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Department of Computer Science, Czech Technical University in Prague

{cermak, bosansky, lisy}@agents.fel.cvut.cz

Abstract
We solve large two-player zero-sum extensive-form
games with perfect recall. We propose a new al-
gorithm based on fictitious play that significantly
reduces memory requirements for storing average
strategies. The key feature is exploiting imper-
fect recall abstractions while preserving the conver-
gence rate and guarantees of fictitious play applied
directly to the perfect recall game. The algorithm
creates a coarse imperfect recall abstraction of the
perfect recall game and automatically refines its in-
formation set structure only where the imperfect re-
call might cause problems. Experimental evalua-
tion shows that our novel algorithm is able to solve
a simplified poker game with 7 · 105 information
sets using an abstracted game with only 1.8% of in-
formation sets of the original game. Additional ex-
periments on poker and randomly generated games
suggest that the relative size of the abstraction de-
creases as the size of the solved games increases.

1 Introduction
Dynamic games with a finite number of moves can be mod-
eled as extensive-form games (EFGs) that are general enough
to represent scenarios with stochastic events and imperfect
information. EFGs can model recreational games, such as
poker, as well as real-world situations in physical security
[Lisý et al., 2016], auctions, or medicine [Chen and Bowling,
2012]. EFGs are represented as game trees where nodes cor-
respond to states of the game and edges to actions of players.
Imperfect information is modeled by grouping indistinguish-
able states into information sets.

There are two approaches to solving EFGs. First, the on-
line (or game-playing) algorithms which given the observa-
tions of the game state compute the action to be played. Sec-
ond, the offline algorithms which compute (approximate) the
strategy in the whole game and play according to this strat-
egy. The latter algorithms typically provide a better approxi-
mation of equilibrium strategies in large games compared to
online algorithms [Bošanský et al., 2016]. One exception is
the recently introduced continual resolving algorithm used in
DeepStack [Moravčı́k et al., 2017], which provides less ex-
ploitable strategies than existing offline algorithms in heads-

up no-limit Texas Hold’em, an imperfect information game
with 10160 decision points. The main caveat is that Deep-
Stack exploits the specific structure of poker where all ac-
tions are observable, and the generalization to other games is
not straightforward. We thus focus on offline algorithms.

Most of the existing offline algorithms [von Stengel, 1996;
Zinkevich et al., 2008] require players to remember all the
information gained during the game – a property denoted as
a perfect recall. The main disadvantage of perfect recall is
that it causes the size of strategies (a randomized selection of
an action in each information set) to grow exponentially with
the number of moves. Therefore, a popular approach is to use
abstractions [Gilpin et al., 2007] – create an abstracted game
by merging information sets to reduce the size of the strat-
egy representation, solve the abstracted game, and translate
the strategies back to the original game. The majority of ex-
isting algorithms create perfect recall abstractions, where the
requirement of perfect memory severely limits possible re-
ductions in the size of strategies of the abstracted game, as it
still grows exponentially with increasing number of moves in
the abstracted game (e.g., see [Gilpin and Sandholm, 2007;
Kroer and Sandholm, 2014; Brown and Sandholm, 2015]).
Additionally, finding optimal perfect recall abstractions is
computationally hard [Kroer and Sandholm, 2014].

