ∈ Cj , then the corresponding selector variable sj is set to
false. Second, Relax uses a novel MUS enumerator, EnuMus
(line 6), to extract a subset of MUSes from κi. Algorithm 5
will be discussed in Section 3.2.

Example 3. Consider the instance from Example 1. Sup-
pose, in the first round, Relax finds a core κ0 = (C1, C2, C3)
of ϕ0. It relaxes this core using RelaxCore. Namely, three
relaxation variables are introduced {b01, b02, b03} and the corre-
sponding clauses are modified. We get ϕ1 = {C1 ∨ b01, C2 ∨
b02, C3 ∨ b03, C4, C5}. Then we add the cardinality constraint
{
∑3
j=1 b

0
j = 1} to cards. Finally, we add constraints

{b0j ⇒ s̄j}, j ∈ {1, 2, 3} to projs to connect relaxation
variables to selector variables. The resulting formula ϕ1 ∧ ρ
(recall that ρ = cards ∧ map ∧ projs) is satisfiable.
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Algorithm 4 Strengthen

Input: ψ
1 while true do
2 (issat, I) = SolveSAT(ψ ∧ ρ)
3 if ¬issat then
4 return
5 MCS = {∪I(orig(Ci))=0orig(Ci)} – original clauses false by I
6 map = map ∪ {∨Ci∈MCSsi}
7 output MCS
8 MCSRotation(ψ,MCS, I)

Strengthen
Strengthen enumerates all correction sets based on ψd+1

∗ ∧ ρ,
until the strengthened ρ renders the formula unsatisfiable. To
do so, the procedure enumerates solutions of ψd+1

∗ ∧ ρ. For
each solution I it computes the corresponding MCS (line 5)
and adds the correction set blocking clauses (recall (1), Sec-
tion 2) to map (line 6). It uses a novel MCS rotation technique,
MCSRotation, described in Section 3.3.
Example 4. We continue with the instance from Example 3.
We recall that Relax returned a satisfiable formulaψ1

∗ = ϕ1∧ρ.
Then Strengthen finds all solutions of ψ1

∗ ∧ ρ. This formula
has a solution where b01 is assigned to 1. Hence, C1 is relaxed
in this solution. This gives a minimal correction set (C1)
and we block it by adding (s1) to map. This makes formula
unsatisfiable finishing the first round.
Terminate
Terminate checks whether all MCSes have been found by
checking satisfiability of ρ. If so, it enumerates remaining
MUSes using the hitting set duality (HSEnumMUS) (line 7).

In [Morgado et al., 2012], it was shown that the relaxation
and strengthening framework based on PM1 algorithm guaran-
tees that (1) solutions of ψd+1

∗ ∧ ρ are minimal correction sets
and (2) MCSes are enumerated in the order of non-decreasing
cardinality of these sets. As we use a different blocking tech-
nique for MCSes and, in addition, we block MUSes, we will
need to prove these claims for EnuMMerator (see Section 3.4).
Next we consider the remaining parts of EnuMMerator.

Algorithm 5 EnuMus

Input: κ
1 block = ∪Cj∈κ{sj ∨

∨
bij∈rel(Cj)

bij}
2 while true do
3 (issat, I) = SolveSAT(ρ ∧ block)
4 if ¬issat then return
5 g0 = harden(κ |I)
6 κ′ = (κ |I) \ g0
7 MUS = g0 ∪ Minimize(g0, κ′)
8 output MUS
9 map = map ∪ {∨Cj∈MUS s̄j}

3.2 A MUS Extractor
In the core enumeration procedure, we need to extract cores of
the original formula φ – the input formula to EnuMMerator.
To do so, we will use cores κi that are produced by Relax. We
apply a useful notion of a projection to transform clauses in
κi to clauses of the original formula φ given an assignment I .
Let I be a solution of ρ and κ, κ = κi, be a core produced at
the ith iteration of Relax. Define a projection as follows.
κ |I= {orig(Cj) | Cj ∈ κ, ∀bij ∈ rel(Cj) I(bij) = 0}.

