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Abstract

For a detection problem, a user often has some prior
knowledge about the structure-specific subgraphs
of interest, but few traditional approaches are capa-
ble of employing this knowledge. The main techni-
cal challenge is that few approaches can efficiently
model the space of connected subgraphs that are
isomorphic to a query graph. We present a novel,
efficient approach for optimizing a generic nonlin-
ear cost function subject to a query-specific struc-
tural constraint. Our approach enjoys strong the-
oretical guarantees on the convergence of a nearly
optimal solution and a low time complexity. For
the case study, we specialize the nonlinear func-
tion to several well-known graph scan statistics for
anomalous subgraph discovery. Empirical evidence
demonstrates that our method is superior to state-
of-the-art methods in several real-world anomaly
detection tasks.

1 Introduction

In recent years, graph-structure optimization for anomalous
subgraph discovery in high-dimensional data and graphs as an
open problem has attracted much attention [Qian et al., 2014;
Wu et al., 2016; Chen and Zhou, 2016; Chen and Neill, 2014,
Tong et al., 2007; McFowland et al., 2013; Gionis et al.,
2015]. In many settings, anomaly in high-dimensional data
presents a structure-specific shape, such as the cholera epi-
demic infection along a river [Patil et al., 2003]. To motivate
this scenario, consider the Botnet Infection problem [Choi et
al., 2009] as shown in Figure 1. Group activity presented in
a “specific” shape is an inherent property of bots attacking
on networks [Choi et al., 2009]. Therefore, we employ the
prior knowledge about the structure of cyber attacks as the
side information regularizing the generic nonlinear function
optimization in attributed graphs as follows.

min (x) s.t. supp(x) C M (1)

x€ER”
Given the graph G = (V, E) where V = [n] = {1,--- ,n}
and £ C V x V, based on attributes (e.g., “transfer rate”) for
each vertex v € V, the differentiable function ¢ is formulated
as R™ — R. The support set of x is supp(x) = {i|x; # 0}.
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Figure 1: Graph-structured optimization for the botnet infection net-
work discovery within the “transfer rates” attributed network under
the structure-specific query constraint.

The domain for Problem (1) is the structure-specific model
M = {Q1, -+ ,Qk} where Q; C [n] is derived from G
based on the “query graph”. The model M is a family of
structured support sets (e.g., its graphs are stars or trees).

Related work. Recent works solving Problem (1) fall
into two main categories: 1) Shape induced. By encod-
ing specific-shaped models (e.g., connectivity) [Bach er al.,
2011] as structured sparsity-inducing norms, the methods
can reformulate Problem (1) as a convex (or non-convex)
optimization problem: minyegn ©(x) + A - Q(x) where A
is a trade-off parameter and Q(x) is a structured sparsity-
inducing norm of M that is typically non-smooth and non-
Euclidean. These methods just focus on a connecting prop-
erty without the specific-shape. 2) Model-projection based.
The methods depend on a projection oracle of M: P(b) =
arg miny,egn ||x — b||3 subject to supp(x) € M, and de-
compose Problem (1) into two subproblems: minimizing the
unconstrained ¢ (x) and the projection oracle P(b). There
are many methods to solve Problem (1) under the assumption
that P(b) can be addressed exactly [Bahmani et al., 2013;
Jain et al., 2014; Yuan et al., 2014; Bahmani et al., 2016;
2013; Yuan and Liu, 2014; Hegde er al., 2015]. These meth-
ods are only applicable to quadratic functions subject to lin-
ear constraints. However, few works have investigated com-
binations of generic nonlinear functions and specific-shaped
constraints.

We present an approach for optimizing generic nonlinear
cost functions subject to structure-specific constraints, where
the constraints are formalized to query graphs. Then the out-
put subgraph is isomorphic to the query graph. By a proper
choice of the cost functions (-), our approach can be im-
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Figure 2: An illustration of our work. The attributed graph with n
vertices labeled 1, - - - , n, is described by the underlying graph G =
(V, E) and the attribute matrix W (i.e., the darker color denotes the
larger value for each vertex). The variables x, b, g € R" denote the
coefficients of vectors defined by G (i.e., V' = [n]); for example, g
is called the gradient vector.