A limited amount of work relaxes the perfect recall re-
striction in abstractions. Very specific imperfect recall ab-
stractions that allow using perfect recall solution techniques
are (skew) well-formed games [Lanctot et al., 2012; Kroer
and Sandholm, 2016] and normal-form games with sequen-
tial strategies [Bošanský et al., 2015; Lisý et al., 2016]. Skew
well-formed games only merge information sets, which sat-
isfy strict restrictions on the structure of the game tree above
and below them, such that for all possible strategies of the op-
ponent, a strategy which is optimal in one of the information
sets must have bounded error in the other merged sets. Play-
ers cannot observe actions of the opponent at all in normal-
form games with sequential strategies. These restrictions pre-
vent us from creating sufficiently small and useful abstracted
games and thus fully exploit the possibilities of imperfect re-
call. Existing methods for using imperfect recall abstractions
without severe limitations cannot provide any guarantees of
the quality of computed strategies [Waugh et al., 2009], or
assume that the abstraction is given and require computation-
ally complex algorithms to solve it [Čermák et al., 2017].
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We address these issues in this paper and demonstrate the
possible space savings achievable by automated imperfect
recall abstractions. We create a novel domain-independent
algorithm FPIRA, which starts with creating a coarse im-
perfect recall abstraction of the given perfect recall game.
FPIRA then uses the fictitious play framework to simulta-
neously solve and refine the imperfect recall abstraction, to
guarantee the convergence to Nash equilibrium of the orig-
inal perfect recall game. FPIRA is conceptually similar to
Double Oracle algorithm (DO) [Bošanský et al., 2014] since
it creates a smaller version of the original game and repeat-
edly refines it until the optimal solution of the original game
is found. FPIRA, however, uses a game with imperfect recall
during the computation, while DO uses a smaller perfect re-
call game. Hence, FPIRA exploits completely different type
of sparseness than DO. The experimental evaluation shows
that FPIRA can solve modification of Leduc hold’em with
7 · 105 information sets using an abstracted game with 1.8%
of information sets of the original game. Furthermore, exper-
iments on other simplified pokers and random games suggest
that the relative size of the needed abstractions significantly
decreases as the size of the solved games increases.

2 Extensive-Form Games
We first describe necessary technical introduction to
extensive-form games (EFGs). A two player EFGG is a tuple
{P,H,Z, P, u, I, A}. P = {1, 2} denotes the set of players.
We use i to refer to a player and−i to refer to the opponent of
i. SetH contains all the states of the game. P : H → P∪{c}
is the function associating a player from P or nature c with
every h ∈ H. Nature c represents the stochastic environment
of the game. Z ⊆ H is a set of terminal states. ui(z) is a
utility function assigning to each leaf the value of preference
for player i; ui : Z → R. For zero-sum games it holds
that ui(z) = −u−i(z), ∀z ∈ Z . The imperfect information
is defined using the information sets. Ii is a partitioning of
all {h ∈ H : P (h) = i} into these information sets. All
states h contained in one information set Ii ∈ Ii are indis-
tinguishable to player i. The set of available actions A(h) is
the same ∀h ∈ Ii. We overload the notation and use A(Ii)
as actions available in Ii. A sequence σi is a list of actions
of player i ordered by their occurrence on the path from the
root of the game tree to some node. By seqi(h) we denote
the sequence of player i leading to the state h. We overload
the notation and use seqi(I) as a set of sequences of player
i leading to the information set I . A game has perfect recall
iff ∀i ∈ P ∀Ii ∈ Ii, for all the states h, h′ ∈ Ii holds that
seqi(h) = seqi(h

′). If there exists at least one information
set where this does not hold (denoted as imperfect recall in-
formation set) the game has imperfect recall.

Definition 1. By the coarsest perfect recall refinement of an
imperfect recall game G we define a perfect recall game G′
where we split the imperfect recall information sets to largest
subsets satisfying the perfect recall assumption.

2.1 Strategies in Imperfect Recall Games
There are several representations of strategies in EFGs. A
pure strategy si for player i is a mapping assigning ∀Ii ∈ Ii

a member of A(Ii). Si is a set of all pure strategies for player
i. A mixed strategy mi is a probability distribution over Si,
set of all mixed strategies of i is denoted asMi. Behavioral
strategy bi assigns a probability distribution over A(Ii) for
each Ii. Bi is a set of all behavioral strategies for i, Bpi ⊆ Bi
denotes the set of deterministic behavioral strategies for i. A
strategy profile is a set of strategies, one strategy for each
player. We overload the notation and use ui as the expected
utility of i when the players play according to pure (mixed,
behavioral) strategies.

Behavioral strategies and mixed strategies have the same
expressive power in perfect recall games, but their expres-
sive power can differ in imperfect recall games [Kuhn, 1953].
Moreover, the size of these representations differs signifi-
cantly. Mixed strategies of player i use probability distribu-
tion over Si, where |Si| ∈ O(e|Z|). Behavioral strategies cre-
ate probability distribution over the set of actions (its size is
proportional to the number of information sets, which can be
exponentially smaller than |Z|). Hence we need to use behav-
ioral strategies if we want to exploit the space savings caused
by the reduced number of information sets due to some infor-
mation abstraction.

