
Deep Neural Networks for High Dimension, Low Sample Size Data

Bo Liu, Ying Wei, Yu Zhang, Qiang Yang
Hong Kong University of Science and Technology, Hong Kong

{bliuab, yweiad, zhangyu, qyang}@cse.ust.hk

Abstract
Deep neural networks (DNN) have achieved break-
throughs in applications with large sample size.
However, when facing high dimension, low sample
size (HDLSS) data, such as the phenotype predic-
tion problem using genetic data in bioinformatics,
DNN suffers from overfitting and high-variance
gradients. In this paper, we propose a DNN model
tailored for the HDLSS data, named Deep Neural
Pursuit (DNP). DNP selects a subset of high dimen-
sional features for the alleviation of overfitting and
takes the average over multiple dropouts to calcu-
late gradients with low variance. As the first DNN
method applied on the HDLSS data, DNP enjoys
the advantages of the high nonlinearity, the robust-
ness to high dimensionality, the capability of learn-
ing from a small number of samples, the stability
in feature selection, and the end-to-end training. We
demonstrate these advantages of DNP via empirical
results on both synthetic and real-world biological
datasets.

1 Introduction
In bioinformatics, phenotype prediction using genetic vari-
ants suffers from the growing challenges of high dimensional-
ity and low sample size. Until 2008, biologists had identified
15 million genetic variants (single-nucleotide polymorphisms
or SNP) for Homo Sapiens. The number of recognized ge-
netic variants quadrupled in 2011 and increased to 150 mil-
lion in 2016. In contrast, only thousands of samples are avail-
able [Consortium, 2015]. This kind of high dimension, low
sample size (HDLSS) data is also vital for scientific discover-
ies in other areas such as chemistry, financial engineering, and
etc [Fan and Li, 2006]. When processing this kind of data, the
severe overfitting and high-variance gradients are the major
challenges for the majority of machine learning algorithms
[Friedman et al., 2000].

Feature selection has been widely regarded as one of the
most powerful tools to analyze the HDLSS data. Firstly,
selecting the optimal subset of features reduces the size
of feature space, thereby alleviating the risk of overfit-
ting. Secondly, new scientific knowledge can be discov-
ered through selecting features. For instance, selecting fea-

tures from genotype-cancer datasets helps accumulate the
knowledge of cancer-related genetic variants. However, se-
lecting the optimal subset of features is known to be NP-
hard [Amaldi and Kann, 1998]. Instead, a large body of
compromised methods for feature selection have been pro-
posed. Amongst them, a line of representative methods in-
cludes Lasso [Tibshirani, 1996] pursue sparse linear mod-
els. Unfortunately, sparse linear models ignore the nonlin-
ear input-output relations and interactions among features,
both of which have been proved to be important in ex-
plaining the missing heritability in phenotype prediction. Al-
though some attempts have been made to achieve nonlin-
ear feature selection via kernel methods [Li et al., 2005;
Yamada et al., 2014] or gradient boosted tree [Xu et al.,
2014], almost all of them address the curse of dimensionality
under the blessing of large sample size.

The deep neural networks (DNN) methods light up new
scientific discoveries, in particular, to understand biologi-
cal processes from genotype to phenotype. Firstly, DNN has
achieved breakthroughs in modeling nonlinearity in wide ap-
plications, such as image recognition [He et al., 2015], ma-
chine translation [Bahdanau et al., 2014], and speech recog-
nition [Hinton et al., 2012]. The deeper architecture of a DNN
is, the more complex relations it can model. Therefore, DNN
is qualified to model mutual interactions among DNA, RNA,
and proteins which are even more complex than those afore-
mentioned applications [Leung et al., 2016]. Secondly, the
central dogma of biology states that the genotype decides the
phenotype by following a hierarchical path, i.e., from DNA
to RNA and further to protein. DNN is born to mimic such
multi-layer biological processes. Moreover, DNN has har-
vested initial successes in bioinformatics for modeling splic-
ing [Xiong et al., 2015] and sequence specificity [Alipanahi
et al., 2015].