Intuitively, κ |I is a subset of clauses of the original formula
that are not satisfied by the solution I . [Bacchus and Narodyt-
ska, 2014] showed that given a core κ produced by PM1-based
Relax, the projection κ |I is a core of the original formula φ,
where I is a solution of cards. Let MUS-all be a set of all
known MUSes.

First, we show that the same result holds for a solution of ρ.
Second, we investigate relations between solutions of cards
and solutions of ρ = cards∧map∧projs. We demonstrate
that core blocking constraints in map do not guarantee that
κ |I is not a superset of a known MUS in MUS-all. This
is an undesirable property as we might keep finding known
MUSes during enumeration. To fix the problem of projecting
on known cores we introduce an additional set of constraints
that are used only in EnuMus, block constraints.
Proposition 3.1. Let I be a solution of ρ. Then κ |I is a core
of the original formula φ.

Proof. Suppose κ |I is not a core. Let I ′ be solution of κ |I .
We form a new solution J as follows. If v ∈ vars(κ |I) then
J(v) = I ′(v), otherwise J(v) = I(v). Next, we note that
vars(κ |I) ∩ vars(ρ) = {}. Hence, we do not change the
assignment of projection and selector variables in J compared
to I . Note that clauses in κ \ (κ |I) are satisfied using the
corresponding projection variables bij that are set to 1 in I ,
hence, they are also set to 1 in J . κ |I is satisfied as vars(κ |I)
are assigned as in I ′. Finally, ρ is satisfied as we did not change
assignment of variables in ρ in J compared to I . Hence, J is
a solution of κ ∧ ρ, which leads to a contradiction.

The next example shows that map and projs are not suffi-
cient to eliminate all known cores.
Example 5. We use the instance from Example 4. Consider
the second round and assume that EnuMus was called in the
first round and recorded the core it found in map. At this
point, cards and projs are as in Example 4 and map =
{(s1), (s̄1 ∨ s̄2 ∨ s̄3)}. Suppose Relax finds a core κ0 =
(C1∨b01, C4, C5). EnuMus is called. Consider two solutions of
ρ: I1 = (b01 = 0, b02 = 1, b03 = 0, s1 = 1, s2 = . . . = s5 = 0),
and I2 = (b01 = 0, b02 = 0, b03 = 1, s1 = 1, s2 = . . . =
s5 = 0). These solutions are identical except for swapped
values of b02 and b03. Suppose we find I1 first and project it
to get a core κ0 |I1= {C1, C4, C5}. We can block this core
by adding the clause (s̄1 ∨ s̄4 ∨ s̄5) to map. However, this
clause does not eliminate I2 that is projected to the same core:
κ0 |I2= {C1, C4, C5}.

The main issue here is that C4 and C5 are always selected
in a projection as they do not contain projection variables.
However, there are no constraints to enforce that if a clause
is in a projection then the corresponding selector variable
is set to 1. So, we cannot enforce that for any solution I if
C5/C4 ∈ κ0 |I then s5/s4 must be 1 in this example.

From Example 5 it follows.
Proposition 3.2. There exists a solution I of ρ such that m ⊆
κ |I , m ∈ MUS-all.

Next we describe our MUS enumerator, EnuMus (Algo-
rithm 5). EnuMus takes a core κ as an input. By Proposi-
tion 3.1, we just need to enumerate solutions of ρ to extract
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cores of the original formula φ. EnuMus performs such enu-
meration. However, by Proposition 3.2 the enumeration proce-
dure will produce a lot of solutions that correspond to MUSes
that we have encountered before. We introduce additional con-
straints, block, to make sure that if a clause is in a projection,
i.e. Cj ∈ κ |I , then the corresponding selector variable sj = 1
(line 1, EnuMus). block = ∪Cj∈κ{sj ∨

∨
bij∈rel(Cj)

bij}.
Hence, if κ |I is a superset of a known MUS m then the
core blocking clause (∨Cj∈ms̄j) is falsified. The block con-
straints resolve the issue pointed out in Example 5.
Proposition 3.3. If I is a solution of ρ then ∀m ∈ MUS-all
we have that m * κ |I .

