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Abstract

Learning on Grassmann manifold has become pop-
ular in many computer vision tasks, with the strong
capability to extract discriminative information for
imagesets and videos. However, such learning al-
gorithms particularly on high-dimensional Grass-
mann manifold always involve with significantly
high computational cost, which seriously limits the
applicability of learning on Grassmann manifold in
more wide areas. In this research, we propose an
unsupervised dimensionality reduction algorithm
on Grassmann manifold based on the Locality Pre-
serving Projections (LPP) criterion. LPP is a com-
monly used dimensionality reduction algorithm for
vector-valued data, aiming to preserve local struc-
ture of data in the dimension-reduced space. The
strategy is to construct a mapping from higher di-
mensional Grassmann manifold into the one in a
relative low-dimensional with more discriminative
capability. The proposed method can be optimized
as a basic eigenvalue problem. The performance of
our proposed method is assessed on several classi-
fication and clustering tasks and the experimental
results show its clear advantages over other Grass-
mann based algorithms.

1 Introduction

Dimensionality reduction (DR), which extracts a small num-
ber of features from original data by removing redundant in-
formation and noise, can improve efficiency and accuracy in
a wide range of applications, involving facial recognition [He
et al., 2005; Xie et al., 2016], feature extraction [Luo et al.,
2016; Wang and Gao, 2016] and so on. The classic DR algo-
rithms include Locality Preserving Projections (LPP) [He et
al., 2005], Principal Components Analysis (PCA) [Bishop,
2006], Canonical Correlation Analysis (CCA) [Sun er al.,
2010] and Independent Component Analysis (ICA) [Comon,
1994]. Most existing DR algorithms are mainly designed to
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Figure 1: Conceptual illustration of the proposed unsupervised DR
on Grassmann Manifold. The Projected Grassmann points still pre-
serve the local structure of original high-dimensional Grassmann
manifold.

work with vector-valued data, which cannot be directly ap-
plied on multi-dimensional data or structured data (i.e., ma-
trices, tensors). Simply vectorizing such structured data to fit
vector-based DR algorithms may destroy valuable structural
and/or spatial information hidden in data. Therefore, how to
effectively and properly reduce the dimensionality of struc-
tured data becomes an urgent issue in the big data era.

In practical application tasks such as those in computer
vision, except for well-structured data like matrices or ten-
sors, there exist data which are manifold-valued. For ex-
ample, in computer vision, the movement of scattered key-
points in images can be described by subspaces, i.e., the
points on the so-called Grassmann manifold [Absil er al.,
2008]; and the covariance feature descriptors of images
are SPD manifold-valued data [Pennec et al., 2006]. How
to design learning algorithms for these two types of spe-
cial manifold-valued data has attracted great attention in the
past two decades [Huang et al., 2014; Faraki er al., 2015;
Jayasumana et al., 2015]. For our purpose in this paper, we
will briefly review some recent progress about DR algorithms
for structured and manifold-valued data.

For a clear outline, we start with PCA. PCA is the most
commonly used DR algorithm for vectorial data. The basic
idea of PCA is to find a linear DR mapping such that as much
variance in dataset as possible is retained. The classic PCA
has been extended to process two dimensional data (matri-
ces) directly with great success [Yang et al., 2004] (2DPCA).
Wang et al. [2008] consider the probabilistic 2DPCA algo-
rithm including the algorithm for the mixture of local proba-
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bilistic 2DPCA. To identify outliers in structured data, Ju et
al. [2015] introduce the Laplacian distribution into the prob-
abilistic 2DPCA algorithm.

Contrary to the global variance constraint in PCA-alike
algorithms, LPP focuses on preserving the local structure
of original data in the dimension-reduced space. The first
work of extending LPP for 2D data was proposed in [Chen
et al., 2007], which is operated directly on image matrices.
The experimental results show that 2DLPP performs better
than 2DPCA and LPP. Xu er al. [2009] propose a super-
vised 2DLPP by constructing a discriminative graph of la-
beled data. To reduce the high computational cost of 2DLPP,
Nyuyen et al. [2008] improve 2DLPP by using the ridge re-
gression.