In the aforementioned applications, large sample size
greatly contributes to the state-of-the-art performance of
DNN. Nevertheless, few efforts have been devoted to apply-
ing DNN to the HDLSS problem. Estimating a huge amount
of parameters for DNN using abundant samples may suffer
from severe overfitting, not to mention the HDLSS setting.

To address the challenges of the HDLSS data, we pro-
pose an end-to-end DNN model called Deep Neural Pur-
suit (DNP). DNP simultaneously selects features and learns
a classifier to alleviate severe overfitting caused by high di-
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mensionality. By averaging over multiple dropouts, DNP is
robust and stable to high-variance gradients resulting from
the small sample size. From the perspective of feature selec-
tion, the DNP model selects features greedily and incremen-
tally, similar to the matching pursuit [Pati et al., 1993]. More
concretely, starting from an empty subset of features and a
bias, the proposed DNP method incrementally selects an in-
dividual feature according to the backpropagated gradients.
Meantime, once more features are selected, DNP is updated
using the backpropagation algorithm.

The main contribution of this paper is to tailor the DNN
for the HDLSS setting using feature selection and multiple
dropouts. On the synthetic and real-world HDLSS datasets,
the proposed DNP performs comparably or significantly
better than sparse linear models and kernel-based/gradient-
boosted-tree-based nonlinear feature selection methods.

2 Related Work
In this section, we discuss feature selection methods that are
used to analyze the HDLSS data including linear, nonlinear
and incremental methods.

Learning the linear model with sparsity-inducing regular-
izer is one of the dominating feature selection methods for
the HDLSS data. For instance, Lasso [Tibshirani, 1996] min-
imizes the objective function penalized by the l1 norm of fea-
ture weights, leading to a sparse model. Unfortunately, Lasso
considers only the linear input-output dependency but ignores
the nonlinearity and interactions among features.

Kernel methods are often used for nonlinear feature selec-
tion. Feature Vector Machine (FVM) [Li et al., 2005] nonlin-
early transforms each feature and label using the kernel func-
tion and it learns a sparse model using the new features and la-
bels to achieve nonlinear feature selection. HSIC-Lasso [Ya-
mada et al., 2014] improves FVM by allowing different ker-
nel functions for features and labels. HSIC-Lasso also selects
less redundant features. LAND [Yamada et al., 2016] further
accelerates HSIC-Lasso for data with large sample size via
kernel approximation and distributed computation.

Decision tree models are also qualified for modeling non-
linear input-output relations. As an ensemble of decision
trees, random forests [Breiman, 2001] select a feature accord-
ing to its contribution to the model. One of the selection cri-
teria is to measure how much the performance decreases by
permuting the specific feature. Gradient boosted feature se-
lection (GBFS) [Xu et al., 2014] penalizes the usage of fea-
tures that are not yet used during the construction of each tree.
By early stopping of boosting, GBFS obtains an ensemble of
tree models with only a subset of features incorporated.

Unfortunately, the aforementioned nonlinear methods, in-
cluding FVM, random forests and GBFS, require training
data with large sample size. HSIC-Lasso and LAND fits the
HDLSS setting. However, compared to the proposed DNP
model which is end-to-end, HSIC-Lasso and LAND are two-
stage algorithms which separate feature selection from the
classification.

Besides DNP method, there exist other greedy and in-
cremental feature selection algorithms. For example, SpAM
[Ravikumar et al., 2007] sequentially selects an individual
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Figure 1: (1) The selected features and the corresponding sub-
network. (2) The selection of a single feature. (3) Calculate gradients
with lower variance via multiple dropouts.

feature in an additive manner, thereby missing important in-
teractions among features. For multilayer perceptron with
one hidden layer, Grafting method [Perkins et al., 2003] in-
crementally adds connections or hidden neurons based on
gradient-related heuristics. Similarly, convex neural network
[Bengio et al., 2005] dynamically adds hidden neurons which
maximize the correlation with negative gradients of the objec-
tive function. For one thing, Grafting and convex neural net-
work only consider single hidden layer. For another, Grafting
and convex neural network differ from DNP in the motiva-
tion. DNP aims at learning from the HDLSS data. In contrast,
Grafting focuses on the acceleration of algorithms and con-
vex neural network focuses on the theoretical understanding
of neural networks.

