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Abstract

To represent the meaning of a word, most models
use external language resources, such as text cor-
pora, to derive the distributional properties of word
usage. In this study, we propose that internal lan-
guage models, that are more closely aligned to the
mental representations of words, can be used to de-
rive new theoretical questions regarding the struc-
ture of the mental lexicon. A comparison with in-
ternal models also puts into perspective a number
of assumptions underlying recently proposed distri-
butional text-based models could provide important
insights into cognitive science, including linguis-
tics and artificial intelligence. We focus on word-
embedding models which have been proposed to
learn aspects of word meaning in a manner simi-
lar to humans and contrast them with internal lan-
guage models derived from a new extensive data set
of word associations. An evaluation using related-
ness judgments shows that internal language mod-
els consistently outperform current state-of-the art
text-based external language models. This suggests
alternative approaches to represent word meaning
using properties that aren’t encoded in text.

1 Introduction

How is semantic information encoded? How is similarity rep-
resented in the brain? And how can we capture this informa-
tion computationally? One answer to this question involves
distributional lexico-semantic models, which quantify the se-
mantic similarity between lexical items based on the distri-
butional properties of the linguistic context in which they oc-
cur. Recent models like word2vec [Mikolov et al., 2013]
and GloVe [Pennington er al., 2014], which rely on exter-
nal corpora as the source of data, increasingly appear to cap-
ture word meaning in ways that ever-more-closely resemble
human representations. For instance, these models show sys-
tematic improvements over previous work in key benchmarks
such as human similarity judgments of word pairs [Baroni et
al., 2014]. The strong performance of these models has also
suggested to cognitive scientists that the learning mechanisms
they embody might resemble how humans learn the meaning
of some words [Mandera et al., 2017].
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In this study we show that using word-association data
instead of corpus data improves performance substantially
above the current state-of-the-art. We suggest that this is be-
cause data-intensive distributional models like word2vec,
formidable though they are, may not capture word representa-
tions the way the average adult language speaker does. Their
enormous, high-quality input data enables them to mimic hu-
man behavior, but they do relatively poorly compared to per-
formance based on data that more accurately captures peo-
ple’s true representations of meaning.

The distinction between using text corpora or word as-
sociation data maps between External language models (E-
language) and Internal language models (I-language) [Taylor,
2012]. An E-language model, like word2vec, treats lan-
guage as an “external” object consisting of the all utterances
made in a speech-community. An I-language model sees lan-
guage as the body of knowledge residing in the brains of its
speakers. Largely due to the easy availability of high-quality
external corpora — for instance, there are over one trillion
words in the Google n-gram corpus [Michel et al., 2011]
— computational linguists have traditionally focused on E-
language models. Whether a similar distributional approach
based on I-language might also be useful has received rela-
tively less attention. One explanation could be purely on the
basis of practical arguments, as it’s not clear whether appro-
priate I-language resources are available. This paper fills that
gap, by introducing an approximation of I-language using a
new database of word associations considerably larger than
previous ones and conducting a direct comparison of how
both kinds of approaches predict human similarity judgments.
It is valuable not just in demonstrating that models based on
I-language greatly improve their performance. It also sug-
gests that when people judge similarity, they may be relying
more on networks of semantic associations than on statistics
calculated from the distributional patterns of the words they
hear. The structure of this paper is as follows. In Part 2 we
describe the origin and nature of the data for the E-language
source (text corpora) and I-language source (word associa-
tion data). Part 3 describes the distributional models, part 4
describes the multiple human similarity and relatedness judg-
ments that each model and data source will be used to pre-
dict. Part 5, the results, demonstrates that models based on
I-language consistently perform substantially better than the
same model based on E-language.
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2 Data Sources

2.1 A Varied E-language Model Text Corpus

Our aim was to combine corpora that would provide us with
a fairly balanced set of texts that is representative of the sort
of language a person experiences during a lifetime — includ-
ing both formal and informal language as well as spoken and
written language.

The corpus consisted of several subcorpora including En-
glish movie subtitles, contemporary English fiction, newspa-
per articles, spoken text and SimpleWiki and are described
in [De Deyne et al., 2016b]. The resulting corpus consisted
of 2.16 billion tokens and 4.17 million types. We further ex-
cluded words that did not occur at least 300 times, retaining
65,632 unique word types. This cut-off is larger than pre-
vious approaches using count models and word embedding
models but allowed us to reduce the memory requirements
for the count model we introduce later and to make sure that
words in the evaluation sets were at least as frequent as the
words in the association study for which we collected 300
responses. Altogether, this corpus was constructed to be gen-
erous in terms of the quality and quantity of items so that
models incorporating it would perform similarly to the exist-
ing state-of-the-art.