plemented easily in different types of attributed graphs, such
as water sensor and emergency department networks. Main
contributions of this study are summarized as follows:

e Design of an efficient structure-specific subgraph dis-
covery algorithm. A new algorithm is proposed to
approximately solve Problem (1) where ¢ is a differ-
entiable nonlinear cost function. Over the structure-
specific model M, our proposed algorithm is required
to minimize (x) over a projected subspace supported
by the tree-shape projection oracle.

e Theoretical guarantees. The convergence rate and ac-
curacy of our proposed algorithm are analyzed under the
Weak Restricted Strong Convexity condition, which is
more general than the popular Restricted Strong Con-
vexity (RSC) condition. We prove that our proposed al-
gorithm enjoys rigorous theoretical guarantees.

e Compressive experiments to validate our approach
from the effectiveness and efficiency perspectives.
Our proposed algorithm is suitable for optimization of a
variety of graph scan statistics as the target for anomaly
specific-shaped subgraph detection. Extensive experi-
ments on a number of benchmark datasets demonstrate
that the algorithm performs better than the representative
methods for this task on both accuracy and run time.

2 Problem Formulation

Before the problem formulation for the anomalous subgraph
discovery in attributed graphs, we illustrate the three key con-
cepts by a case of anomalous subgraph discovery in Figure 2.

Attributed Graph. A network (e.g., computer network) can
be modeled as an attributed graph composed of the under-
lying graph G = (V, E) and attribute matrix W € R"*P,
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Figure 3: Tree-Shape Projection Oracle. First, we obtain the tree
approximation in the query graph, and then search maximum weight
paths in gradient or solution graphs, assemble paths to a tree that is
isomorphic to the tree query graph.

where n, p denote the number of vertices and attributes, V' =
[nland E C V x V, (e.g., W, ¢ denotes the “transfer rate”
of the vertex v at the attribute “0”).

Query Graph. Given a query Q = (V, E), we focus on the
query having a structure-specific shape (e.g., tree shape).

Match Model. A graph C is a subgraph of G, denoted as
CCG,if Vo C Vg, Ec C Eg andV(u,v) € Ec, u,v €
Ve. A graph C is isomorphic to a query graph Q, denoted as
C = Q, if there is a bijection ¢ : V¢ — Vp such that, for
every pair of vertices u,v € V¢, (u,v) € Eg if and only if
((u),¥(v)) € Eg. Given the underlying graph G and the
query graph Q, we present the structure-specific domain

M@Q) :={Vc |CCG,C=Q} 2)

The valid domain M(Q) illustrates all vertex subsets of G
whose shapes are same to the query graph Q.

Anomalous Structure-Specific Subgraph Discovery. We
aim to obtain S € M(Q) for minimizing the cost function
over the domain. Given G, we assume that Vg = {1,--- ,n}.
The vector form of Vf; is denoted as x € R™, and the support
set of x in Vg is denoted as supp(x) = {i | x; # 0}. Thus
this problem is formulated as

fel]iRr}l p(x)  s.t. supp(x) € M(Q) (3)

where () is a differentiable nonlinear cost function modeled
from the attribute matrix W. Figure 2 illustrates our problem
through an attributed computed network and a query graph.
There exist multiple matchings of the guery in the network.

3 Preliminary: Tree-Shape Projection Oracle

For Problem (3), the gradient or solution vector of the func-
tion may fall into the invalid domain. We present the work on
projecting a vector variable into the valid domain.

Given the query graph Q, the underlying graph G, the
match model M (Q), and the vector g, the projection oracle,
P :R™ — Vg, is defined as

st.SeM@Q 4

where gg denotes the restriction of g to indices S so that
(gs); = g; fori € S and (gs); = O otherwise. There are
many works about solving Problem (4) with high time com-
plexity. For a general query graph, we present a simple oracle
to Problem (4) in Figure 3. This oracle consists of two main
steps, query decomposition and projection.

P(g) = argmax||gs|[1
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Query decomposition. Wu et al., looked at approximat-
ing arbitrary query graph metrics by a tree shaped prior (e.g.,
spanning tree) [Wu et al., 2016]. By a prior, we generate a
spanning tree of the query graph. From the root of the tree,
we collect a set of query paths terminated with leaf nodes.