Deep feature selection (DFS) [Li et al., 2015], which se-
lects features in the context of DNN, shares a similar mo-
tivation to DNP. DFS learns sparse one-to-one connections
between input features and neurons in the first hidden layer.
However, according to our experiments, DFS fails to achieve
sparse connections when facing the HDLSS data.

3 The DNP Model
We first introduce notations throughout this paper. F ∈ Rd

denotes the input feature space in the d-dimension. X =
(x1,x2, . . . ,xn) and y = (y1, y2, . . . , yn)

T denote the data
matrix of n samples and their corresponding labels, respec-
tively. In the HDLSS setting, d � n. Moreover, f(X|W)
stands for a feed-forward neural network whose weights of
all connections are denoted by W and G stands for the back
propagated gradients for W. Particularly, WF denotes the
input weights, which are the weights of connections between
the input layer and the first hidden layer, and GF indicates the
corresponding gradients. We consider a multilayer perceptron
with Rectifier Linear Units (ReLU) [Glorot et al., 2011]. An
illustration of the neural network is shown in Fig. 1.

Under the HDLSS setting, we face the risk of overfitting
and the challenge of high-variance gradients. In the follow-
ing sections, we first detail the DNP model for feature selec-
tion which alleviates overfitting caused by the high dimen-
sionality. And we present the use of multiple dropouts to han-
dle high-variance gradients caused by the small sample size.
Then, we discuss the stagewise and stepwise DNP. Finally,
we analyze the time complexity of DNP.
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3.1 DNP for High Dimensionality
For a feed-forward neural network, we select a specific input
feature if at least one of the connections associated with that
feature has non-zero weight. To achieve this goal, we place
the lp,1 norm to constrain the input weights, i.e., ‖WF‖p,1.
We use WFj

to denote the weights associated with the j-th
input node in WF . We can define the lp,1 norm of the input
weights as ‖WF‖p,1 =

∑
j ‖WFj‖p, where ‖ · ‖p is the lp

norm on a vector. One effect of the lp,1 norm is to enforce
the group sparsity [Evgeniou and Pontil, 2007] and here we
assume that weights in WFj

form a group. A general form of
the objective function for training the feed-forward network
in formulated as:

min
W

n∑
i

`(yi, f(xi|W)) s.t. ‖WF‖p,1 ≤ λ. (1)

Without loss of generality, we only consider the binary clas-
sification problem and use the logistic loss in problem (1).
Extensions to multi-class classification, regression or unsu-
pervised reconstruction are very easy.

To directly optimize problem (1) over the HDLSS data is
highly tricky for two reasons. Firstly, directly minimizing the
lp,1-constrained problem is difficult for the back propagation
algorithm [Bach, 2014]. Secondly, direct optimization using
all features easily gets stuck in a local optimum which suffers
from severe overfitting. For instance, we may achieve mean-
ingless zero training loss on the HDLSS data. Instead, we op-
timize problem (1) in a greedy and incremental manner.

The main idea of the proposed DNP is that initially, based
on a limited amount of samples, we optimize problem (1)
over a small sub-network containing a small subset of fea-
tures, which is less difficult. We show this small sub-network
with solid circles and lines in Fig. 1(1). Then, the informa-
tion obtained during the training process, in turn, guides us
to incorporate more features, and the sub-network serves as
the initialization for a larger sub-network with more features
involved.

The DNP method enjoys two advantages. First of all,
the optimization improves to a large extent. DNP trains far
smaller sub-networks at early stages and can find better lo-
cal optima by using previous sub-networks as the initializa-
tion. Secondly, DNP simultaneously selects features and min-
imizes the training loss over the labeled data in an end-to-end
manner, thereby outperforming some feature selection meth-
ods whose selection process is independent of the learning
process [Guyon and Elisseeff, 2003].