A best response of player i against b−i is a strategy bBR
i ∈

BR(b−i), where ui(bBR
i , b−i) ≥ ui(b

′
i, b−i) for all b′i ∈ Bi

(BR(b−i) denotes a set of all best responses to b−i).
Definition 2. We say that bi and b′i are realization equivalent
if for any b−i, ∀z ∈ Z πb(z) = πb′(z), where b = (bi, b−i)
and b′ = (b′i, b−i) and πb(z) stands for the probability that z
is reached when playing accordint to b.

The concept of realization equivalence can be applied also
to different strategy representations. Finally, we define the
Nash equilibrium in behavioral strategies.
Definition 3. We say that strategy profile b = {bi, b−i} is
a Nash equilibrium (NE) in behavioral strategies iff ∀i ∈
P ∀bpi ∈ B

p
i : ui(bi, b−i) ≥ ui(bpi , b−i).

3 Fictitious Play
Fictitious play (FP) is an iterative algorithm defined on
normal-form games [Brown, 1949]. It keeps track of aver-
age strategies of both players m̄T

i , m̄
T
−i. Players take turn

updating their average strategy. In iteration T , player i com-
putes sTi ∈ BR(m̄T−1

−i ). He then updates his average strategy
m̄T

i = Ti−1
Ti

m̄T−1
i + 1

Ti
sTi (Ti is the number of updates per-

formed by i plus 1). In two-player zero-sum games m̄T
i , m̄

T
−i

converge to a NE [Robinson, 1951]. There is a long-standing
conjecture [Karlin, 2003; Daskalakis and Pan, 2014] that the
convergence rate of FP isO(T−

1
2 ), the same order as the con-

vergence rate of Counterfactual Regret Minimization (CFR)
[Zinkevich et al., 2008] (though the empirical convergence of
CFR tends to be better).

When applying FP to behavioral strategies in perfect recall
zero-sum EFG G′, one must update the average behavioral
strategy b̄ti such that it is realization equivalent to m̄t

i obtained
when solving the normal form game corresponding to G′ for
all t and all i ∈ P to keep the convergence guarantees. To
update the behavioral strategy in such a way we use the fol-
lowing Lemma [Heinrich et al., 2015].
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Lemma 1. Let bi, b′i be two behavioral strategies and mi,
m′i two mixed strategies realization equivalent to bi, b′i, and
λ1, λ2 ∈ (0, 1), λ1 + λ2 = 1. Then ∀I ∈ Ii

b′′i (I) = bi(I) +
λ2π

b′i
i (I)

λ1π
bi
i (I) + λ2π

b′i
i (I)

(b′i(I)− bi(I)),

where πbi
i (I) is the probability that I is visited when playing

bi, defines a behavioral strategy b′′i realization equivalent to
the mixed strategy m′′i = λ1mi + λ2m

′
i.

4 The FPIRA Algorithm
Let us now describe the main algorithm (denoted as FPIRA,
Fictitious Play for Imperfect Recall Abstractions) presented
in this paper and prove its convergence in two-player zero-
sum EFGs. We give a high-level idea behind FPIRA, and we
provide a pseudocode with the description of all steps.

Given a perfect recall game G′, FPIRA creates a coarse
imperfect recall abstraction G of G′. The algorithm then fol-
lows the FP procedure. It keeps track of average strategies of
both players in the information set structure of G and updates
the strategies in every iteration based on the best responses to
the average strategies computed directly in G′. To ensure the
convergence to Nash equilibrium of G′, FPIRA refines the
information set structure of G when needed to make sure that
the strategy update does not lead to more exploitable average
strategies in the following iterations compared to the strategy
update made directly in G′.