Proof. Let π = κ |I . The proof follows from two observa-
tions. First, we know that I(bij) = 0, ∀bij ∈ rel(Cj), Cj ∈ π.
Hence, block clauses enforce that sj = 1, which implies
that (∨Cj∈π s̄j) is falsified by I and cannot be contained in
map. As map blocks all MUSes that have been found so far,
we know that π is not contained in known MUSes.

Algorithm 5 shows pseudocode. EnuMus takes a core κ
as an input. Then it enumerates solutions of ρ ∧ block. By
Proposition 3.3, if there exists a solution I of ρ∧ block then
κ |I contains a new MUS of the original formula φ. Before
minimizing κ |I , we perform simple preprocessing based on
the duality between cores and correction sets. The harden
procedure (line 6) returns g0 as the clauses that must be in
the minimal core: C ∈ (κ |I) s.t. MCS ∩ (κ |I) = {C} for
some MCS that we found so far. The same optimization was
used in [Liffiton et al., 2016; Zielke and Kaufmann, 2015].
Finally, we minimize κ′ with respect to g0 as hard constraints
and block it.
Example 6. We continue with the instance from Example 4.
Consider the second round and assume that EnuMus was
called in the first round and recorded the core it found in map.
At this point, cards and projs are as in Example 4 and
map = {(s1), (s̄1 ∨ s̄2 ∨ s̄3)}. Suppose Relax finds a core
κ0 = (C1 ∨ b01, C4, C5). EnuMus is called. We form block
constraints: block = {(s4), (s5)} as there are no projection
variables in C4/C5. The first solution of (ρ ∧ block) is I =
(b01 = 0, b02 = 1, b03 = 0, s1 = 1, s2 = s3 = 0, s4 = s5 = 1).
The corresponding projection κ0 |I= {C1, C4, C5}. We check
that κ0 |I is minimal and block this core by adding the clause
(s̄1 ∨ s̄4 ∨ s̄5) to map. Note that in contrast with Example 5,
s4 and s5 must take values 1 due to block constraints. This
allows us to eliminate solutions that are mapped to known
MUSes, like I2.

3.3 Enhanced MCS Extractor
In this section we consider a new approach to speed up the
MCS enumeration procedure. Strengthen takes ψ as the input
and finds all solutions. However, the size of the formula
grows at each iteration and finding new solutions becomes
expensive. Here we propose a novel approach to speed up
MCS enumeration which is very efficient in practice.

We will show in Section 3.4 that EnuMMerator finds
MCSes of non-decreasing cardinalities of the original for-
mula φ. Let MCS-all<k be a set of all MCSes of φ of size
less than k.

Proposition 3.4. Let m be a correction set of size k. The
correction set m is minimal iff ∀MCS ∈ MCS-all<k
MCS 6⊂ m.

Proof. As m is not a superset of any MCS of size smaller
than k, then it is minimal by definition.

Algorithm 6 MCSRotation

Input: ψ,MCS, I
1 ψ = orig(ψ)
2 MCS-all = getmcses(map)
3 for C ∈ MCS do
4 for li ∈ C do
5 I(li) = 1
6 m′ = ∪I(C)=0,C∈ψ{C}
7 if |m′| = |MCS| ∧ ∀m ∈ MCS-all m * m′ then
8 map = map ∪ {∨Ci∈m′si}
9 outputm′