The whole process of the feature selection in the DNP is
introduced as follows. We graphically illustrate DNP’s greedy
feature selection in Fig. 1 and detail the learning process in
Algorithm 1. We maintain two sets, i.e., a selected set S and
a candidate set C, with S ∪ C = F .

Initially, S starts from a bias to avoid the case that all ReLU
hidden units are inactive. Except the weights corresponding
to the bias, all weights in the neural network are initialized to
be zero. Upon the selected set S , input weights WF comprise
of selected input weights WS , which are input weights asso-
ciated with features in S , and candidate weights WC . We up-
date the whole neural network until convergence while fixing

Algorithm 1 Deep Neural Pursuit

1: Input: X ∈ Rn×d, y ∈ Rn, the maximum number of
selected features k.

2: Initialize: S = {bias}, C = F and WC = 0.
3: while |S| ≤ k + 1 do
4: Fix candidate weights WC = 0;
5: Update weights of hidden layer and input WS ;
6: Dropout multiple times and average out GFc

;
7: j = argmaxc∈C ‖GFc

‖q;
8: Update learning rates using Adagrad;
9: Initialize WFj

with Xavier Initializer;
10: S = S ∪ Fj and C = C \ Fj ;
11: end while
all candidate weights WC to zero (i.e., steps 4 and 5 of Algo-
rithm 1). In Fig. 1(1), we plot S and C with solid circles and
dotted circles, respectively. All dotted connections are fixed
zero. Then, GF is employed to select one feature, say the jth
one from C (step 7). After that, WF is updated by initializ-
ing newly selected input weights WFj

with Xavier Initializer
[Glorot and Bengio, 2010] and reusing earlier weights WS
(step 9). S and C are updated by adding and removing j, re-
spectively (step 10).

One question is how to select features using GF . With-
out loss of generality, we assume that all features are normal-
ized. In this case, the gradient’s magnitude implies how much
the objective function may decrease by updating the corre-
sponding weight [Perkins et al., 2003]. Similarly, the norm
of a group of gradients infers how much the loss may de-
crease by updating this group of weights together. Accord-
ing to [Tewari et al., 2011], there exists an equivalence be-
tween minimizing the lp,1 norm in problem (1) and greed-
ily selecting features with the maximum lq norm of gradi-
ents, where q satisfies 1/p + 1/q = 1. Thus, we assume that
the larger the ‖GFj

‖q is, the more jth feature contributes to
minimizing problem (1). Consequently, we select the feature
with the maximum ‖GFj

‖q . Throughout our experiments,
we choose p = q = 2 provided that our empirical compar-
isons among different settings of p show a limited difference.
On the other hand, DNP can satisfy the norm constraint, i.e.,
||WF ||p,1 ≤ λ, by early stopping at the kth iteration. We
illustrate the selection of a single feature in Fig. 1(2).

3.2 DNP for Small Sample Size
Due to the small sample size, the backpropagated gradients
in DNP are especially of high variance, making selecting fea-
tures according to gradients misleading. As shown in Fig.
1(3), DNP utilizes multiple dropouts technique to avoid high-
variance gradients. As a regularizer, dropout [Srivastava et
al., 2014] randomly drops neurons and features during for-
ward training and back propagation. Therefore gradients G
are calculated on the sub-network composed of the rest neu-
rons.

Multiple dropouts could improve our DNP method in the
following two algorithmic aspects. Firstly, according to step 6
of Algorithm 1, DNP randomly drops neurons multiple times,
computes GFc

based on the remaining neurons and connec-
tions, and averages multiple GFc

. Such multiple dropouts
technique obtains averaged gradients with low variance.
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Secondly and more importantly, multiple dropouts em-
power DNP with the stable feature selection. Stability, as a
vital criterion for feature selection, indicates that identical
features should be consistently selected even using slightly
changed training datasets [Kalousis et al., 2007]. Multiple
dropouts combine selected features over many random sub-
networks to make the DNP method more stable and powerful.