However, the aforementioned DR algorithms for matri-
ces are concerned in terms of Euclidean alike distance. Al-
though the Riemannian structure has been shown to overcome
the limitations of Euclidean geometry of data [Pennec et al.,
2006; Hamm and Lee, 20081, the computational cost of the
resulting techniques increases substantially with the increas-
ing dimensionality of manifolds (i.e., the dimension of its em-
bedding space). To the best of our knowledge, few attention
has been paid on DR for Riemannian manifold.

Harandi er al. [2014] extend PCA onto SPD manifold by
employing its Riemannian metrics, and then incorporate a
discriminative graph of the labeled manifold data to achieve
a supervised DR algorithm for SPD manifold. Recent re-
search has shown that the Grassmann manifold, another type
of Riemannian matrix manifold, is a good tool to represent
videos or imagesets [Wang et al., 2012; Harandi er al., 2013;
Harandi et al., 2015; Wang et al., 2016]. In a newly pro-
posed supervised metric learning on the Grassmann manifold
[Huang er al., 2015], an orthogonal matrix that maps the orig-
inal Grassmann manifold into a more discriminative one is
learned from data. In handling Grassmann-valued data, one
usually employs one of three ways: embedding into a Hilbert
feature space defined a Grassmann kernel function [Harandi
et al., 2011]; or embedding into the symmetric matrix man-
ifold (a plain Euclidean space) [Wang er al., 2016]; or pro-
jecting data onto tangent spaces (extrinsic way) [Harandi et
al., 2013]. However the performance of all these ways can
be hindered by the high dimensionality of given Grassmann
manifold. It has become critical to reduce the dimensionality
of Grassmann data.

Motivated by [Huang et al., 2015], we learn a projected
matrix to reduce the dimensionality of Grassmann manifold
in this paper. To fulfill the goal, we extend LPP local cri-
terion onto Grassmann manifold through embedding Grass-
mann manifold into a symmetric matrices space [Harandi et
al., 2013] such that the local structure of original Grassmann
data can be well preserved in the newly projected Grassmann
manifold. Figure 1 illustrates that a projected matrix A is
introduced to map the original high-dimensional Grassmann
manifold into the one in a relative low-dimensional with more
discriminative capability, which still preserves the structure
of original Grassmann points.

The contribution of this paper is summarized as follows,

e A novel unsupervised DR algorithm in the context of
Grassmann manifold is introduced. The DR is imple-

mented by learning a mapping to a Grassmann manifold
in a relative low-dimensional with more discriminative
capability;

o The proposed method generalizes the classic LPP frame-
work to non-Euclidean Grassmann manifolds and only
involves the basic eigenvalue problem; and

We briefly review some necessary knowledge about LPP
and Grassmann manifold in next section.

2 Backgrounds
2.1 Locality Preserving Projections (LPP)

LPP uses a penalty regularization to preserve the local struc-
ture of data in the new projected space.

Definition 1 (Locality Preserving Projections) [He  and
Niyogi, 2003] Let X = [x1,...,xx] € RP*N be the data
matrix with N the number of samples and D the dimension
of data. Given a local similarity W = [w;;] among data
X, LPP seeks for the projection vector a such that the pro-
jected value y; = a”x; (i = 1,...,N) fulfills the following
objective,

N N
main Z (aTx; — alx;)? w;; = Z a’XLX"%a, (1)
i,j=1 Q=1
with the constraint condition,
yDy! = a’XDX%a =1, 2)

wherey = [y1,...,yn]), L = D — W is the graph Laplacian

N
matrix and D = diag|d;;| with d;; = ), wj;.
=1

A possible definition of W is suggested as follows:

_limxg0?
e t
Wij = ’
0,

where t € R and NV(x;) denotes the k nearest neighbors of
x;. With the help of W, minimizing LPP objective function
(1) is to ensure if x; and x; are similar to each other, then the
projected values y; = a’x; and y; = a’'x; are also similar.
We can further find d more projection vectors so that the data
dimension D can be reduced to d.

X; EN(Xj) or X EN(XZ'); (3)

otherwise.