10 MCSRotation(ψ,m′, I)
11 I(li) = 0

Algorithm 6 shows pseudocode. We first obtain the original
formula by removing all relaxation variables from it (line 1)
and get all MCSes from the map using getmcses(map)
(line 2). In practice, we keep all MCSes in a data structure
so we do not need to extract MCSes from map each time.
Our rotation is inspired by to the model rotation techniques
from [Belov and Marques-Silva, 2011] which is an efficient
technique for core minimization. We start from an assignment
I and the corresponding MCS. We pick a clauseC from MCS
and a literal li ∈ C. As C is in the MCS, then I(C) = 0.
Then we satisfy a literal li by flipping I(li) = 0 to I(li) = 1
(line 5). This makes C satisfiable but other clauses might
become violated. We compute a correction set m′ that corre-
sponds to a new assignment (line 6). If the size of m′ is equal
to the size of MCS and ∀m ∈ MCS-all, m is not subset
of m′ then, by Proposition 3.4, we know that m′ is a MCS
(line 7). Then we recursively call MCSRotation (line 10).

Example 7. We continue with the instance from Example 4.
We focus on Strengthen at the second round. Recall that
Relax returned a satisfiable formula ψ2

∗ = ϕ1 ∧ ρ. This for-
mula has four solutions that correspond to MCSes: (C2, C4),
(C2, C5), (C3, C4) and (C3, C5). So the Strengthen algorithm
has to make 4 SAT calls to find them. With MCSRotation,
Strengthen can reduce the number of calls to the SAT solver.
Suppose Strengthen finds the first solution I and passes it to
MCSRotation. Suppose I = (x1 = 1, x2 = 0, x3 = 0) and
the corresponding MCS is {C2, C4} (see Example 1 for the
definition of clauses). At this point MCS-all≤2 = {(C1)}.
Suppose we flip x2 = 0 to x2 = 1. The new assignment vi-
olates m′ = {C3, C4}. As |m′| = 2 we check that none of
MCSes in MCS-all≤2 is a subset of m′. Hence, we know
that m′ is a new MCS without calling a SAT solver.

3.4 Correctness
In this section, we sketch a proof of correctness.

Theorem 3.5. EnuMMerator finds all MCSes and MUSes
when it terminates.

Proof. (Sketch) We first prove correctness of a simpler ver-
sion of EnuMMerator where EnuMus is omitted. We recall
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that map contains two types of blocking clauses: map =
mapmcs ∪ mapmus. If we exclude EnuMus, we have that
map = mapmcs.

A simplified EnuMMerator enumerates all MCSes and uses
hitting set duality to enumerate all MUSes. Hence, we can
reuse the proof of correctness of the the relaxation and strength-
ening framework for finding MCSes as in [Morgado et al.,
2012]. We only need to prove correctness of our MCS block-
ing procedure and the termination condition.

The main part to prove is that we never block a MCS that
we have not produced. Consider the ith iteration. We prove
this by contradiction. Suppose, there exists a MCS m that has
never been encountered during the execution of EnuMMerator.
Suppose, it was eliminated after adding a projection constraint
to projs at the ith iteration. So, we have that ψd+1 ∧ ρ has
a solution I that correspond to m and ψd+1 ∧ ρ ∧ (bij ⇒ s̄j)
eliminates this solution. We form a new solution I ′ = I
and set I ′(sj) = 1. Note that I ′ must satisfy ψd+1 ∧ ρ as
setting sj to 1 will not violate any constraint. It also satisfies
bij ⇒ s̄j as I(sj) = 1. On the other hand, I ′ corresponds to
the same MCS m, as the assignment of projection variables
does not change. Therefore, bij ⇒ s̄j cannot eliminate m.
Hence, it should be eliminated by the correction set blocking
clauses (1) at the ith iteration on seeing MCS m′. Note that
the clause ∨Ci∈m′si we add to mapmcs only eliminates m′
and its supersets. Hence, either m = m′ or it is not minimal.
This leads to a contradiction.