Projection. Each vertex v € V is assigned with the value
g,. We search the maximum-weight paths from a root vertex
v in G for all of query paths, on condition that the assembled
paths are isomorphic to the tree of the query graph. The con-
dition is easily satisfied by caring for “share nodes” (i.e., a
share node exists in multiple query paths). Within all paths
for v € Vg, we select the maximum weight assembled paths
as the target structure-specific graph, whose set of nodes is .S.

4 Methodology

We propose a new graph-structured optimization method for
nonlinear cost functions and discuss its theoretical properties.

4.1 Graph Tree-shape Projection Pursuit
Algorithm (Graph-TPP)

The algorithm described here iterates on the solution vector
for Problem (3). For each iteration, we first obtain the most
significant support set within the valid domain for the gradi-
ent of the cost function at the current solution. Then we refine
the solution over the significant support set of gradient and the
previous solution. Graph-TPP is illustrated in Algorithm 1 in
detail, where each iteration consists of six steps.

Projection. For a gradient V(x*) or a solution vector
b, we identify the most significant support set (i.e., the set
maximizing Problem (4)) within the valid domain.

Support. First we calculate the projected gradient descent
at the current x* with step-size 1) (1 by default). Then the sup-
port set € is obtained and can be interpreted as the subspace
where the nonconvex set {x | supp(x) C Q} is located.

Estimate. Over the support set €, let Q¢ = Vg \ €, the
function ¢ is minimized to make an intermediate estimate b.

Prune. This step (Line 7) calculates the next solution vec-
tor x’*t!: x’*! = bg, which retains the most significant
structured-entries in b.

We have two popular options for defining the halting cri-
terion: (1) the difference between the score functions is less
than a threshold |p(x") —p(x*T1)| < €; and (2) the difference
between the vectors is less than a threshold ||x? —x**1||; < €
(e.g., e =0.01).

Discussion: The projection problem is hard to solve due to
the NP-hard subgraph isomorphism problem. For connected
subgraph detection, work [Wu er al., 2016] yielded com-
pelling results by tree shape priors (e.g., spanning tree). For
a general query graph, we employ the tree-shape projection
oracle to perform graph matching, which is different from the
previous work that has head and tail projections [Chen and
Zhou, 2016]. We focus on the isomorphic subgraph discov-
ery; however, the work [Chen and Zhou, 2016] focuses on the
connected subgraph discovery.

4.2 Theoretical Analysis

The theoretical properties of Graph-TPP are examined in two
aspects: Studying convergence rate, and time complexity. Be-
fore obtaining the theoretical results, we require the following

Algorithm 1: Graph-TPP

Input: Attribute W, underlying graph G, query graph Q
and step size 7 (1 by default)

Result: Vertex set of structure-specific subgraph S

Seti=0,x'=0;

1

2 repeat

3 I =P(Ve(x)); > Projection
4 Q = supp(x’ — nVre(x?)); > Support

5 b = arg minygern ¢(x) s.t. xge = 0;> E'stimate

6 S = P(b); > Projection
7 x'tl = bg; > Prune

8 141+ 1;

9 until halting condition holds;

10 return S;

key technical condition, under which the results are guaran-
teed. Let s = |Vg|.

Definition 1 (Weak Restricted Strong Convexity Property
(WRSQ)). Let M = {S | S C [n],]|S| < 2s}, and there
must be S € M if S € M(Q). The differentiable function ¢
has the condition (&, 6, M)-WRSC if Vx,y € R", VS € M
with supp(x)Usupp(y) C S, forsome £ > 0and 0 < § < 1.

l[x =y —EVsp(x) +EVsp(y)llz < dllx—yll2 (5

Theorem 1 (Graph-TPP Convergence). Given an at-
tributed graph W, G and a query graph Q, we obtain the do-
main M. Consider the differentiable cost function ¢ : R™ —
R that satisfies the condition (¢,5, M)-WRSC. Let x* € R™.
Then for any true x* € R™ and supp(x*) € M(Q), the iter-
ation of Algorithm 1 holds

™ —x*[l2 < allx" = x"||l2 + Bl Viex )2 (©)

where o = %(2\/6—62 +2-3i+1- g) B =
%(f-&- % + % +2(1 — \/577)) x* is the
optimal solution, and I = arg maxsem ||Vsp(x*)||2. The
shrinkage rate o < 1 controls the convergence of Graph-TPP.
(Proof: see Appendix)

The estimation error of Graph-TPP depends on the multi-
pliers of ||Vs@(x*)||2. Before reaching the estimation er-
ror level, Graph-TPP geometrically converges to the near-
optimal x*. Especially, when ||V o(x*)||2 = 0, Graph-TPP
guarantees that the true x* is obtained within finite iterations.

