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Abstract

Fine-grained object retrieval has attracted extensive
research focus recently. Its state-of-the-art schemes
are typically based upon convolutional neural
network (CNN) features. Despite the extensive
progress, two issues remain open. On one hand,
the deep features are coarsely extracted at image
level rather than precisely at object level, which
are interrupted by background clutters. On the
other hand, training CNN features with a standard
triplet loss is time consuming and incapable to
learn discriminative features. In this paper, we
present a novel fine-grained object retrieval scheme
that conquers these issues in a unified framework.
Firstly, we introduce a novel centralized ranking
loss (CRL), which achieves a very efficient (1,000
times training speedup comparing to the triplet
loss) and discriminative feature learning by a
“centralized” global pooling. Secondly, a weakly
supervised attractive feature extraction is proposed,
which segments object contours with top-down
saliency. Consequently, the contours are integrated
into the CNN response map to precisely extract
features “within” the target object. Interestingly,
we have discovered that the combination of CRL
and weakly supervised learning can reinforce
each other. We evaluate the performance of
the proposed scheme on widely-used benchmarks
including CUB200-2011 and CARS196. We have
reported significant gains over the state-of-the-art
schemes, e.g., 5.4% over SCDA [Wei et al., 2017]
on CARS196, and 3.7% on CUB200-2011.

1 Introduction

Given a query image, fine-grained object retrieval (FGOR)
aims to retrieve images that contain object instances of
the same variety. After firstly proposed in [Xie er al.,
2015], FGOR has rapidly become a research hotspot [Wei
et al., 2017; Huang et al., 2016; Bell and Bala, 2015;
Hyun et al., 2016; Ustinova and Lempitsky, 2016; Wang
et al., 2014; Zhang et al., 2016al, which poses various
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applications ranging from product search, car retrieval, to
species identification. In such a setting, object instances are
similar to each other and within a general class. Therefore,
different instances can only be distinguished by subtle parts,
which serves as the key challenge.

Earlier works in fine-grained image retrieval mainly resort
to using hand-craft features. For instance, the work in
[Xie et al., 2015] adopted Bag-of-Visual-Words descriptor in
combination with SVM classifier to identify instances with
fine-grained semantic and visual appearance. More recently,
deep learning have been applied in FGOR [Huang et al.,
2016; Bell and Bala, 2015; Hyun et al., 2016; Wang et al.,
2014]. In particular, these methods follow a deep metric
learning paradigm, which learns a deep embedding space that
pulls similar images to be closer, and vice versa. [Wei et
al., 2017] proposed to select features by a coarse saliency
map to promote the retrieval performance, which indicates
the importance of object localization. However, extracting
features from pre-trained CNNs with a coarse saliency map
is not always discriminative, which requires precise object
localization and contour segmentation.

Beyond FGOR, recent advances in fine-grained image
classification also support this argument, which can help
to distinguish the subtle differences among specific object
components. Nevertheless, most methods in classification
are required to provide full supervision (i.e., bounding box
[Jonathan et al., 2015] or part annotations [Xie et al., 2013])
to train accurate boundary segmentations. however, such a
setting is, impractical for FGOR, which typically searches a
large-scale space with a large amount of object categories.
Under such a circumstance, it is infeasible to label sufficient
boundaries or bounding boxes. Some recent works [He and
Peng, 2017; Simon and Rodner, 2015; Xiao et al., 2015;
Zhang et al., 2016b] attempted to classify fine-grained images
in a weakly supervised condition, i.e., the bounding boxes
and part annotations are not needed at training. Instead, all
testing examples in classification should be predefined, which
are therefore co-segmented or co-localized. In contrast, for
FGOR, the testing identities are usually disjoint from the
training set, and are unknown for the object localization,
making the approaches in [He and Peng, 2017; Simon and
Rodner, 2015; Xiao et al., 2015; Zhang et al., 2016b] being
impractical for FGOR.