Next we come back to EnuMMerator with EnuMus. We
prove that EnuMus does not change the solution space of
ψd ∧ cards ∧ projs ∧ mapmcs. Namely, we prove that
any solution ψd ∧ cards ∧ projs ∧ mapmcs can be ex-
tended to a solution of mapmus. Let I be a solution of
ψd ∧ cards ∧ projs ∧ mapmcs. Consider an MCS of
the original formula φ that corresponds to this solution I .
First, we note that there exists bij ∈ rel(Cj), Cj ∈ MCS
such that I(bij) = 1. Then, I(sj) must be 0 for all j such
that Cj ∈ MCS due to projs clauses. The main observation
is that any MCS hits all MUSes. Therefore, for each clause
(s̄j1 ∨ . . . s̄jn) ∈ mapmus, at least one of the literals is set to
0. Hence, all clauses in mapmus are satisfied.

4 Related Work
We briefly overview two types of closely related work. The
first line of related research proposed a relaxation and strength-
ening framework for MCS enumeration [Marques-Silva and
Planes, 2008; Morgado et al., 2012; Alviano, 2017b]. The
Relax procedure was performed using MSU3, PM1 and OLL
MAXSAT algorithms respectively. We use the same frame-
work but propose a different blocking technique that allows
us to enumerate cores as well as correction sets. Moreover,
we propose a procedure to perform core extraction and MCS
rotation to speed up MCS enumeration.

The second line of work develops methods that work
with the original formula [Liffiton and Sakallah, 2008a;
Bacchus et al., 2014; Zielke and Kaufmann, 2015; Bacchus
and Katsirelos, 2016; Previti et al., 2017]. Our approach is
based on ideas from the MARCO algorithm that explores a
lattice of all possible subsets of clauses. However, instead of

explicit exploration of points of the lattice, we extract sets of
points at each iteration. These sets come from solutions of
satisfiability problems that we either build incrementally (for
MCSes) or form dynamically (for MUSes) during search.

A number of algorithms were proposed that focus on MCS
or MUS enumeration. [Previti et al., 2017] proposed keeping
track of unsatisfiable cores using a new caching mechanism,
and proposed an efficient way to check if a given sub-formula
contains a known core. It is a matter of future research to ex-
plore if we can use a caching mechanism within the relaxation
and strengthening framework. It will likely be different from
[Previti et al., 2017], as we do not grow a maximal satisfying
assignment to obtain MCSes. [Bacchus et al., 2014] proposed
a relaxation search that uses a SAT solver to efficiently find
sets of optional clauses to remove. [Zielke and Kaufmann,
2015] proposed to consider the block property of a set of
clauses. These clauses either occur together in a MUS or do
not occur at all. The discovered sets with this property can be
used to speed up MARCO. [Bacchus and Katsirelos, 2016]
show that MARCO can be significantly improved by incre-
mentally enumerating cores and proposed other improvements.
They demonstrated that any MARCO-like algorithm can lever-
age incremental core enumeration if it is deeply integrated
with MCSMUS. The key idea behind the incremental part is
that MCSMUS can take advantage of enumerated MCSes to
produce MUSes incrementally. Such deep integration is one
possible avenue for improving our algorithm.

5 Experimental Evaluation
We work with a standard set of 295 benchmarks from the MUS
track of the 2011 SAT competition [Jarvisalo et al., 2011]. We
ran our experiments on Intel(R) Xeon(R) 3.50GHz. We com-
pare our algorithm, called FLINT, with MARCO, the state-
of-the-art method that simultaneously extracts MUSes and
MCSes. We build FLINT on top of PM1 from [Janota, 2013].
For fair comparison, we call the MUSer algorithm [Belov and
Marques-Silva, 2012] as a standalone procedure for core mini-
mization the same way as MARCO. As our algorithm can also
be geared toward correction sets enumeration, we consider
a version that only enumerates correction sets (FLINT-MCS)
and we compare it with MARCO-MCS (called MARCO-MSS
in [Liffiton et al., 2016]), which is a version of MARCO biased
toward MCS enumeration. Finally, we compare with several
algorithms that focus on enumeration of only MUSes/MCSes.
We use timeout of 3600 sec in all runs.