Theorem 2 (Graph-TPP Time Cost). Given o < 1,
supp(x*) € M(Q) and the function ¢ satisfies the WRSC
condition, Graph-TPP in Algorithm 1 returns a x such that

|Ix* — %[|2 < (1 + 122)||V1p(x*)||2. The estimation error
is less than a constant. Graph-TPP runs in time

O(T log(|1x"|2/I1V1(x)ll2)) (7

where T is the time cost of execution for one iteration in Al-
gorithm 1. If T can scale linearly with n, then Graph-TPP
scales nearly linearly with n. (Proof: see Appendix)
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4.3 Application to Graph Scan Statistics

We specialize o to be a number of graph scan statistics that
are widely employed in pattern detection in graphs.

Graph Scan Statistic. First select a graph C C G and
C = Q. Then a graph scan statistic is defined as F(V¢) =

log LrgteataLe) that is the log-likelihood ratio statistic

over all matching subgraphs of G. For the null hypothesis
Hy, we assume no anomaly structure-specific subgraphs (i.e.,
all the observed data are generated from the expected distri-
bution). However, for the alternative hypothesis H; (V¢), we
assume the observed data in the subgraph C show a signifi-
cant increase in, such as the number of visiting patients, for
some multiplicative factors. At last the detection problem is
formulated as: mincce —F(Ve) s.t. Ve € M(Q).

Let p(x) = —F(V¢). Denote the vector form of V¢ as
x € {0,1}", such that supp(x) = V¢ where x can be relaxed
to x € [0,1]™ [Chen and Zhou, 2016]. We mainly examine
 in Equation (8) to log forms of expectation-based Poisson
(EBP) and Kulldorff’s (KULL) graph scan statistics. Letc =
'W. ; denote the “observed count” attribute values. Similarly,
let d = W. ; denote the “expected count” attribute values.

eepp(x) = —x"clog (x"c /x"d) —x"d+x"¢c
pruin(x) = —xTclog (xTe /xTd) — (1-x)Tc  (3)
log (1—x)"c/(1—x)"d)
where x € [0,1]". Let # = min{d;/c;} for i € Vg.

By [Yuan and Liu, 2014], ogpp satisfies the WRSC con-
dition that § = v/1 — 2€(1 — 72) + €2 for & < 2(1 — 72).

5 Experiments

We compare the effectiveness and efficiency of our method
Graph-TPP with respect to competitive methods.

5.1 Experimental Design

1) Respiratory Emergency Department (ED) Dataset. Given
a grid network which consists of 10,000 nodes and 14,850
edges, we consider each node as a zip code. For each node
v € V, we collected the T day period of respiratory ED visit
data D, € RT (e.g., T = 28), where especially the time
t = 0 denotes the current day. During non-outbreak period,
the number of patients visiting ED in v is simulated with the
Poisson distribution [Neill, 2009], i.e., D! < Poisson(u) for
t = 0,---,T where p denotes the expected number of pa-
tients visiting ED in v on those days and p is randomly se-
lected from {1,---,34}. We randomly select the outbreak
duration of U days from {1,---,7}. On each day t €
{0,---,U} of the outbreak, we inject Poisson((T" — ¢)w,A)
cases into each infected node v where w, o« Y., Di is
normalized so that the total weight equals to 1 in infected
zips and A denotes the outbreak severity (e.g., A=800), i.e.,
D! + D! + Poisson((T — t)w,A) fort = 0,--- ,U. We
performed a simulation for this dataset with medium-size in-
jects affecting 10 percent nodes, which consist of the ground-
truth connected target subgraph [Neill, 2009]. We simulated
500 graph snapshots. For testing the robustness of methods
to noise, we randomly selected K € {2,4,6,8,10} percent
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nodes in this network, and flipped their values (i.e., no inject
outbreak cases if the nodes are infected, inject outbreak cases
otherwise). Let ¢, = D and d, = 7 Zle D!. 2) Water
Pollution Data. These data were collected on the real-world
network of 12,527 nodes and 14,831 edges, and there were
four nodes with chemical contaminant plumes, distributed in
four different areas [Chen and Zhou, 2016]. “The spreads of
contaminant plumes were simulated using the water network
simulator EPANET for 8 hours” [Chen and Zhou, 2016]. For
each hour, the value at each node v was reported with the cor-
responding sensor, D, < 1 if it is polluted and D,, < 0 oth-
erwise. We randomly selected K percent nodes, and flipped
their sensor binary values for testing the robustness of meth-
ods to noises, where K € {2,4,6,8,10}. We considered
the assigned attributed graphs as ¢, < D, (i.e., the re-
port of the sensor at the node v) and d, + K% (i.e., the
noise ratio) [Chen and Zhou, 2016]. 3) Real-World Network
Dataset. An Internet company' provided a traffic network of
131,107 nodes and 358,386 edges derived from *edu.cn web
sites browsing logs. The total 3,978,073 logs were collected
from May 31, 2014 to May 13, 2015. For a day ¢ during this
period and a node v in this network, we denoted the num-
ber of logs within v on that day ¢ as the observed value, and
the average number of logs within v before ¢ as the expected
value. We have a graph snapshot for each day.