Another key drawbacks lies in the poor training efficiency
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Figure 1: The proposed framework. We train our network by the Centralized Ranking Loss (CRL). In CRL, we compute the loss and
gradients based on class-level global max pooling (GMP) and global average pooling (GAP) features. The loss function affects the activation

distribution of the feature response map, leading to more accurate salien
phase, We extract attractive features for the query image and database in:

cy maps and promoting more discriminative features. In the testing
stances by a weakly supervised feature extraction method. For each

image, our method first localizes important objects via saliency extraction and refinement. After that, attractive object features are selected
according to the coverage rate between the feature receptive field and the salient object mask. The final feature is generated by GMP and
GAP, based on which we retrieve the top-K related images using L2 distance.

and low feature discriminability in most deep metric
learning based FGOR methods [Huang et al., 2016; Bell
and Bala, 2015; Hyun et al., 2016; Wang et al., 2014].
First, pairwise/triplet/high-order embedding methods are
time consuming, where the complexity can be O(N?) or
O(N?) given N images. Second, most samples used to
fine-tune a pre-trained CNN model are easy samples, leading
to the overfitting in model convergence, which is incapable
of generating discriminative feature. Using hard example
mining [Schroff er al., 2015; Sohn, 2016] is an alternative
way to train discriminative features. However, the efficiency
drawback retains i.e., it is difficult to implement and mine
hard examples with a complexity of O(N?) or O(N3).

In this paper, we present a novel fine-grained object
retrieval scheme that conquers the above two drawbacks
in a unified framework. The proposed framework,
termed Centralized Ranking Loss with Weakly-Supervised
Localization, is illustrated in Fig.1. First, we present a
novel weakly-supervised object localization, which provides
object boundaries, from which more representative feature
can be extracted against background clutters. Second, we
introduce a novel centralized ranking loss, which can largely
improve the training efficiency and feature discriminability.
Moreover, we have found that both components can reinforce
each other, since the latter component can essentially affect
the discriminative objects/parts response in the feature maps
of CNN (as shown in Fig.2). In particular, the contributions
of our framework can be itemized as follows:

e We design a new loss function named Centralized
Ranking Loss (CRL). As illustrated in Fig.1, the loss
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affects the distribution in the CNN response maps,
which generates a more accurate saliency map (Fig.2)
and promotes a more discriminative feature. Moreover,
it also significantly reduces the search space (from
O(N?) to O(NL?), where L denotes the number of
enters, and N denotes the number of images, leading to a
training acceleration by 1,000 times in our experiments,
as quantitatively shown in Fig.3.

e We propose a novel scheme for weakly-supervised
attractive feature extraction. The scheme employs fine-
tuned CNNs to obtain a coarse object saliency map,
which is subsequently refined by mixture models to
generate a precise pixel-wise object mask without using
any object bounding box or boundary supervision.

We have conducted experiments on image retrieval and
weakly supervised localization on two widely-used fine-
grained image retrieval datasets, CUB-200-2011 [Wah et al.,
2011] and CARS196 [Jonathan et al., 2013]. 1t is shown
that the proposed method significantly outperforms state-of-
the-art methods [Wei et al., 2017; Huang et al., 2016]. For
instance, 5.4% over SCDA in CARS196, 1,000 times faster in
training over triplet loss.

2 The Proposed Method

As shown in Fig.1, the proposed method contains both
offline and online phases. In offline training, we fine-
tune a pre-trained CNN by the proposed centralized ranking
loss (Sec.2.1). To that effect, the loss function computes
gradients based on class-level global max pooling (GMP)
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and global average pooling (GAP) of the raw features. As
quantitatively shown in Sec.3.2, the convolutional responses
are able to capture discriminative objects/parts than used. In
combination with saliency extraction and mixture models,
the proposed localization scheme can precisely extract the
contour of salient objects. After that, attractive features are
extracted according to the coverage rate between the receptive
field and the object mask, upon which the final feature is
generated by GMP & GAP. In online retrieval, the feature of
query is extracted from its attractive region (Sec.2.2), based
on which we retrieve the most related images by measuring a
simple L2 distance.

2.1 Centralized Ranking Loss

Motivation. Due to the tremendous search space and fully-
connected features, previous methods of deep metric learning
[Huang et al., 2016; Bell and Bala, 2015; Hyun et al., 2016;
Wang et al., 2014; Schroff et al., 2015] are less effective in
object localization and feature embedding. The major reason
is that, the location information encoded in the convolutional
layers fails to be transferred to the fully-connected layers.
The proposed Centralized Ranking Loss (CRL) conquers
this issue based on two intuitions: (1) For a batch, the
feature of the center with same label is representative for
the class, which can be regarded as an anchor to replace
the traditional triplet loss; (2) Some channels in the feature
map with high spatial responses can represent one object/part,
the saliency map of which is required to be activated for
a class. As a result, it is reasonable to back-propagate
through the centre’s global max and average pooling, which
refines the convolutional map by emphasizing more on the
representative dimensions.