We discuss implementation details. First, we consider how
we preform the forward subsumption check in line 7 of Al-
gorithm 6. Recall that it suffices to perform only forward
subsumption as none of the existing MCSes is a superset of
a candidate correction set m. In the benchmark set, the size
of correction sets that we find is on average 5, and generally
less than 10. So instead of using a general discrimination
tree index or index based on feature vectors [Schulz, 2013],
it suffices to index each MCS of length n into a table (trie or
hash-table) that contains all size n sets. Then

(|m|
n

)
lookups

are performed for every n = 1, . . . , |m|. In our experiments
we used a trie to store MCSes [Tessil, 2017]. Second, we
discuss the MUS extractor. We found that κ′ (Algorithm 5,
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Figure 2: Comparison of FLINT and MARCO algorithms: (a) the number of MCSes produced by FLINT and MARCO; (b) the number of
MUSes produced by FLINT and MARCO; (c) the number of MCSes produced by FLINT-MCS and MARCO-MCS.
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Figure 3: (a) Comparison of FLINT-MCS and FLINT-MCS-noROT modification algorithms that does not use MCSRotation in terms of
the number of MCSes; (b) Comparison of FLINT and MARCO+shuffle heuristics in terms of the number of MUSes; (c) Comparison of
FLINT-MCS and ELS algorithms in terms of the number of MCSes.

line 6) often contains multiple minimal cores. This might be
related to the fact that the input core κ is not minimal as it is
very expensive to minimize it. However, MUSer only finds
one core per call. We employ a simple heuristic where we
randomly shuffle clauses in κ′ and give it to MUSer again
as it often produces different cores. We filter out repeated
cores and terminate shuffling if we start encountering many
known MUSes (five in a row in our implementation). Since
this algorithm relies on randomization, we run it five times
and show the average result.

5.1 Comparison with MARCO
We compare our algorithm with MARCO. First we com-
pare the algorithms by number of MUSes and MCSes gen-
erated within 3600s. Figures (2a)–(2b) show the correspond-
ing log scale scatter plots. In all plots, the more points are
above the x = y line the better FLINT/FLINT-MCS per-
forms compared to the competing algorithm. As can be seen
from these plots, FLINT outperforms MARCO in the enu-
meration of both objects (more points above the x = y line
indicates that FLINT outperforms MARCO). FLINT finds
more MCSes in 166 instances and more MUSes in 143 in-
stances compared to MARCO. On the other hand, MARCO
finds more MCS in 54 instances and more MUSes in 97
instances compared to FLINT. The algorithms ties on the re-
maining instances. We also compared ‘biased’ to the MCSes
versions of FLINT and MARCO (see Figures (2c)). Again,
we observe that FLINT-MCS performs much better com-

pared to MARCO-MCS: FLINT-MCS finds more MCS in
202 instances and fewer MCSes in 55 instances compared to
MARCO-MCS. We also investigate the contribution of the
MCSRotation procedure to the performance of FLINT-MCS
(Figure 3a). To do so, we run FLINT-MCS with and without
MCS rotation. MCSRotation helps in most instances (187
instances) and hurts in only a small fraction of instances (22
instances). Finally, we compare with MARCO enhanced with
the same shuffling heuristics for MUS extraction as used in
our algorithm. To do so, each time we get a seed which results
to unsatisfiable subformula, the shuffle clauses in this seed
and pass it to MUSer. If we encounter five known MUSes in
a row we terminate stop shuffling. Figure 3b shows the results.
We found that the shuffling heuristics slightly degrades perfor-
mance of MARCO. For example, FLINT finds more MUSes
in 153 instances compared to MARCO+shuffling variants.