Comparison Methods. We considered two state-of-the-
art methods: Top-K [Gupta et al., 2014] and Fast-K [Yang et
al., 2016]. The main idea behind the methods is as follows:
Given a query graph Q and an attributed graph G, the goal
is to find top k subgraphs that are matched to Q and have
the highest ranking scores by a ranking function (e.g., sum-
ming vertex weights for Fast-K and edge weights for Top-K).
From the k subgraphs, we selected the top one subgraph as
the anomalous subgraph. By author recommendations, set
k = 10 for Top-K, and k = 20 for Fast-K. Let the vertex
weight w(v) < W, . As the Top-k method is applied to
edge weights, we replicated each node v to v" and added edge
(v,v") to G. We set the weight of edge (v,v") to w(v) for a
pair of original node and replicate node, and set the weight of
edge (v,v’) to 0 otherwise. For Top-k method, return the sub-
graph by removing replicate nodes and corresponding edges.

Performance Metrics. 1) Effectiveness: Precision. We
compute the precision of the target subgraph (i.e., the ratio
of the number of correct anomalous nodes and the number of
nodes). As the size of returned target subgraph is fixed, we
ignore the recall metric. 2) Efficiency: Graph Scan Statis-
tic Score and Running Time. The optimization power of our
method is analyzed through the scores and running times. 3)
Case Study. We present some cases to illustrate our method.

5.2 Effectiveness

As the size of detected subgraph is fixed for the graph iso-
morphism constraint, we focus on the precision of methods
in Figure 4. By evaluating methods to three typical query
graphs in the left sub-figure of Figure 4 [Du and Yang, 2011;
Yang et al., 2014; Kim et al., 2015; Pan et al., 2013], we

' An Internet security company in China with more than 0.6 bil-
lion users.
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Figure 4: Query graphs Q1, Q2 and Q3. Comparison on precision of structure-specific anomalous subgraphs discovered by methods, run

times and graph scan statistic scores, (e.g., 2% refers to the noise level).
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(e) Cyber-Attack on March 10, 2015 by Graph-TPP (KULL)

Figure 5: Given the query graphs Q1 and Q2, we present the structure-specific cyber-attack detection networks, on January 14, 2015 and
March 10, 2015, in the *.edu.cn networks. The darker yellow area represents the Dedecms Attack, and the lighter yellow area represents the
FckEditor Attack. The bold text represents an attack source or an attack object.

can observe precision in the middle sub-figure of Figure 4.
The query graph Q; shows the star-shape, which means that
a node infects its neighbors, and Q5 denotes a many-infect-
many case. The query graph Q3 denotes the infection from
one star-shape area to another neighbor star-shape area.