In Fig.1, CRL updates parameters by class center, which
strengthens the false negative dimensions and depresses the
false positive dimensions, as reflected on the saliency map
(shown in Fig.2). The gradient directly influences the
response distribution of the corresponding feature. The above
operations can be regarded as an implementation of a typical
task-driven top-down attention, which is able to generate
attractive regions.

Let f; be The feature vector for image I;. Let A =
{ar},k = 1,2,3...K be The set of center features for K
classes and a;, = ﬁzm fi » where |Py| denotes the

number of samples in Py. Let D; ; be The distance between
two features f; and f;.

Triplet Loss function. [Wang et al., 2014] computes the
penalty by triplet data {I,, I,,, I,,} where I, and I, have the
same class labels, and I, and I,, have different. The triplet
loss function is defined as follows:

H= %maw(O,m +Dyp—Dyn)s )
where D, , and D, denote the distance and negative
distances respectively. The performance of triplet loss
depends highly on the sampling strategy [Schroff er al.,
2015].The idea is to construct triplets by associating with
each positive pair in the minibatch a “semi-hard” negative
example. To generate discriminative features, [Schroff er al.,
2015] had to use very large minibatches, making it hard to
train on GPU.
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Centralized Ranking Loss defines the ranking through the
class center, aiming at to minimize the intra-class distance, as
well as maximizing the inter-class distance in a very efficient
manner. The corresponding loss is defined as:

L= 3" 3" maz(0,m+||fi—all’ ~ || fi—al*), @)

ap€Aai€A f€Py

where m is a positive scalar that controls the margin. Given a
centralized triplet, the sub-gradients are defined as:
oL fi—aw  fi—a 3)
ofi  fi—axll* fi —all*

As we can see in Eq.(3), CRL forces the feature f; to
approach the target class center and leave away from centers
of other classes. The class mean vectors are computed in
each batch. We only update the parameters through the
gradient of positive and negative examples, rather than using
the class centers. The sub-gradient calculation using Eq.3
is extremely effective, which will be quantitatively shown
in Fig.3. Moreover, Eq.3 can promote the precision of
saliency detection, as well as the discrimination of feature
representation. Please refer to the evidences quantitatively
shown in Fig.2 and Tab.5, respectively.

As mentioned before, the resulting feature is composed
by GMP and GAP. When a dimension is representative
for a class, GMP will enhance the corresponding positions,
while GAP will enhance its corresponding channels in the
convolutional feature map, vice versa. Comparing with
standard triplet loss, CRL can render CNN to precisely locate
the object region, which avoids the training from overfitting.
Some recent works [Oh Song erf al., 2017; Ming et al., 2017]
also employ class center in loss function. However, these
methods require huge computational complexity and are hard
to implement. Moreover, training with fully connected layers
is unable to promote the quality of the saliency map for object
localization.

Time Cost Implementation of the triplet loss involves
O(N?) computations. In contrast, training with the proposed
CRL needs only O(N L?), where L denotes the class number.
In practice, the class number L should less than % to generate
triplets in a batch. In most cases, with large batch size and
small class number, our method is extremely effective than
previous methods, as quantitatively shown in Fig. 3.

2.2 Weakly Supervised Feature Extraction

We first coarsely localize the object via SCDA [Wei er
al., 2017] based salient object extraction, followed by a
refinement module with Gaussian mixture models. Then, raw
features are aggregated to form the final output of region-
aware deep features.

Our localization scheme is inspired by [He and Peng, 2017]
which adopts saliency extraction and co-segmentation for
weakly-supervised object localization. However, the task in
[He and Peng, 2017] is designed based upon a closed-set
protocol, which differs from our task. Such a closed-set
protocol pre-defines all testing identities in the training set.
In contrast, FGOR is more like an open-set protocol, where
the testing identities are disjoint from the training set, making
the co-segmentation impossible. To tackle this issue, the
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proposed weakly supervised localization targets at getting the
object mask without using bounding boxes or object labels.
The method consists of two stages, i.e., saliency extraction
and contour refinement. The first stage is to corsely localize
the object by using the saliency information obtained from
CNN. The second stage is to segment an accurate object
mask, which further refines the coarse saliency map. The final
feature is extracted by a feature aggregation operation.