5.2 Comparison with Other Algorithms
We compare FLINT-MCS with state-of-the-art algorithms that
focus on enumeration of only one type of objects: MCSes or
MUSes. First, we consider several state-of-the-art algorithms
for MCS enumeration which are ELS and CLD for proposi-
tional formulas and CIRCUMSCRIPTINO for propositional
theories. To compare with ELS and CDL, we use the same
standard set of benchmarks. FLINT-MCS finds more MCSes
in 167 instances, fewer in 76 instances compared to ELS and
tie on the remaining instances (Figure 3c). FLINT-MCS finds
more MCSes in 173 instances, fewer in 65 instances com-
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Figure 4: (a) Comparison of FLINT-MCS and CIRCUMSCRIPTINO in terms of the number of MCSes; (b) Comparison of FLINT-MCS and
CLD in terms of the number of MCSes; (c) Comparison of FLINT-MCS and MCSMUS in terms of the number of MUSes.

pared to CLD and tie on the remaining instances (Figure 4b).
In case of CIRCUMSCRIPTINO, we used a different dataset
as it does not accept the DIMACS CNF input format; hence
we compared on the benchmark set provided by the authors
that contains instances encoded as a propositional theory and
as DIMACS CNF [Alviano, 2017a]. The total number of in-
stances in 395 in this dataset. FLINT-MCS finds more MCSes
in 210 instance and fewer MCSes in 99 instances compared
to CIRCUMSCRIPTINO (Figure 4a).

Overall, these results show that the MCS-biased version
of FLINT performs very well compared to algorithms that
only focus on MCSes. We also compare FLINT with the MC-
SMUS algorithm, that focuses on MUS enumeration [Bacchus
and Katsirelos, 2015; Bacchus and Katsirelos, 2016]. As the
non-incremental version of this algorithm is less efficient than
MARCO [Bacchus and Katsirelos, 2015], we do not consider
it here. Instead, we consider a version of MCSMUS that com-
putes MUSes incrementally. FLINT finds more MUSes in 85
and fewer MUSes in 171 instances compared to MCSMUS
(Figure 4c). This shows that FLINT is competitive with an
incremental MCSMUS. It also shows that our algorithm can
potentially be improved by deep integration of incremental
core enumeration [Bacchus and Katsirelos, 2016].

5.3 Discussion of Results
We discuss how our algorithm can be extended based on sev-
eral observations from our experiments.

As the solver is based on the relaxation and strengthening
framework, the choice of the relaxation technique that is bor-
rowed from MAXSAT has strong influence on the performance.
Currently, we use the PM1 algorithm, which is easier to im-
plement. However, we observed that in the benchmark set,
there are 32 instances where we were not able to complete the
first relaxation step using PM1. A more efficient relaxation
procedure might help on these instances. The PM1 algorithm
can be replaced with other cardinality-based relaxation tech-
niques, e.g. MAXRES, OLL, ONE, etc, [Andres et al., 2012;
Narodytska and Bacchus, 2014; Alviano et al., 2015]. Com-
mon to these algorithms is the requirement to keep track of
all introduced relaxation constraints and make sure that these
constraints satisfy Proposition 3.1.

Core minimization is an important and, often, the most ex-
pensive part. Several improvements over FLINT are possible.

The feedback loop between cores and correction sets can be
improved. While the harden procedure [Previti et al., 2017;
Zielke and Kaufmann, 2015] is a simplistic preprocessing step,
yet we observed it can identify up to 30% of clauses in κ as
necessarily members of the cores. To this end, it is interest-
ing to build a solver with deep integration of MCSMUS as
described in [Bacchus and Katsirelos, 2016]. Finally, it should
be possible to take advantage of κ′ containing multiple cores
produced by Relax. We observed that a lot of cores produced
from κ′ share a large number of clauses. This can be exploited
in core minimization.

6 Conclusion
In this work, we proposed an algorithm to enumerate minimal
correction sets and cores simultaneously. We combined the
relaxation and strengthening framework with lattice explo-
ration methods. We propose several new techniques that allow
efficient core and correction set enumeration. Our PM1 based
prototype outperforms MARCO in enumeration of MUSes
and MCSes on a standard set of benchmarks.
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