2.2 A Novel Word Association Dataset for
I-language Models

One of the shortcomings with previous word association stud-
ies is that they only include the strongest associations because
only a single response is generated for each cue word. For
example, in the case of umbrella, most participants would re-
spond rain, which prevents the inclusion of weaker links. A
better way to include weaker associates as well is by using a
continued procedure where multiple responses for each cue
word were collected. Extending the response set to include
weaker responses and including enough cue words to cap-
ture most words used in daily languages motivated us to set
up a new large-scale study. The current data are collected
as part of the Small World of Words project (https://
smallworldofwords.org/), an ongoing effort to map
the mental lexicon in various languages. Each participant was
given a short list of cue words (between 15 and 20 words)
and asked to generate three different responses to each cue.
To avoid chaining responses, the instructions stressed to only
give a response to the cue word. If a word was unknown or no
secondary or tertiary response could be given, the participants
were able to indicate this Additional details on the procedure
are available in [De Deyne et al., 2013].

The results reported here are based on 10,021 cue words
for which at least 300 responses have been collected (100 pri-
mary, 100 secondary and 100 tertiary) for every cue. The
study was presented as an online crowd sourced project in
which fluent English speakers volunteered to participate. The
responses were based on over 85,496 participants. In line
with previous work, we constructed a semantic graph from
these data. This graph closely resembles the bag-of-words
count models but represented as a graph makes it possible to
consider the spreading activation discussed in the next sec-
tion. A graph G was constructed by only including responses
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that also occurred as a cue word. This converted the bimodal
cue x response graph to a unimodal cue X response graph.
In this weighted graph G, g;; counts the number of times that
word j is given as an associate of word i. We extracted the
largest strongly connected component by only keeping those
cues that were also given at least once as a response. This
way all words can be reached by both in- and out-going links.
The resulting graph consists of 10,014 nodes and the num-
ber of different word types each word is connected to (i.e.,
its out-degree of) is 92. As expected, the graph is also very
sparse: only 0.92% of words are connected (i.e., G has 0.92%
non-zero entries).

3 Models

We consider four different models in this paper, two E-
language models estimated from the text corpora, and two
I-language models that use word association data. In both
cases, one model is a simple count based model and the other
aims to exploit additional structure of the sparse input data.

3.1 Count Based Model for Text Corpora

Count models of text corpus data use a simple representation:
they track how many times a pair of words co-occur in a doc-
ument or sentence. For our analyses we used a symmetric
dynamic window that linearly weighted words as a function
of the distance between them. The resulting co-occurrence
frequencies were transformed using the positive point-wise
mutual information (PMI*), given the evidence that this mea-
sure performs well in count models and combined it with a
discount factor in order to prevent very rare words from bias-
ing the results [Levy er al., 2015].

3.2 Predicting Structure from Text Corpora using
Word Embeddings

An alternative approach to representing text corpora is to ap-
ply a lexico-semantic model that aims to extract the latent
semantic structure embedded in the text corpus by learning to
predict words from context. We focused on the word embed-
dings derived from the neural network approach in word2vec
[Mikolov et al., 2013; Levy et al., 2015], using a continu-
ous bag of words (CBOW) architecture in which the model is
given the surrounding context for a word (i.e., the other words
in a sliding window) and is trained to predict that word.

Based on previous work [Baroni et al., 2014; Mandera et
al.,2017; Levy et al., 2015] the following settings were used:
a negative sampling value of 10, and a down-sampling rate
of very frequent terms of 1e-5. We considered window sizes
between 2 to 10, and fitted models with between 100 and 500
dimensions with steps of 100. We will focus on the best fitting
hyper-parameter values but note that the differences for other
values were rather small.

3.3 Count Based Model for Word Associations

In an E-language model, the goal is to characterize the lin-
guistic contents of a text corpus, whereas an I-language
model aims to capture the mental representation that a hu-
man speaker might employ. The difference between these
two goals motivates a difference in the kinds of data that one
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might use (e.g., text corpora versus word associations) but
there are commonalities between the two approaches. For
example, there is evidence that the relationship between (ob-
served) word association frequency and (latent) associative
strength is nonlinear [Deese, 1965], an observation that sug-
gests the PMI* measure might be reasonably successful as
a simple count model for association strength. With that in
mind our first model is a simple PMI* measure using the word
association frequency as the input.