Algorithm 1: FPIRA algorithm
input : G′, T
output : b̄Ti , b̄T−i, G

T

1 G1 ← BuildAbstraction(G′)
2 b̄01 ← PureStrat(G1), b̄02 ← PureStrat(G1)
3 for t ∈ {1, ..., T} do
4 i← ActingPlayer(t)
5 bti ← BR(G′, b̄t−1

−i )

6 Gt ← RefineForBR(Gt, bti)
7 b̂ti ← UpdateStrategy(Gt, b̄t−1

i , bti)

8 b̃ti ← UpdateStrategy(G′, b̄t−1
i , bti)

9 if ComputeDelta(G′, b̂ti , b̃ti) > 0 then
10 Gt+1 ← Refine(Gt), b̄ti ← b̃ti
11 else
12 Gt+1 ← Gt, b̄ti ← b̂ti

In Algorithm 1 we present the pseudocode of FPIRA.
FPIRA is given the original perfect recall game G′ =
{P,H,Z, P, u, I ′, A′} and a number of iterations to perform
T . FPIRA first creates a coarse imperfect recall abstraction
G1 = {P,H,Z, P, u, I1, A1} of G′ (line 1) as described in
Section 4.1. Next, it initializes the strategies of both players
to an arbitrary pure strategy in G1 (line 2). FPIRA then per-
forms T iterations. In every iteration it updates the average
strategy of one of the players and if needed the information
set structure of the abstraction (the game used in iteration t is
denoted as Gt = {P,H,Z, P, u, It, At}). In every iteration
player i first computes the best response bti to b̄t−1−i in G′ (line

5). Since bti is computed in G′, FPIRA first needs to make
sure that the structure of information sets inGt allows bti to be
played. If not,Gt is updated as described in Section 4.2, Case
1 (line 6). Next, FPIRA computes b̂ti as the strategy resulting
from the update in abstractedGt (line 7) and b̃ti as the strategy
resulting from the update in original G′ (line 8). FPIRA then
checks whether the update in Gt changes the expected values
of the pure strategies of the opponent compared to the update
in G′ using b̂ti and b̃ti (line 9, Section 4.2 Case 2). If yes,
FPIRA refines the information set structure of Gt, creating
Gt+1 such that no error in expected values of pure strategies
of the opponent is created (Section 4.2 Case 2), sets b̄ti = b̃ti
(line 10), and continues using Gt+1. If there is no need to
update the structure of Gt, FPIRA sets Gt+1 = Gt, b̄ti = b̂ti
and continues with the next iteration.

4.1 Creating the Initial Abstraction
FPIRA creates G1 (line 1 in Algorithm 1) as a coarse imper-
fect recall abstraction of G′ by merging possible information
sets, such that the coarsest perfect recall refinement of G1 is
G′. To achieve this, FPIRA needs to make sure that when
merging a set of information sets J ⊆ Ii there are no two
distinct I, I ′ ∈ J which, when merged, create a perfect re-
call information set. This is required since, as discussed in the
next section, the algorithm splits only imperfect recall infor-
mation sets. If FPIRA joined information sets not resulting
in the imperfect recall information set, it would end up solv-
ing a different game.

More formally, we use the following algorithm to buildG1.
For all i create Ki as a set of disjoint subsets of information
sets I ′i of G′, such that

⋃
K′∈Ki

K′ = I ′i, and

∀K′∈ Ki, ∀I, I ′∈ K′: |A′(I)| = |A′(I ′)| ∧ |seqi(I)| = |seqi(I ′)|.

In other words, all the information sets in K′ must have the
same number of actions available and the same length of the
sequence of i leading to them. Every K′ ∈ Ki gives us candi-
dates for merging. However, as discussed above, we need to
make sure that we never merge any pair of information sets,
which would result in a perfect recall information set after the
merge. Hence, we further split every K′ ∈ Ki to the smallest
possible set J = {J 1, ...,J k}, such that

∀J j ∈ J , ∀I, I ′′ ∈ J j : seqi(I) 6= seqi(I
′).

I and I ′ are information sets ofG′, hence both seqi(I) and
seqi(I

′) are singletons. J needs not be unique, in our imple-
mentation we choose randomly between possible J . Finally,
every information set in the information set structure I1 of
G1 corresponds to J j from the union of all J for all players.