Saliency Extraction. Following the principle of SCDA
[Wei et al., 2017], given an image I (width:n, height:m) and
a CNN model, the saliency map M € R™*™ is computed
as follows: First, an A X w X ¢ 3D tensor X is computed
from the last convolutional layer by forward-propagation,
which has the best discriminative ability and retrains certain
spatial cues. This 3D tensor X is then mapped to a 2D
map A by aggregating the feature map X over the third
dimension c¢. Mathematically, the function can be defined
as ¢ : RAxwxe o RAXW guch that 1)(X) = A where
A = Ezlek. After that, a mean value a of all the
positions in A is calculated as the threshold to localize object.
In particular, the position (7, j) whose activation response is
higher than @ indicates the main object. Then, a mask M of
the same size A can be obtained:

1 ’L‘A7;7‘>d
Mi,j:{() S Ay

otherwise,
where (i, j) is a particular position in these h X w positions.
Finally, we obtain the saliency map by resizing M from i x w
to m x n by using a bilinear interpolation.

Mask Refinement. The subsequent refinement is inspired
by [Carsten et al., 2004] to get a more accurate object
mask. According to the estimated coarse mask M, we
firstly label a pixel as foreground if the mask value is 1, or
background otherwise. Then two Gaussian Mixture Models
(GMMs) are learned to model the foreground and background
appearances, respectively, with each GMM containing K = 5
components. Given an image I, let 6y be the foreground
model and 6, be the background model, and y,, denotes the
pixel p of the image with a corresponding RGB value v,,. The
objective function of refinement can be formulated as:

%%XZE(yp79) +ZE(yP7yq) ®)
p

p,q

)

BE(yp,0) = (1 — yp) log (p(vp; 04)) + yp log (p(vp;0)),  (6)
and Y is the set of saliency assignments across the image.
E(yp,yq) is a pairwise term between pixels p and ¢, which
enforces consistency between neighboring pixels. Based
upon the coarse saliency map, Eq.5 learns and creates a
precise pixel distribution of the object. Then, the unknown
pixels are labelled by this distribution. The optimization
process can be done by following [Carsten et al., 2004]. With
such an accurate segmentation, we extract discriminative
features only from the segmented mask.

Feature Aggregation. The distinguishing feature should
cover the object region. Given the above object segmentation,
we re-extract more discriminative features as:

. ‘A(i,.)ﬂl\ﬂ
iy oip BeaF s g
iy, Q) = , [M] 7
f(f( 23) ) { 0 otherwise, @

Algorithm 1: Attractive Feature Extraction

Input: Training data: D;; Testing data: D,,; CNN model: F
. Output: Testing data features T

.for t=1,...,T epoch do

Caculate the loss according to Eq.2;

Get gradient through Eq.3;

1
2
3
4
5 Update CNN model F by t*h epoch data ;
6
7
8
9

end

for iin D,, do

X =F();

A= 22:1 X3

10 generate Saliency map M, by Eq.4;

1 get pixel-wise object mask M, by Eq.5;

12 Select convolution feature using Eq.7;
13 T; = aggregate features by GAP & GMP;
14 end

where M denotes the refined object mask and A, ; denotes
the receptive field at the spatial location (i,j). We simply
select the spatial feature where the intersection area between
the receptive field and the object mask is large than a given
threshold o, whose quantitative evaluation is given in Tab.6.
Then, the feature is aggregated by a global max pooling
and a global average pooling. The overall framework is
summarized in Alg.1.

3 Experiments

Datasets: Both CUB-200-2011 and CARSI196 datasets are
used in evaluation. The CUB-200-2011 [Wah et al., 2011]
contains 200 bird classes with 11,788 images. We employ
the first 100 classes (5,864 images) for training and use
the remaining 100 classes (5.924 images) for testing. The
CARS196 [Jonathan et al., 2013] contains 196 car classes
with 16,185 images. We employ the first 98 classes (8,054
images) for training and the remaining 100 classes (8,131
images) for testing. Both datasets have class labels and
bounding box annotations, the latter of which are only
used to evaluate object localization.!. To further evaluate
the effectiveness of our method, we also conduct on some
datasets whose categories are disjoint with ImageNet, e.g.,
Moth [Rodner ef al., 2015].