3.4 A Spreading Activation Approach to Semantic
Structure

While the PMI* model captures the semantic information in
the raw word association data, it does not attempt to capture
any deeper semantic structure that these data encode. We
use word association data to construct a network that con-
nects associated words, and model semantic similarity using
denser distributions derived from a random walk defined over
this network [De Deyne et al., 2016b]. The intuitive idea is
that when a word is presented it activates the correspond-
ing node in the graph, and starts a random walk (or many
such walks) through the graph, activating nodes that the walk
passes through. If there are many short paths that connect two
nodes, then it is easy for a random walk through the graph
to start at one node and end at the other, and the words are
deemed to be more similar as a consequence.

To implement this idea we first normalize the word asso-
ciation matrix such that each row sums to 1, thus converting
it to a transition matrix P. In the limit, where we consider
paths of arbitrarily long length through the following expres-
sion [Newman, 2010]:

Grw = rep(aP) = (I—aP)™?

Finally, we apply the PMI* weighing function to G, re-
duces the frequency bias introduced by this type of walk
[Newman, 2010] and also keeps the graph sparse.

To see how this spreading activation mechanism can be
very powerful, consider the word figer. Before applying
spreading activation its meaning vector consists of 92 dif-
ferent association responses. When we apply the spread-
ing activation measure we uncover nearly 559 new associa-
tions which ordered by their weights included zebra, cheetah,
claws, cougar and carnivore, all of which seem meaningfully
related to tiger but were not among the responses when tiger
was presented as a cue word.

4 Comparing Model Predictions to Human
Judgments

The data sets used to evaluate the models broadly fall into one
of two classes. Two of the studies asked participants to judge
the similarity between words, namely the WordSim-353A
similarity data set [Agirre et al., 2009] and the SimLex-999
data [Hill er al., 2016]. In the remaining studies participants
were asked to judge relatedness. These include the WordSim-
353 relatedness data set [Agirre et al., 2009], the MEN data
[Bruni et al., 2012], the Radinsky2011 data [Radinsky er al.,
2011], the popular Rubenstein and Goodenough (RG1965)
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data [Rubenstein and Goodenough, 1965] and the MTURK-
771 data [Halawi et al., 2012].

In addition to these data sets, we include data from a re-
latedness judgment task based on triadic comparisons using
a procedure introduced in [De Deyne et al., 2016al. In this
task, participants are asked to select the most related pair out
of a set of three English nouns. An advantage of this task
is that the third word acts as a context, which makes judg-
ments less ambiguous. Critically, the triads were constructed
by choosing words largely at random from the English word
association data set. The only constraints were that the words
in a triad had to be roughly matched on judged concreteness
and word frequency. This was done to avoid simple heuris-
tics such as grouping abstract or common words together. The
consequence of this procedure is that the triads tended to con-
sist of words that are only weakly related to each other, such
as BRANCH - ROCKET - SHEET or CLOUD - TENNIS - SUR-
GEON, and it is for this reason it is referred to as the “remote
triads task”. A total set of 100 triads was constructed this way
and judgments were collected for 40 native English speakers.
Because the words are chosen at random, we expect that a
large portion of them will only share a small number of fea-
tures in the count models which poses an ideal scenario to
test how prediction and spreading activation approaches in-
duce additional structure from this sparse input.

All four models represent word meanings as a semantic
vector, and we used the cosine similarity measure in all cases.
Only word pairs that were present in the text corpus and the
word association data were included. As shown in Table 1
(columns 2 and 3), most words were retained. For the triads
task model predictions were obtained by normalizing the sim-
ilarities between the three words in each triad and correlating
them with the frequencies of the choice preferences.

5 Results

The best performing parameters were a window size of 3 for
the corpus count model, and a window size of 7 and 400 di-
mensions for word2vec, although the findings for other win-
dow sizes and dimensions were quite similar. The word asso-
ciation count model is based on G123 and has no free param-
eters, whereas for the random walk model we used a param-
eter value of o = 0.75, similar to previous studies [De Deyne
et al., 2016a]. Table 1 shows the performance of all mod-
els, and it is clear that the I-language models substantially
outperform the E-language models in almost every case. It
is also clear that extracting structure helps: word2vec gener-
ally outperformed the corpus count model, and the random
walk model outperformed the word association count model.
For the E-language models the magnitude of this effect was
slightly smaller than reported elsewhere [Baroni et al., 2014,
Mandera er al., 2017]. Surprisingly, the count model outper-
formed word2vec on the remote triad task which questions
how human-like learning is in word2vec.