3.3 Stagewise vs Stepwise
Updating input weights WS in step 5 of Algorithm 1 has
two choices, i.e., the stagewise and stepwise approaches. Be-
fore proceeding to introduce the two choices, we first split
WS into two parts. The first part is WFj

which contains in-
put weights connecting to the jth input node for the newly
selected feature Fj , and the other part is WS\Fj

. The stage-
wise approach updates WFj

only in current iteration, while
keeping WS\Fj

unchanged. The gradient boosting method
[Friedman, 2001] is a representative stagewise method. Dif-
ferent from the stagewise approach, the stepwise approach
updates selected weights WS altogether. One representative
method named Orthogonal Matching Pursuit (OMP) [Pati et
al., 1993] minimizes the objective function every time a new
feature is added.

Both of the boosting and OMP methods inspire our DNP
method. Instead of directly using pure stagewise or pure step-
wise updating, we combine both approaches. In detail, we dy-
namically adapt the learning rate for each weight according to
the Adagrad [Duchi et al., 2011]. For each weight in the neu-
ral network, its learning rate decreases with the sum of gra-
dients in all the past iterations. As a result, like the stepwise
approach, all selected weights WS enjoy updates but, like
the stagewise approach, newly selected features WFj

enjoy
more.

3.4 Time Complexity
The time complexity of DNP is dominated by the backprop-
agation which is O(hknd), where h is a constant decided
by the network structure of DNP. Thus, the time complexity
grows linearly with respect to the number of selected features
k, the sample size n, and the feature dimension d. In compar-
ison, the complexity of HSIC-Lasso grows cubicly with re-
spect to the sample size, i.e., O(kn3d) [Yamada et al., 2016].

4 Experiments
In this section, we empirically evaluate the performance of
the proposed DNP model.

We compare the proposed DNP method with three repre-
sentative feature selection algorithms, including l1-penalized
logistic regression (LogR-l1), gradient boosted feature selec-
tion (GBFS) [Xu et al., 2014], and HSIC-Lasso [Yamada et
al., 2014]. LogR-l1 performs linear feature selection with the
l1 regularization for classification problems. GBFS1 is a rep-
resentative of nonlinear feature selection based on gradient
boosted tree. GBFS penalizes the usage of features that are
not yet used when constructing each tree and by early stop-
ping, it learns an ensemble of regression trees with only a

1GBFS code: http://www.cse.wustl.edu/˜xuzx/
research/code/GBFS.zip

Figure 2: Decision boundaries learned by different algorithms based
on 10,000-dimensional synthetic data with two true features. The x-
axis and y-axis denote the two true features. Figures (a) and (b) plot
the positive samples with black and (c)-(f) plot the predicted positive
samples with black.

subset of features involved. HSIC-Lasso2 is also nonlinear
but based on kernels, in which it learns a sparse model on ker-
nelized labels and features. HSIC-Lasso is also recognized as
the state-of-the-art minimum redundancy maximum relevance
(mRMR) based methods. However, it cannot select features
and learn a classifier simultaneously. Thus, we adapt it by uti-
lizing SVM with the RBF kernel as the classifier after feature
selection.

4.1 Experiments on Synthetic Data
The proposed DNP method has two goals. The first is to
identify features that the labels truly depend on, which is mea-
sured by the F1 score of correct selection of true features. The
second is to learn an accurate classifier based on selected fea-
tures, which is evaluated by the test AUC score. We first syn-
thesize highly complex and nonlinear data to investigate the
performance of different algorithms towards the two goals.