Evaluation Protocols: We evaluate the retrieval by the
standardRecall @K. Recall @K is the average recall scores
over all query images in the test set, which strictly follows the
setting in [Hyun et al., 2016]. Specifically, for each query, the
top K similar images are returned. The recall score will be 1
if there is at least one positive image in the top K returning,
and 0 otherwise. For object localization, the performance of
object localization is defined by at least 50%, 60% and 70%
of Intersection-over-Union (loU) overlap with the ground-
truth bounding box.

Baselines: We compare the proposed scheme with sev-
eral state-of-the-art fine-grained image retrieval algorithms,
including: (1) Contrastive [Bell and Bala, 2015] and Triplet
[Wang et al., 2014] methods that aim at training the feature

"We follow the standard train/test split in [Huang er al., 2016;
Bell and Bala, 2015; Hyun et al., 2016; Schroff et al., 2015]
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Method CARS196 CUB-200-2011
K= 1 2 4 8 16 32 1 2 4 8 16 32

Contrastive 21.7 | 323 46.1 589 | 722 | 834 | 264 37.7 49.8 623 | 764 | 853
Triplet 39.1 | 50.4 63.3 745 | 84.1 | 89.8 | 36.1 48.6 59.3 70.0 | 80.2 | 88.4
LiftedStruct 49.0 | 60.3 72.1 81.5 | 89.2 | 92.8 | 47.2 58.9 70.2 80.2 | 89.3 | 93.2

Facility Location 58.1 | 70.6 80.3 87.8 - - 48.2 61.4 71.8 81.9 - -

N-pairs 539 | 66.76 | 77.75 | 86.35 - - 45.37 | 58.41 | 69.51 | 79.49 - -
Binomial Deviance - - - - - - 52.8 64.4 74.7 839 | 904 | 943
Histogram Loss - - - - - - 50.3 61.9 72.6 824 | 88.8 | 93.7
PDDM+Quadruplet | 57.4 | 68.6 80.1 89.4 | 923 | 949 | 583 69.2 79.0 88.4 | 93.1 | 95.7
SCDA 58.5 | 69.8 79.1 86.2 | 91.8 | 959 | 622 74.2 83.2 90.1 | 943 | 97.3
Our Method 639 | 73.7 82.1 89.2 | 93.7 | 96.8 | 65.9 76.5 85.3 903 | 944 | 97.0

Table 1: Recall@K on CARS196 and CUB-200-2011. Recall@K is the average recall scores over all query images in the testing set.
Specifically, for each query image, top K nearest images will be returned, the recall score will be 1 if at least one positive image in the return

K images and O otherwise.

Method \ recall @K
K= ‘ 1 2 4 8 16 32
SCDA 759 843 91.7 96.1 98.0 989
Lift Loss 785 872 942 97.8 98.6 993
Triplet loss 772 863 93.1 97.1 985 99.1
Pairwise loss | 76.3 86.5 935 973 983 994
Our Method | 81.8 89.9 949 972 98.6 99.5
Table 2: Recall@K with different methods on Moth.
TIoU | 05 0.6 0.7
[Zhou et al., 2016] 2.29% 1.03% 0.31%
[Karen et al., 2013] 64.20% 41.08% 19.31%
[He and Peng, 2017] | 65.52% 46.16%  28.36%
SCDA 7231% 4591%  19.55%
SCDA + CRF 26.95% 15.92% 8.96%
our method 84.69% 70.58% 51.39%
FCN | 86.35% 79.19% 69.44%

Table 3: The precision of object localization on CUB-200-2011.
The precision is defined by the proportion of Intersection-over-
Union (IoU) overlap between the generated box and the ground truth
at least 0.5, 0.6 and 0.7 respectively. We can get more accurate
bounding boxes than other weakly supervised methods, and achieve
comparable performance with supervised method like FCN.

with pairwise loss and triplet loss, respectively. The feature
is extracted by using the convolution neural network and
updated through back-propagation. (2) LiftedStruct [Hyun
et al., 2016] uses a novel object function to automatically
find the hard examples in each training batch. The hard
example usually has a large loss comparing to that of the
normal pairs. (3) Facility Location [Oh Song et al., 2017]
relies on a new metric learning based on structured prediction,
and is aware of the global structure of the embedding space.
(4) Histogram Loss [Ustinova and Lempitsky, 2016] aims
at penalizing the overlap between distributions of positive
pairs’ distances and negative pairs’ distance. (5) Binomial
Deviance [Ustinova and Lempitsky, 2016] evaluates the cost
between similarities, which is proven to be robust to outliers.