4.2 Updating Gt

There are two reasons for splitting some I ∈ Iti in iteration t
(we assume player i computes the best response in t): (1) the
best response computed inG′ prescribes more than one action
in I or (2) I causes expected values of some pure strategy
of −i to be different after the average strategy update of i
compared to what would happen when updating in G′.
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To formally describe the splitting rules, let us first define
mappings Φt : I ′ → It, which for I ∈ I ′ returns the infor-
mation set containing I in Gt and Φ−1t : It → ℘(I ′), the
inverse of Φt. By Ξt : A′ → At and Ξ−1t : At → ℘(A′) we
denote a mapping of actions from G′ to Gt and vice versa.
Case 1: FPIRA checks in every iteration t if there exists
I ∈ Iti where the best response bti prescibes more than 1
action. If yes, FPIRA splits I to a set of information sets Î
and inforation set I ′′, such that ∀Îa ∈ Î, Îa is a unification
of all I ′ ∈ Φ−1t (I) where bti(I

′, a′) = 1 for Ξt(a
′) = a and

I ′′ = {h ∈ I|∀Î ∈ Î : h /∈ Î} (line 6 in Algorithm 1).
Case 2: The algotrithm first constructs the average behavioral
strategy b̂ti in Gt (line 7). This is done according to Lemma 1
from b̄t−1i with weight ti−1

ti
and bti with weight 1

ti
, where ti

is the number of updates performed by i so far, plus 1 for the
initial strategy (bti is used with mappings Φt and Ξt). Next,
FPIRA constructs b̃ti (line 8) in the same way in the informa-
tion set structure of G′ (b̄t−1i is used with mappings Φ−1t and
Ξ−1t ). FPIRA then computes

∆t
i = max

b−i∈BP
−i

|u−i(̃b
t
i, b−i)− u−i(b̂

t
i, b−i)|,

as described below (line 9). If ∆t
i = 0, none of the pure

strategies of −i changed its expected value compared to the
update in G′. In this case, FPIRA sets Gt+1 = Gt, b̄ti = b̂ti
(line 12). If ∆t

i > 0, the expected value of some pure strategy
of−i changed when updating the strategy inGt, compared to
the expected value it would get against the strategy updated
in G′. FPIRA then creates Gt+1 in the following way. Every
imperfect recall information set I ∈ Iti which is visited when
playing bti is split to a set of information sets Î ⊆ Φ−1t (I)

and an information set I ′′, such that Î contains all the I ′ ∈
Φ−1t (I) which can be visited when playing bti, I

′′ contains the
rest of h ∈ I . The average strategy in all I ′ ∈ Î∪{I ′′} before
the strategy update is set to the strategy previously played in
I . More formally, ∀I ′ ∈ Î ∪ {I ′′} the strategy is set to

b̄t−1i (I ′, a) = b̄t−1i (Φt(I
′),Ξt(a)), ∀a ∈ A′(I ′).

The strategy resulting from update in G′ is a valid strategy in
Gt+1 after such update, hence b̄ti = b̃ti. Notice that G′ is still
the coarsest perfect recall refinement of Gt+1, additionally
by setting b̄ti = b̃ti, we made sure that ∆t

i = 0 since the up-
date is now equal to the update that would occur in G′. This,
as we will show in Section 4.3, is sufficient to guarantee the
convergence of b̄ti, b̄

t
−i to Nash equilibrium of G′.

Computing ∆t
i. Given b̂ti and b̃ti, ∆t

i can be computed as

∆t
i = max

b−i∈B
p
−i

∑
z∈Z

|πb−i

−i (z)
[
π
b̃ti
i (z)− πb̂ti

i (z)
]
u−i(z)|.

∆t
i can be computed in O(|Z|) as a standard best response

tree traversal.
Example 1. Let us demonstrate several iterations of FPIRA
algorithm. Consider the perfect recall game from Figure 1 (a)
as G′ and the imperfect recall game from Figure 1 (b) as G1.
The function Ξ1 is Ξ1(t) = Ξ1(v) = c,Ξ1(u) = Ξ1(w) = d,

Figure 1: (a) G′ for demonstration of FPIRA iterations (b) G1 for
demonstration of FPIRA.