2.2 Grassmann Manifold and its Distances

Definition 2 (Grassmann Manifold) [Absil et al., 2008] The
Grassmann manifold, denoted by G(p,d), consists of all
the p-dimensional subspaces embedded in d-dimensional Eu-
clidean space R% (0 <p<d).

For example, when p = 0, the Grassmann manifold be-
comes the Euclidean space itself. When p = 1, the Grass-
mann manifold consists of all the lines passing through the
origin in R%.

As Grassmann manifold is abstract, there are a number of
ways to realize it. One convenient way is to represent the
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manifold by the equivalent classes of all the thin-tall orthog-
onal matrices under the orthogonal group O(p) of order p.
Hence we have the following matrix representation,

G(p.d) = {X €eRP?: XTX =L}/O(p). (4

We refer a point on Grassmann manifold as to an equivalent
class of all the thin-tall orthogonal matrices in R?*P, anyone
in which can be converted to the other by a p x p orthogonal
matrix.

There are two popular methods to measure the distance
on Grassmann manifold. One is to define consistent metrics
in tangent spaces to make Grassmann manifold a Rieman-
nian manifold. Another is to embed the Grassmann manifold
into symmetric matrices space where the Euclidean metric is
available. The later one is easier and more effective in prac-
tice, therefore, we use the Embedding distance in this paper.

Definition 3 (Embedding Distance) [Harandi et al., 2013]
Given Grassmann points X1 and Xo, Grassmann manifold
can be embedded into symmetric matrices space as,

IT: G(p,d) — Sym(d), T[(X)=XX", 6))

and the corresponding distance on Grassmann manifold can
be defined as,

1
dist2 (X1, X5) = QHH(Xl) — I(Xy) | - (6)

3 The Proposed Method

In this section, we propose an unsupervised DR method for
Grassmann manifold that maps a high-dimensional Grass-
mann point X; € G(p,D) to a point in a relative low-
dimensional Grassmann manifold G(p, d), D > d. The map-
ping G(p, D) — G(p, d) to be learned is defined as,

Y, = ATX,, (7)

where A € RP*4. To make sure that Y; € R¥*? is well-
defined as the representative of the mapped Grassmann point
on lower dimension manifold, we need impose some condi-
tions. Obviously, the projected data Y; is not an orthogonal
matrix, disqualified as a representative of a Grassmann point.
To solve this problem, we perform QR decomposition on ma-
trix Y; as follows [Huang et al., 2015],

Y; = A"X; = QiR;

. (8)
= Q= AT(X;R; ') = ATX,,

where Q; € R%*? is an orthogonal matrix, R; € RP*P is
an invertible upper-triangular matrix, and X; = XiR; le
RP*P denotes the normalized X;. As both Y; and Q; gen-
erate the same (columns) subspace, the orthogonal matrix

Q; (or ATX;) can be used as the representative of the low-
dimensional Grassmann point mapped from X,.

3.1 LPP for Grassmann Manifold (GLPP)

2, L .
The term (a’x; —a’x;)” in LPP objective function (1)
means the distance between the projected data a’x; and

aij; therefore, it is natural for us to reformulate the classic
LPP objective function on Grassmann manifold as follows,

N N
min Y dist)(Qi, Q) - wij = Y disty (ATX;, ATX;) - wj
ij

ij
)
where w;; reflects the similarity between original Grassmann
points X; and X, and the distance disty(-) is chosen as the
Embedding distance (6). Hence

distZ(ATX;, ATX;) = [ATX,XTA - ATX,;XTAl3
= |ATG;A|F,

where G;; = X; X7 — X; X7, which is a symmetric matrix
of size D x D. Thus, the objective function (9) can be re-
written as, termed as GLPP,

N
. T 2
min ..Zl A" G A - wgj. (10)
)=
The next issue is how to construct the adjacency graph W
from the original Grassmann points. We extend the Euclidean
graph W onto Grassmann manifold as follows,

Definition 4 (Graph W on Grassmann manifold) Given a
set of Grassmann points {X, ..., X}, we define the graph
as

wi; = efdl‘Stf](Xi.,Xj) (a1
where w;; denotes the similarity of Grassmann points X; and
X;.