In Figure 4, we present a comparison of precision for meth-
ods in these two data sets in detail. For the emergency data,
at the 2 percent noise level, our proposed Graph-TPP (i.e.,
wrpp and @xrr) achieved higher precision (close to 1)
than competitive baselines (close to 0.9). However, even at
10 percent noise level, our methods achieved at least 0.58 pre-
cision, and baselines achieved the best precision to 0.5. Es-
pecially for Q; and Qs, the precision of baselines decreases
sharply to about 0.43 with the noise increasing, but the pre-
cision of pppp is greater than 0.68. For the water pollution
data, Graph-TPP and Fast-K perform similarly in Q; and Qo,
but perform better than Top-K. However, in Q3, the worst pre-
cision 0.88 for Graph-TPP (¢gpp) is greater than the best
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precision 0.87 for baselines. Our methods outperformed all
the baselines on precision in both of datasets.

5.3 Efficiency

Right sub-figures of Figure 4 depicts the scores of graph scan
statistics (EBP and KULL) changing with the iteration. The
score corresponds to the graph scan statistic (V). We can
observe that our proposed Graph-TPP has converged at most
five iterations. According to Theorem 1, our methods geo-
metrically converge to the near-optimal stationary point.

The table of Figure 4 shows the time cost of all compet-
itive methods on the two datasets. We can observe that the
running times of Graph-TPP (EBP and KULL) are approxi-
mately equal in the two datasets. Although Fast-K performed
well on the run time, it is a heuristic algorithm. Our methods
enjoy a rigorous theoretical guarantee. In particular, for the
water pollution data, the run time of Graph-TPP is close to
the Fast-K method.
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5.4 Case Study

We tested our methods Graph-TPP on the real-world network
dataset for the star and bipartite shaped attack patterns.

Star-shaped attack case. From the left star-shaped sub-
figures of Figure 5(b-e), the left subfigure of Figure 5(b)
is a Dedecms Attack® network, and the left subfigure of
Figure 5(e) is a FckEditor Attack® network. Our meth-
ods successfully discovered the cyber-attack networks with-
out innocent nodes. The difference between the two net-
works is that the client X.X.74.39 attacked the other server
sites x.hlu.edu.cn and 0517edu.cn; however, the server site
www.hlu.edu.cn was attacked by four clients. These cyber-
attack patterns are the most common forms in networks. For
the left subfigures of Figure 5(c, d), our method detected the
attack client X.X.7176.66 and most of the attacked server sites.

Bipartite-shaped attack case. In Figure 5(b-e), the right
subfigures are bipartite-shaped cyber-attack networks. In
the right subfigures of Figure 5(b-c), Graph-TPP (EBP and
KULL) detected the same cyber-attack network. In the right
subfigures of Figure 5(d-e), Graph-TPP (KULL) detected the
cyber-attack network without innocent nodes, and Graph-
TPP (EBP) detected the cyber-attack network with one inno-
cent node X.X.55.47. As the client X.X.55.47 is replaced by
X.X.176.22, a new server site www.hlu.edu.cn attacked by the
four clients is discovered. For this case, Graph-TPP (KULL)
performs better than Graph-TPP (EBP).

In Figure 5(b-e), the variations of X.X.176.X contributed
to many cyber-attacks. The server site www.ncyzedu.cn is the
innocent node in the right subfigures of Figure 5(b-c), and
this server site is not successfully attacked for removing the
common vulnerability. From Figure 5, we can observe that
Graph-TPP (EBP and KULL) works well on different sce-
narios. In this paper, we present a feasible framework Graph-
TPP to optimize a generic nonlinear function on the structure-
specific query graph constraints.

6 Conclusions

We present an efficient algorithm to optimize a general non-
linear function on the structure-specific constraints. For fu-
ture work, we will extend our work on large graphs, other
similarity measures (e.g., exploiting domain semantics), and
other types of attributes (e.g., categorical attributes).
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A Proof of Theorem 1
Proof. Let7it! = x*+1 _ x*_ Compute upper bound of the residual ||7**1||2.
e e = [l = x|l < |Ix = b2 + [|b = x7]|2
=|[lbs = bll2 +[[b—x"||2 ©
< 2[x" = bll2
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where as the support set of optimal x™ can be built from the space M(Q), bg is
restricted to the elements in b with the maximal score. Thus we have ||bgs — b||2 <
[|b — x™||2. Next we compute the upper bound of the component ||xg, — ba||2,

« 2 * -
lIxq — ball; =<x" —b,x5 —ba >

=<x" —b —EVap(x") + EVap(b), x5 —bo > + < EVap(x™), x5 — bo >

<8[lx" = bll2llxg — ballz + £l[Vae(x")ll2lxg — ball2
where Vo @(b) = 0 since b is minimized at Line 5 of Graph-TPP, and Property (5)
is applied. Then we have ||x&, — ba||2 < §]|x* — b||2 + £||Vae(x™)]|2.