To generate the synthetic data, we firstly draw input sam-
ples X from the uniform distribution U (−1, 1), where the
feature dimension d is fixed to be 10,000. Afterwards, we
obtain the corresponding labels by passing X into the feed-
forward neural network with {50, 30, 15, 10} ReLU hidden
units in four hidden layers. Such knowledge of the network
structure generating the synthetic data is unknown to DNP.
Input weights connecting with the first m dimensions, i.e.
WF1...m

, are randomly sampled from a Gaussian distribution
N(0, 0.5). The remaining connections are kept zero. Thus,
F1...m serve as the true features that decide the label. In order
to add noises into data, we randomly flip 5% labels. For each
setting of m, we generate 800 training samples, 200 valida-
tion samples, and 7,500 test samples, hence the sample sizes
of the training and validation sets are far smaller than the di-
mensionality d.

Whenm = 2, we visualize the decision boundaries learned
by different algorithms in Fig. 2. As expected, LogR-l1 only

2HSIC-Lasso code: http://www.makotoyamada-ml.
com/software.html
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Figure 3: Test AUC scores of different methods with respect to the number of selected features.

learns a linear decision boundary which is insufficient for
highly complex and nonlinear data. The GBFS uses the re-
gression tree as a base learner, thereby achieving an axis-
parallel decision boundary. The HSIC-Lasso and the pro-
posed DNP not only model the nonlinear decision bound-
aries but also exactly identify the two true features. As Table
1 shows, the F1 scores of feature selection reach 1 for both
methods.

We further compare the performance of different algo-
rithms as shown in Table 1. The test AUC scores and F1
scores are averaged across five random generated datasets. In
terms of the test AUC score, DNP and HSIC-Lasso both show
superior performance over others. DNP performs best on all
the datasets and significantly outperforms HSIC-Lasso when
m = 10 in terms of the t-test (p-value < 0.05). LogR-l1 is
significantly outperformed by DNP on three out of four syn-
thetic datasets and tends to be comparable when m = 25. In
terms of the F1 score for feature selection, DNP performs the
best on all datasets and it even outperforms the most competi-
tive baseline, HSIC-Lasso, by 8.65% on average. GBFS con-
sistently performs worst in terms of both classification and
feature selection.

4.2 Experiments on Real-World Biological
Datasets

To investigate the performance of DNP on the real-world
datasets, we use six public biological datasets3, all of which
suffer from the HDLSS problem. The statistics of these
datasets are shown in Table 2. We report the average results
for 10 times random split with 80% data for training, 10% for
validation, and 10% for testing.

In Fig. 3, we investigate the average test AUC scores with
respect to the number of selected features. DNP selects a sin-

3Biological datasets: http://featureselection.asu.
edu/datasets.php

Table 1: Performance of classification and feature selection on syn-
thetic datasets with different numbers of true features. The statisti-
cally best performance is shown in bold.

True Dim 2 5 10 25

LogR-l1
AUC 0.868 0.826 0.755 0.661
Std 0.003 0.001 0.014 0.017

GBFS AUC 0.748 0.721 0.757 0.565
Std 0.184 0.130 0.011 0.029

HSIC-Lasso AUC 0.948 0.881 0.747 0.642
Std 0.003 0.001 0.003 0.007

DNP AUC 0.926 0.887 0.813 0.650
Std 0.005 0.023 0.025 0.016

LogR-l1
F1 score 0.141 0.313 0.364 0.266

Std 0.025 0.045 0.046 0.035

GBFS F1 score 0.182 0.050 0.429 0.105
Std 0.183 0.056 0.048 0.052

HSIC-Lasso F1 score 1.000 0.889 0.667 0.253
Std 0.000 0.000 0.000 0.033

DNP F1 score 1.000 0.862 0.857 0.378
Std 0.000 0.075 0.085 0.054

Table 2: Statistics for real-world datasets.
Data Colon Prostate GE Leukemia

Sample size 62 102 72
Dimensionality 2,000 5,966 7,070

Data ALLAML SMK CAN 87 GLI 85
Sample size 72 187 85

Dimensionality 7,129 19,993 22,283

gle feature in each iteration. As a result, in Fig. 3, the per-
formance curve of DNP is equivalent to how the test AUC
scores change with respect to the number of iterations. On all
six datasets, test AUC scores of DNP converge quickly within
fewer than 10 iterations. For LogR-l1, GBFS, and HSIC-
Lasso, the number of selected features is tuned by choosing
the appropriate hyper-parameters. We use a circle as an in-
dicator when DNP is outperformed by the best baseline and
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Figure 4: Average test AUC score across six real-world datasets with
respect to the number of training samples

a star when DNP outperforms the best baseline significantly
(t-test, p-value < 0.05).