In this definition, we may set dist,(X;,X;) to any one
valid Grassmann distance. We select the Embedding distance
in our experiments.

3.2 GLPP with Normalized Constraint

Without any constraints on A, we may have a trivial solution
from problem (10). To introduce an appropriate constraint,
we have to firstly define some necessary notations. We split

the normalized Grassmann point X; € RP*P and the pro-
jected matrix Q; € R%*P in (8) into their components

Qi = [qi1, - Qip) = [ATXi1, ..., ATX,)) = ATX,
where g;; € R? and x;; € R with j = 1,2, ..., p. For each
j (1 <5 < p), define matrix

Qj = [q1j7q2ja "'anj} € RdXN
and o
X7 = [§1j,i2j, ---;;(Nj] S RP*N
That is, from all N normalized Grassmann points Q; (or all

N normalized Grassmann points X;), we pick their j-th col-
umn and stack them together. Then, it is easy to check that

Q' =ATXI.
For this particularly organized matrix Q/, considering the
constraint condition similar to formula (2),

r(QDQT) = w(DQTQ) = tr (DXJ’TAATXJ) .
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Hence, one possible overall constraint can be defined as
p ~ . ~ .

tr (DXJTAATXJ) —1.
=1

J

Rather than using the notation X7, we can further simplify it
into a form by using original normalized Grassmann points

X;. A long algebraic manipulation can prove that

N
itr (DXiTAATXj) —r <AT <Z d“vf(if(iT> A) .
1=1

J=1

Hence, we add the following constraint condition

N
i=1

Define H = Zf;l d”f(l)N(ZT, then the final constraint condi-
tion can be written as,

tr(ATHA) = 1. (12)

Combining the objective function (10) and constraint condi-
tion (12), we get the overall GLPP model,
N
. T T
min > IATGAG - wi; st w(ATHA) =1 (13)

4,J=1

Algorithm 1 LPP for Grassmann manifold.

Input: Grassmann points {X;}¥ ;, X; € G(p, D).
Output: The mapping A € RP*,

Iixa
random elements |
2: Calculate graph W of original Grassmann data X; ac-
cording to the formula (11).
3: while not converged do

4:  Normalize X; by using ngﬂ) = ng)ng)il where

1: Initialize: Set the parameter A(0) =

T (k k) (k
AT~ QPR®. T
5.  Compute GE;CH) Xz(-kH)XEkH)
i§k+1)}~(§_k+1)T and Fk+1) _

N ~ ~ T
X EFOF DT
6:  Optimize A1) in equation (13) by solving an gen-
eralized eigenvalue problem.
7: end while

In next section, we propose a simplified way to solve prob-
lem (13) which is quite different from most Riemannian man-
ifold based optimization algorithms such as in the Rieman-
nian Conjugate Gradient (RCG) toolbox.

4 Optimization

In this section, we provide an iteration solution to solve the
optimization problems (13). First we write the cost function
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as follows
N
f(A) = Z tr (ATG;;AATG;A) - wy;.
i,j=1

For ease, we redefine a new objective function fy, in the k—th
iteration by using the last step A(*~1) as the following way,

N
frA) =3 wy -t (ATGZ-]-A(’“_”A(’“_DTG”-A)

4,j=1

N
=1tr AT Z wijGijA(kil)A(kil)TGijA
Q=1
(14
Denoting

N
J=) w;Gi;APVAKITG,;,

4,J=1

where G;; is calculated according to A =1 through both X;
and X ;. Then the simplified version of problem (13) becomes

min tr(ATJA), st tr(ATHA) = 1. (15)
The Lagrangian function of (15) is given by

tr(ATIA) + A1 — tr(ATHA)), (16)
which can be derived to solve and translated to a generalized
eigenvalue problem,

Ja = \Ha.

Obviously, matrices H and J are symmetrical and positive
semi-definite. By performing eigenvalue decomposition on
H~'J, the transform matrix A = [aj,...,a4] € RP*? s
given by the minimum d eigenvalue solutions to the general-
ized eigenvalue problem.