Apart from the results reported here, we also piloted E-
language models that used different frequency cut-off values
and used embedding vectors that have been previously pub-
lished elsewhere, showing very similar results [De Deyne et
al.,2016b].
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Table 1: Spearman rank order correlations between relatedness and model predictions for all four models described in the text.

Text Corpus

Word Associations

Data set n  n(overlap) Count word2vec Count Random Walk
WordSim-353A 252 207 .67 .70 77 .82
WordSim-353B 203 175 74 .79 .84 .87
MTURK-771 771 678 .67 1 .81 .83
SimLex-999 998 927 .37 43 .70 .68
Radinsky2011 287 137 75 78 74 .79
RG1965 65 52 78 .83 .93 95
MEN 3000 2611 75 .79 .85 .87
Remote Triads 300 300 .65 52 .62 74
mean .67 .69 .78 .82

6 Discussion

The goal of this study was to compare two kinds of seman-
tic models: “I-language” models that encode mental repre-
sentations, and “E-language” models that encode lexical con-
tingencies. In one respect the superior performance of the
I-language models is unsurprising: the training data directly
reflect human mental representations, and as such should be
more strongly linked to human semantic judgments. On the
other hand, the I-language models were trained on a much
smaller data set than the E-language models, with an average
of 260 words contributing to the distributional representation
of each word. Given this, it is worth considering the broader
implications of the findings.

First there is the issue of the role of learning. Previous
work has argued that the word2vec model is more cognitively
plausible than count models due to its similarity to mod-
els of classical conditioning [Mandera et al., 2017]. This
is contrasted with more statistical approaches such as La-
tent Semantic Analysis [Landauer and Dumais, 1997] and
topic models [Griffiths er al., 2007]. Howeyver, it is not clear
that this holds up when we find very little difference in per-
formance between count models and word2vec, or previous
work arguing that word embedding models perform an im-
plicit matrix factorization [Levy and Goldberg, 2014]. Per-
haps more importantly, there is something strange about the
claim that E-language models are cognitively plausible when
the data sets upon which they are trained are as large as they
are. If purely text based models are intended to stand as
models for how humans acquire semantic structure, then they
should be trained on a corpus small enough that it plausibly
represents the language exposure of the young adults who
participated in the benchmark tasks. If billions of tokens are
required to produce adequate predictions while still being un-
able to match the performance of simple I-language models,
it is not clear what claims can be made about human language
acquisition.

Next there is the issue of the nature of the representations.
To understand why I-language models perform so well using
limited amounts of data and to set a direction of how to im-
prove E-language models, it is useful to consider what kind
of semantic information word associations capture represen-
tations that cannot be fully reduced to the distributional prop-
erties of the E-language environment. Previous attempts to
predict word associations from E-language have had limited
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success [Griffiths et al., 2007]. E-language typically only
predicts the strongest associate in the minority of cases and
does even worse in predicting non-primary responses. Why
is this? At least part of it is that E-language has the structure
it does because people are using it to communicate to each
other; it is not simply a reflection of their mental represen-
tations. For instance, yellow is a very strong associate of ba-
nana, but the two words co-occur relatively infrequently since
most bananas are yellow. As a result, modifying the word ba-
nana with yellow is uninformative, so most people leave it out
when talking. Many of the divergences between the distribu-
tions of words in external language and the strength of inter-
nal associations may occur because so much of E-language is
shaped by pragmatic and communicative considerations such
as these. Other evidence suggests that mental representations,
as reflected in word associations, are shaped by far more than
the distributional properties of the E-language. For instance,
fMRI measures reveal the activation of imagery-related areas
during word association tasks [Simmons et al., 2008]. This
suggests that a compact set of I-language features (percep-
tual or other) can provide us with valuable pointers towards
further refining existing E-language models and NLP appli-
cations build from them. For example, recent E-language
models have taken a multimodal approach by enhancing lan-
guage sources with visual representations [Lazaridou et al.,
2015]. To illustrate, [Bruni et al., 2012] evaluated word em-
beddings combined with features extracted from images on
the MEN dataset and found a correlation r = .78 for the best
performing model, which is considerably lower than current
results for the E-language and especially the I-language mod-
els. Similarly, more recent work of our own shows that multi-
modal models that take into account both perceptual and emo-
tional internal states provide substantial improvements for
E-language models but only marginally improve I-language
models, supporting the idea that the latter already provide a
symbolic representation of meaning that encodes perceptual
and emotional information beyond what’s accessible from
language alone.
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