On the leukemia dataset, the proposed DNP method signifi-
cantly outperforms the best baseline no matter how many fea-
tures are selected. For the ALLAML and Prostate GE dataset,
LogR-l1 serves as a competitive baseline as it outperforms
other methods when few features are selected. However, DNP
achieves a comparable test AUC score when more features
are involved. For the other three datasets, DNP outperforms
GBFS significantly and performs comparable to LogR-l1 and
HSIC-Lasso. On average across six real-world datasets, DNP
outperforms the most competitive baseline, HSIC-Lasso, by
2.53% in terms of the average test AUC score. In summary,
DNP can achieve comparable or improved performance over
baselines on the six real-world datasets.

To investigate the effect of the size of the training data,
we compare DNP with the baselines by varying the sample
size for training, while the sample sizes for validation and
test are kept fixed. Fig. 4 shows the average test AUC scores
across six real-world datasets. All the methods in comparison
suffer as the training sample size decreases. GBFS, designed
for large sample size, suffers the most. LogR-l1, HSIC-Lasso,
and DNP perform similarly in small sample size. However,
when only 10% or 30% training samples are used, DNP
slightly outperforms other baselines.

To see the role of multiple dropouts, we compare the per-
formance of DNP with and without multiple dropouts in Fig.
5. According to the results, we can see that multiple dropouts
can improve the test AUC score on five out of six datasets.

We measure the stability of the algorithms with the Tan-
imoto distance [Kalousis et al., 2007]. In detail, on a pair
of training sets, DNP selects feature subsets S1 and S2, re-
spectively. Then the Tanimoto distance measures the sim-
ilarity between S1 and S2 as Similarity(S1,S2) = 1 −
|S1|+|S2|−2|S1∩S2|
|S1|+|S2|−|S1∩S2| , where | · | represents the cardinality for a

set. Then, we measure the stability of DNP by averaging the
similarities calculated from all pairs of training sets generated
from 10-fold cross validation. A higher stability score implies
a more stable algorithm. As shown in Fig. 5, DNP with multi-
ple dropouts is clearly more stable than DNP without dropout
on the all six datasets.

Figure 5: Stability comparison between DNP with and without mul-
tiple dropouts.

Table 3: The best number of hidden layers for DNP
Data Colon Prostate GE Leukemia

DNP’s best depth 2 4 3
Data ALLAML SMK CAN 87 GLI 85

DNP’s best depth 3 4 3

Finally, we investigate how the hyper-parameters influence
the performance of DNP. We vary the number of hidden lay-
ers from one to five. For DNP model with the specific number
of hidden layers, we calculate the average test AUC score of
10 times random split. In Table 3, we list the number of hid-
den layers leading to the best test AUC score. On five real-
world datasets, DNP with three or four hidden layers outper-
forms that with one, two or five hidden layers. The results
coincide with our motivation that deeper neural networks are
more qualified for complex datasets. Meantime, due to the
small sample size, training DNNs with more hidden layers is
extremely challenging, which incurs inferior performances.

5 Conclusions

In this paper, we propose a DNP model tailored for the high
dimension, low sample size data. DNP can select features in a
nonlinear way. With an incremental manner to select features,
DNP is robust to high dimensionality. By using the multi-
ple dropouts technique, DNP can learn from a small num-
ber of samples and is stable for feature selection. Moreover,
the training of DNP is end-to-end. Empirical results verify its
good performance in both classification and feature selection.

In the future, we plan to use sophisticated network architec-
tures in replace of a simple multi-layer perceptron and apply
DNP to more domains that suffer from the HDLSS problem.
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