We summarize the whole procedures as Algorithm 1.

S Experiments

In this section, we evaluate our proposed method GLPP on
several classification and clustering tasks, respectively.

5.1 Experimental Settings

Datasets

Extended Yale B dataset' is captured from 38 subjects and
each subject has 64 front face images in different light direc-
tions and illumination conditions. All images are resized into
20 x 20 pixels.

Highway Traffic dataset® contains 253 video sequences of
highway traffic. These sequences are labeled with three lev-
els: 44 clips at heavy level, 45 clips at medium level and 164
clips at light level. Each video sequence has 42 to 52 frames.
The video sequences are converted to gray images and each
image is normalized to size 24 x 24.

"http://vision.ucsd.edu/content/yale-face-database
“http://www.svcl.ucsd.edu/projects/traffic/
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Methods | Num of samples Num of clusters D d r X; Q;
Extended Yale B 297 38 400 62 095 G(4,400) G(4,62)
Highway Traffic 253 3 576 163 095 G(10,576) G(10,83)

UCF Sport 150 13 900 405 0.95 G(20,900) G(20,405)

Table 1: Parameters list. Parameters d and r denote the reduced dimensionality and the remaining energy rate. X, and Q; represent the
original high-dimensional Grassmann manifold and the new low-dimensional Grassmann manifold, respectively.

Figure 2: Some samples from different datasets. (a) Extended Yale B
dataset. Each row denotes an image set sample which contains 8 face
images captured from different light directions and illuminations;
(b) Highway Traffic dataset; (c) UCF sport dataset.

UCF sport dataset® includes a total of 150 sequences. The
collection has a natural pool of actions with a wide range of
scenes and viewpoints. There are 13 actions in this dataset.
Each sequence has 22 to 144 frames. We convert these video
clips into gray images and each image is resized into 30 x 30.

Figure 2 shows some samples from these three datasets.

Parameters and evaluation

The reduced dimension d is the most important parameter for
DR algorithms. Like PCA, we define d by the cumulative
energy of the eigenvectors, i.e. given the remaining energy
rate (0 < r < 1), d is defined as follows,

3http://crev.uct.edu/data/

100

90

80

70

> 60
o
c
5 50
Q
Q
< 40
30
20
—o— Extended Yale B
10 % ——Highway Traffic
—&—UCF Sport

I T T T T
0.7 0.75 0.8 0.85 0.9

Remaining Energy Rate r

0l© Y ‘
0.55 0.6 0.65

L L I I L
0.95 0.96 0.97 0.98 0.99

Figure 3: The experimental results of GKNN-GLPP corresponding
to the remaining energy rate r from 0.55 to 0.99.

- D
d =argmin{d* € N: Zai > TZO’i},
i=1

=1

where o; is the i-th largest eigenvalue of PP, in which we
stack all the Grassmann points P = [X;...; X v]. However,
for different datasets and applications, it is difficult to set a
proper 7 uniformly. For simplification and fairness, here we
set 7 = 0.95 in all our experiments.

The performance of different algorithms is evaluated by
Accuracy (ACC) and we also add Normalized Mutual In-
formation (NMI) [Kvalseth, 1987] as an additional evalua-
tion method for clustering algorithms. ACC reflects the per-
centage of correctly labeled samples, while NMI calculates
the mutual dependence of the predicted clustering and the
ground-truth partitions.

For the sake of saving space, we list all experimental pa-
rameters in Table 1. All the algorithms are coded in Matlab
2014a and implemented on an Intel Core i7-4600M 2.9GHz
CPU machine with 8G RAM.