(6) PDDM+Quadruplet [Huang et al., 2016] choses the
hard positive examples and negative examples to update
the parameters in CNN, which adopts the PDDM block to
evaluate the similarities. (7) N-pairs [Sohn, 2016] proposed
N-pairs loss which enforces softmax cross-entropy loss
among the pairwise similarity values in the batch. (8) SCDA
[Wei et al., 2017] selects discriminative and representative
examples in the last convolution layer of VGG-16 without
further fine-tuning, which is a combination of max pooling
and average pooling features.

Implementation Details. In our experiments, we apply
the widely-used VGG-16 [Karen and Andrew, 2014] and
initialize the weights from the network pretrained on
ImageNet ILSVRC-2012 [Deng et al., 2009] 2. Due to the
distinctive parts in cars, the refinement is less effective in
CARS196. Therefore, we directly estimate object locations
by SCDA [Wei ef al., 2017] in CARS196. We use the same
hyperparameters in all experiments without specific tuning,
with a mini-batch size of 60, a margin parameter m of 1, and
an initial learning rate starting from 0.0001 and being divided
by 10 in every 100-200 epochs. We extract features from the
last convolutional layer of VGG-16 with the max and average
pooling, and normalize the feature through L2 normalization.
Correspondingly, the feature dimension for retrieval is 1,024.

3.1 Fine-grained Image Retrieval

Tab.1 quantifies our method on both CARS796 and CUB200-
2011. Without any training and object position information,
both our method and SCDA [Wei et al., 2017] perform
better than other baselines on CARS196 and CUB-200-2011,
which demonstrates the importance of localizing objects.
Note that PDDM+Quadruplet [Bell and Bala, 2015] proposed
to crop object images with object annotations, by which
cluttered backgrounds are removed. However, it performs
not as good as ours, which indicates that an ideal model
should not encode information from a single object only.
Instead, all high response of the object should be maintained
in the output feature. On CARS196 and CUB-200-2011,
we improve the recall score of the state-of-the-art SCDA
scheme from 58.5% to 63.9%, as well as from 62.2% to

*Note that our scheme is compatible with other convolutional
networks, the choice of which is orthogonal to our contribution.
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Epoch:5 100 200

Figure 2: Saliency maps generated during the training process with
different loss functions. With the proposed CRL, the saliency map
is obscuring with background in epoch 5, and the discriminative part
becomes more clear after 200 epochs, which imply the effectiveness
of our proposed embedding method (Target objects are marked by
red boxes).

Method | recall@K
K= ‘ 1 2 4 8 16 32

Pairwise Loss | 61.7 733 826 89.3 938 96.8
Triplet Loss 61.6 722 81.0 87.1 919 95.1
Center Loss 63.7 752 839 903 947 969
Lift Loss 624 745 839 902 940 96.8
our method 659 765 853 903 944 97.0

Table 4: R@K on CUB-200-2011 with different loss. The proposed
CRL is the best among all the tested loss functions.

65.9%, respectively, which validates the robustness of our
method. CARS196 and CUB-200-2011’s categories are joint
with the ImageNet dataset. So, we have quantitative evaluated
on the Moth[Rodner et al., 2015] dataset. As shown in
Tab.2, the proposed method still achieves the state-of-the-art
performance, with 6.04 gains over SCDA, and 3.34 gains over
lift loss.

3.2 Visualizing and Understanding CRL

CRL exploits ranking information to fine-tune the network
through feature pooling. As presented in Sec.2.1, when
updating parameters by the center feature, the associated
convolution channels will be highlighted, vice versa, which
makes the saliency map being attracted to the discriminative
object part. We visualize the saliency map by our scheme
and SCDA [Wei ef al., 2017] during the training iterations
in Fig.2. As shown in Fig.2, the saliency map is initially
obscured with the background in the 5th epoch. After
only a few epochs, the discriminative part becomes more
clear comparing to other loss function, which implies the
effectiveness of the proposed method.