As ||x* —b||2 < [|x8 — ball2 + ||x&He — bae||2, compute the upper bound.

ae — bacllz | €lIVae(x")ll2
<* —blls < [1xge 10
Il [l2 < 13 + 13 (10)
Let & = supp(x*) € M(Q). As Q = supp(x’ — nVrp(x*)), we obtain the
fact as follows. Eliminate the intersection ® N 2, we obtain

Ix" = nVre(x))all2 < [I(x" = 1Vre(x))all2

IIx" = nVrex)avallz < [[(x" = nVre(x')avell2
For the right-hand formula, we have
[(x* = nVre(x))aovellz <

IIx" = x" = nVre(x') + nVre(x)aell2 + 1l Vevae(x )l
where ||xg\ ¢ ||2 = 0. For the left-hand formula, we have
[1(x* = nVre(x))arallz > —nl|Vruae(x")ll2+
16" = x" =0 Vre(x') + nVre(x))ea + (" = b)acll>

where X3\ o = XGe and bge = 0. Let IT = ® U © — & N Q be the symmetric

difference of the sets @ and Q. We have that
[1(x™ = b)ac|l2

<V2||(x = x* = nVre(x") + nVrexNllz + 20| Vie(x)]||2
< V2||(x" — x* — EVro(x') + EVre(x")nll2+
V2(€ — n)|[(Vre(x') — Vee(x Dnllz + 20/ Viex*)||2
< V2||rpellz + V2I|(rf — EVrp(x") + EVro(x™))m|2+
V2((& = )1+ 8)/€) 17 ]2 + (2V2(€ — n) + 20)[|Vip((x)]|2
< V2|rpellz + V2((2 = 0/&)6 + 1 — n/&)[Ir'||2+
2(V26 4+ (1 = vV2) [[V1e(x)]]2

where the first inequality follows from the fact that, fora > O and b > 0,
(Va+vb)? <a+b+2Vab < 2(a+b)

Next analyze the upper bound of | |Tf~c\ |2.
[IVrex)ll2 2 [IVre(x') = Vre(x)llz = || Vee(x)]2
> (1= &||r 2/ = IVre(x")|2 > condition-WRSC
Let ¥ = supp(ri )- Inequalities on the other side,
[Vre)ll2 < (1/IEVre(x") = EVre(x)ll2 + [[Vre(x")]l2
= (1/8) - [16Vre(x') — £Vre(x") = rp + 7oll2 + || Vre(x ) |2
< (1/8) - [1EVrowe(x') = EVruwe(x") = rpgyllat
(1/€) - lIrpllz + [1Vee(x )] |2
< (8/€) - Ir'll2 + (1/€) - llrpllz + [V re(x™)]|2

where the third inequality satisfies the condition-WRSC and T%U\p = r%. With the
two bounds, we obtain the inequality. )
lIrpllz = (1= 28)]|r" |2 — 26[Vie(x")l]2

By applying the similar algebraic techniques in [Hegde et al., 2014] Page 11, we obtain

; 2¢ (1 —26)¢
rellz < 246 — 82||r" — |||V *
lIrfell2 < 2/ ||r||2+(1725+ Tz ) |IV1e0lle
Combining above inequalities, we prove this theorem. O

B Proof of Theorem 2

P VOOf The i-th solution x* in Algorithm 1 satisfies
B

l1-—«

" — x*[[2 < a'[|x7[]2 + Vo)l
5 (11
S A+ T=VreGNll2
-«
After the t = [log (||x*[|2/||Vre(x*)||2)/log(1/e)] iterations, Graph-TPP
returns a desired estimate X. As T is the time cost of execution for one iterate in Algo-
rithm 1, and the total iterations are [ log (||x*[|2/||V1o(x*)||2)/log(1/a)], we
prove this theorem over. O
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