5.2 Video/Imageset Classification

We firstly evaluate the performance of GLPP on classification
task, and we use K Nearest Neighbor on Grassmann manifold
algorithm (GKNN) and Dictionary Learning on Grassmann
manifold (GDL) [Harandi et al., 2013] as baselines,

e GKNN: KNN classifier based on the Embedding dis-
tance on high-dimensional Grassmann manifold;

o GKNN-GLPP: KNN classifier on low-dimensional
Grassmann manifold obtained by the proposed method;

2897
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Evaluation || Num of Samples ACC

Methods Training Testing | GKNN GKNN-GLPP GDL GDL-GLPP
Dataset Extended Yale B

38 sub 221 76 | 9474 1 1 1
Dataset Highway Traffic

3 sub 192 60 [ 70.00 76.67 65.00 70.00
Dataset UCF Sport

13 sub 124 26 | 53.85 61.54 61.54 65.38

Table 2: Classification results (in %) on different datasets. We also list the number of samples in the first two columns. The figures in boldface

give the best performance among all the compared methods.

e GDL: GDL on high-dimensional Grassmann manifold;

e GDL-GLPP: GDL on low-dimensional Grassmann
manifold.

Human facial recognition is one of the hottest topics in
computer vision and pattern recognize area. Affected by
various factors, i.e., expression, illumination conditions and
light directions, algorithms based on individual faces do not
achieve great experimental performance. Therefore, we test
our proposed method GLPP on classic Extended Yale B
dataset. We wish to inspect the proposed method on a practi-
cal application in complex environment; therefore we pick
the Highway Traffic video dataset which contains various
weather conditions, such as sunny, cloudy and rainy. UCF
sport dataset which contains more variations on scenes and
viewpoints can be used to examine the robustness of the pro-
posed methods in noised scenarios. In our experiments, each
video clip is regarded as an imageset.

To be fair, we set K = 5 for GKNN algorithm in all three
experiments, and the number of training and testing samples
are listed in the first two columns in Table 2, while other pa-
rameters can be found in Table 1 (i.e., D, d and r).

Experimental results for classification tasks are shown in
Table 2. Obviously, the experimental accuracy of GLPP-
based algorithms is at least 5 percent higher than the corre-
sponding compared methods in most cases. We distribute it
to LPP is less sensitive to outliers since LPP is derived by
preserving local information. The experimental results also
demonstrate that the low-dimensional Grassmann points gen-
erated by our proposed method reflect more discrimination
than on the original Grassmann manifold.

How to infer the intrinsic dimensionality from high-
dimensional data still is a challenging problem. The intrin-
sic dimensionality relies heavily on practical applications and
datasets. In our method, the reduced dimensionality d is de-
termined by the remaining energy rate r. Figure 3 shows that
there exist different optimal 7 or d for different datasets. Ex-
tended Yale B dataset contains much rich information (e.g.,
face contour, texture, expression, illustration conditions and
light directions) which has strong impacts on face recognition
accuracy. When the reduced dimensionality d is less than the
intrinsic dimensionality, the data in reduced dimensionality
may lose some useful discriminative information. Therefore,
the accuracy increases with larger reduced dimensionality in
a certain range, e.g., the remaining energy rate r from 0.6 to

Evaluation ACC NMI

Methods GKM GKM-GLPP | GKM GKM-GLPP
Dataset Extended Yale B

38 sub 56.57 80.47 [ 76.02 91.08
Dataset Highway Traffic

3 sub 64.43 73.52 [ 27.13 38.59
Dataset UCEF Sport

13 sub 50.00 57.33 [ 56.54 62.70

Table 3: Clustering results (in %) on different datasets. The fig-
ures in boldface give the best performance among all the compared
methods.

0.95 for Extended Yale B dataset. We find the optimal value
is r = 0.96. For the Traffic and UCF datasets, the simple
or static backgrounds occupy main area of images. The fore-
ground, e.g. car action and human action, is more valuable
information for classification. When the optimal reduced di-
mensionality d is achieved at relative small 7, here 0.7 and
0.8, the data in reduced dimensionality actually contain the
right information for Traffic and UCF data. In other words,
when the reduced dimensionality d is getting larger (> the in-
trinsic dimensionality), the information from the background
may lead to negative influence for the accuracy.

5.3 Video/Imageset Clustering

To further verify the performance of GLPP, we apply it on
clustering tasks, and select K-means on Grassmann manifold
(GKM) [Turaga et al., 2011] as the compared mathod,

e GKM : K-means based on the Embedding distance on
high-dimensional Grassmann manifold.

o GKM-GLPP: K-means on low-dimensional Grassmann
manifold obtained by our proposed method.