3.3 Object Localization

We explored the performance of object localization in
different label conditions, and compared our method with
both weakly supervised and fully supervised methods [He
and Peng, 2017; Krdhenbiihl and Koltun, 2011; Karen et al.,
2013; Zhou et al., 2016; Long et al., 2015]. We evaluate
the performance of object localization and how it affects the
FGOR on CUB-200-2011. Tab.3 shows that we can get the
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Method | recall@K

K= ‘ 1 2 4 8 16 32
SCDA 643 752 83.8 904 943 96.8
FCN 657 767 85.1 905 945 96.7

our method 659 765 853 903 944 97.0
ground truth | 66.3 77.2 85.1 90.7 947 96.9

Table 5: Recall@K with different object localization methods on
CUB-200-2011. In the row of ground truth, the feature is extracted
by object annotations.

Threshold v | recall@K
K=|1 2 4 8 16 3

0.10 | 659 76.0 848 905 946 97.0
020 | 656 767 852 904 946 969
040 | 62.0 73.6 823 888 93.6 964
0.80 | 357 46.1 5677 653 724 77.1
a=0.16 ] 659 765 853 903 944 97.0

Table 6: Recall @K with different o on CUB-200-2011. The « is the
feature selection threshold.

best accuracy comparing to other weakly supervised methods
on CUB-200-2011 in terms of IoU. Moreover, our method is
comparable to the fully-supervised FCN [Long er al., 2015],
which uses pixel-level annotations to train the network. In our
experiments, we testify different hyper-parameters of CRF to
pick up the best one, and to be integrated with SCDA+CRF.
We have found that when dealing with a quite coarse saliency
map such as SCDA, the dense-CRF will be confused. We
explain, that more background information is included after
refining SCDA with CREF, so in Tab.3, SCDA+CREF is worse
than CRF.

In Tab.5, we combine our proposed method with different
object localization methods [He and Peng, 2017; Karen et
al., 2013; Zhou et al., 2016; Long er al., 2015] on CUB-200-
2011 in terms of Recall@K. In this experiment, our method
substantially outperforms other weakly supervised methods,
which even approximates the fully-supervised method using
ground-truth object locations. Note that the difference
between the supervised method FCN and our method is quite
subtle, which further proves our effectiveness. Tab.6 further
shows the tuning of the hyper-parameter o, we have found
that o = 0.16 is the optimal one. We also observe that with a
large «, the results would be decreased.

3.4 On Different Loss Functions

To evaluate the effectiveness of the proposed centralized
ranking loss, we further replace our loss functions with dif-
ferent loss functions and quantify the retrieval degeneration
by Recall@K on CUB-200-2011. As shown in Tab.4, our
method is the best among different loss functions under the
same setting of the rest components. Please note that, the
center loss [Wen et al., 2016] is similar to our method,
which directly characterizes the intra-class variations. Our
proposed loss considers the variations in intra-class and inter-
class simultaneously. As a result, our loss can achieve better
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Figure 3: The running time with different class number L and batch
size 128 (left), 256 (right). The horizontal axis is the class number
L within each batch, and the vertical axis is the running time. So
our CRL scheme is extremely effective in training, i.e., 1,000 times
speedup comparing to triplet loss when the class number is 2.

performance comparing to center loss. In Fig.3, we further
test the layer-wise training time with respect to different class
numbers L and batch-size n. The high-order loss functions
are time consuming, particular with large batch size and small
class number. Instead, our scheme is extremely effective in
training, i.e., 1,000 times speedup comparing to triplet loss
when the class number is 2. Interestingly, differing from other
loss functions, the training complexity of our loss function
decrease with the class number, which further remedies the
complexity when limited amount of object classes is needed.

4 Conclusions

This paper contributers to the filed of FGOR in two-fold:
First, we propose a centralized ranking loss, which achieves
a very efficient training (1,000 times speedup for training
comparing to triplet loss). Second, we propose an effective
weakly supervised framework which precisely locate objects
without bounding box or contour supervision. We achieve
the best results on CUB-200-2011 and CARSI196 dataset
comparing to a variety of state-of-the-arts. In the future, this
work will be pushed forward. First, since the key differences
in FGOR only reveal on small parts, we will exploit new
methods for discovering part-level salient regions such as
head, torso, or claws. Second, we will combine features from
different layers to obtains more discriminative representation.
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