Table 3 shows ACC and NMI values for all algorithms.
Clearly, after drastically reducing dimensionality from D
to d (see Table 1) by our proposed method, the new low-
dimensional Grassmann manifold still maintain fairly higher
accuracy than the original high-dimensional Grassmann man-
ifold for all algorithms, which attests that our proposed DR
scheme significantly boosts the performance of GKM.
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6 Conclusion

In this paper, we extended the unsupervised LPP algorithm
onto Grassmann manifold by learning a projection from the
high-dimensional Grassmann manifold into the one in a rel-
ative low-dimensional with more discriminative capability,
based on the strategy of embedding Grassamnn manifolds
onto the space of symmetric matrices. The basic idea of LPP
is to preserve the local structure of original data in the pro-
jected space. Our proposed model can be simplified as a basic
eigenvalue problem for an easy solution. Compared with di-
rectly using the high-dimensional Grassmann manifold, the
experimental results illustrate the effectiveness and superi-
ority of the proposed GLPP on video/imageset classification
and clustering tasks.

Acknowledgements

The research project is supported by the Australian Research
Council (ARC) through the grant DP140102270 and also par-
tially supported by National Natural Science Foundation of
China under Grant No. 61390510, 61672071, 61632006,
61370119, Beijing Natural Science Foundation No. 4172003,
4162010, 4152009, Beijing Municipal Science & Technol-
ogy Commission No. Z171100000517003, Project of Beijing
Municipal Education Commission No. KM201610005033,
Funding Project for Academic Human Resources Develop-
ment in Institutions of Higher Learning Under the Jurisdic-
tion of Beijing Municipality No.IDHT20150504 and Beijing
Transportation Industry Science and Technology Project.

References

[Absil et al., 2008] P-A. Absil, Robert Mahony, and
Rodolphe Sepulchre. Optimization Algorithms on Matrix
Manifolds. Princeton University Press, 2008.

[Bishop, 2006] Christopher M. Bishop. Pattern Recognition
and Machine Learning (Information Science and Statis-
tics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[Chen et al., 2007] Sibao Chen, Haifeng Zhao, Min Kong,
and Bin Luo. 2D-LPP: A two-dimensional extension of
locality preserving projections. Neurocomputing, 70:912—
921, 2007.

[Comon, 1994] Pierre Comon. Independent component anal-
ysis, a new concept? Signal Processing, 36(3):287-314,
1994.

[Faraki et al., 2015] Masoud Faraki, Mehrtash T. Harandi,
and Fatih. Porikli. More about VLAD: A leap from Eu-
clidean to Riemannian manifolds. In CVPR, 2015.

[Hamm and Lee, 2008] Jihun Hamm and Daniel D. Lee.
Grassmann discriminant analysis: a unifying view on sub-
space-based learning. In /CML, 2008.

[Harandi et al., 2011] Mehrtash T. Harandi, Conrad Sander-
son, Sareh Shirazi, and Brian C. Lovell. Graph embedding
discriminant analysis on Grassmannian manifolds for im-
proved image set matching. In CVPR, 2011.

2899

[Harandi et al., 2013] Mehrtash T. Harandi, Conrad Sander-
son, Chunhua Shen, and Brain C. Lovell. Dictionary learn-
ing and sparse coding on Grassmann manifolds: An extrin-
sic solution. In ICCV, 2013.

[Harandi et al., 2014] Mehrtash T. Harandi, Mathieu Salz-
mann, and Richard Hartley. From manifold to manifold:
Geometry-aware dimensionality reduction for SPD matri-
ces. In ECCV, 2014.

[Harandi et al., 2015] Mehrtash T. Harandi, Richard Hartley,
Brian Lovell, and Conrad Sanderson. Sparse coding on
symmetric positive definite manifolds using Bregman di-
vergences. IEEE TNNLS, 27(6):1294-1306, 2015.

[He and Niyogi, 2003] Xiaofei He and Partha Niyogi. Lo-
cality preserving projections. In NIPS, 2003.

[He et al., 2005] Xiaofei He, Deng Cai, Shuicheng Yan, and
Hongjiang Zhang. Neighborhood preserving embedding.
In ICCV, 2005.

[Huang et al., 2014] Zhiwu Huang, Ruiping Wang,
Shiguang Shan, and Xilin Chen. Learning Euclidean-
to-Riemannian metric for point-to-set classification. In
CVPR, 2014.

[Huang et al., 2015] Zhiwu  Huang, Ruiping Wang,
Shiguang Shan, and Xilin Chen. Projection metric
learning on Grassmann manifold with application to video
based face recognition. In CVPR, 2015.

[Jayasumana et al., 2015] Sadeep Jayasumana,
Richard Hartley, Mathieu Salzmann, Hongdong Li,
and Mehrtash T. Harandi. Kernel methods on Riemannian
manifolds with Gaussian RBF kernels. I[EEE PAMI,
37(12):2464-2477, 2015.

[Ju et al., 2015] Fujiao Ju, Yanfeng Sun, Junbin Gao,
Yongli Hu, and Baocai Yin. Image outlier detection
and feature extraction via L1-norm based 2D probabilis-
tic PCA. IEEE TIP, 24(12):4834-4846, 2015.

[Kvalseth, 1987] Tarald O. Kvalseth. Entropy and correla-
tion : Some comments. IEEE TSMC Part C, 17(3):517-
519, 1987.

[Luo et al., 2016] Minnan Luo, Feiping Nie, Xiaojun Chang,
Yi Yang, Alexander Hauptmann, and Qinghua Zheng.
Avoiding optimal mean robust PCA/2DPCA with non-
greedy ¢;-norm maximization. In IJCAI, 2016.

[Nguyen et al., 2008] Nam Nguyen, Wanquan Liu, and
Svetha Venkatesh. Ridge regression for two dimensional
locality preserving projection. In ICPR, 2008.

[Pennec et al., 2006] Xavier Pennec, Pierre Fillard, and
Nicholas Ayache. A Riemannian framework for tensor
computing. IJCV, 66(1):41-66, 2006.

[Sun er al., 2010] Liang Sun, Betul Ceran, and Jieping Ye. A
scalable two-stage approach for a class of dimensionality
reduction techniques. In KDD, 2010.

[Turaga et al., 2011] Pavan Turaga, Ashok Veeraraghavan,
Anuj Srivastava, and Rama Chellappa. Statistical com-
putations on Grassmann and Stiefel manifolds for image
and video-based recognition. IEEE TPAMI, 33(11):2273—
2286, 2011.



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

[Wang and Gao, 2016] Qiangian Wang and Quanxue Gao.
Robust 2DPCA and its application. In CVPR, 2016.

[Wang et al., 2008] Haixian Wang, Sibao Chen, Zilan Hu,
and Bin Luo. Probabilistic two-dimensional principal
component analysis and its mixture model for face recog-
nition. Neural Computing and Applications, 17(5-6):541—
547, 2008.

[Wang et al., 2012] Rruiping Wang,  Huimin  Guo,
LArry S. Davis, and Qionghai Dai. Covariance dis-
criminative learning: A natural and efficient approach to
image set classification. In CVPR, 2012.

[Wang et al., 2016] Boyue Wang, Yongli Hu, Junbin Gao,
Yanfeng Sun, and Baocai Yin. Product Grassmann mani-
fold representation and its LRR models. In AAAI 2016.

[Xie et al., 2016] Liping Xie, Dacheng Tao, and Haikun Wei.
Multi-view exclusive unsupervised dimension reduction
for video-based facial expression recognition. In IJCAI,
2016.

[Xu et al., 2009] Yong Xu, Ge Feng, and Yingnan Zhao. One
improvement to two-dimensional locality preserving pro-
jection method for use with face recognition. Neurocom-
puting, 73(2009):245-249, 2009.

[Yang er al., 2004] Jian Yang, David Zhang, Alejandro F.
Frangi, and Jing-yu. Yang. Two dimensional PCA: A
new approach to appearance-based face representation and
recognition. /IEEE TPAMI, 26(1):131-137, 2004.

2900