identity otherwise. Note that when we apply strategies from
G′ toGt and vice versa, we assume that it is done with respect
to Ξt and Ξ−1t . Lets assume that FPIRA first initializes the
strategies to b̄01(b) = b̄01(d) = 1, b̄02(e) = 1.
Iteration 1: The player 1 starts in iteration 1. FPIRA com-
putes b11 ∈ BR(b̄02) in G′, resulting in b11(b) = b11(v) = 1.
Next, FPIRA checks whether b11 is playable in G1. Since
there is no information set in G1 for which b11 assigns more
than one action, we do not need to update G1 in any way. We
follow by computing b̂11 and b̃11 according to Lemma 1 with
λ1 = λ2 = 0.5. In this case b̂11(b) = b̃11(b) = 1, b̂11(c) =

b̃11(v) = 0.5. Since b̂11 and b̃11 are equal, w.r.t. Ξ1, we know
that ∆i = 0. Hence we let G2 = G1, b̄11 = b̂11 and Ξ2 = Ξ1.
Iteration 2: Player 2 continues in iteration 2. Notice that
player 2 does not have imperfect recall, hence there is no need
to discuss this iteration in such detail. FPIRA computes the
best response to b̄11, resulting in b22(f) = 1. The algorithm
then computes b̂22 and b̃22, resulting in b̂22(e) = b̃22(e) = 0.5.
Hence, we let G3 = G2, b̄22 = b̂22 and Ξ3 = Ξ2.
Iteration 3: The best response in this iteration is b31(a) =
b31(u) = 1, which is again playable in G3, hence we do not
need to update G3 at this point. FPIRA computes b̂31 re-
sulting in b̂31(a) = 1

3 , b̂
3
1(d) = 2

3 , b̃31 is, on the other hand,
b̃31(a) = 1

3 , b̃31(t) = 1, b̃31(w) = 0.5 (both according to
Lemma 1 with λ1 = 2

3 , λ2 = 1
3 ). In this case, ∆3

1 = 1

since by playing f player 2 gets 2
3 against b̂31 compared to 5

3

against b̃31. Hence, the algorithm splits all imperfect recall in-
formation sets reachable when playing b31, in this case I1, as
described in Section 4.2, Case 2, resulting in G′. Therefore,
G4 = G′, b̄31 = b̃31 and Ξ4 is set to identity.

4.3 Theoretical Properties
We show that the convergence quarantees of FP in two-player
zero-sum perfect recall game G′ [Heinrich et al., 2015] di-
rectly apply to FPIRA solving G′.

Theorem 1. The exploitability of b̄ti computed by FPIRA ap-
plied to perfect recall two-player zero-sum EFG G′ is exactly
equal to the exploitability of b̄′ti, computed by FP applied to
G′ in all iterations t and for all i.

Proof. Assume that the initial strategies b̄01, b̄
0
2 in FPIRA and

initial strategies b̄′01, b̄′
0
2 in the FP are realization equivalent,

additionally assume that the same tie breaking rules are used
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when more than one best response is available. We prove the
Theorem by induction. If

∀b−i ∈ Bp
−i : u−i(b̄

t
i, b−i) = u−i(b̄′

t
i, b−i), (1)

∀bi ∈ Bp
i : ui(bi, b̄

t
−i) = ui(bi, b̄′

t
−i), (2)

where Bp is the set of pure behavioral strategies inG′, then

b−i ∈ Bp
−i : u−i(b̄

t+1
i , b−i) = u−i(b̄′

t+1
i , b−i).

First, the initial step trivially holds from the initialization
of strategies. Now let us show that the induction step holds.
Let bti be the best response chosen in iteration t in FPIRA
and b′ti be the best response chosen in t in FP. From (2) and
the use of the same tie breaking rule we know that bti = b′

t
i.

From Lemma 1 we know that

∀b−i ∈ Bp
−i : u−i(b̄′

t+1
i , b−i) =

ti
ti + 1

u−i(b̄′
t
i, b−i) +

1

ti + 1
u−i(b

′t
i, b−i),

However, same holds also for b̄t+1
i since FPIRA creates

Gt+1 from Gt so that ∆t
i = 0. Hence

∀b−i ∈ Bp
−i : u−i(b̄

t+1
i , b−i) =

ti
ti + 1

u−i(b̄
t
i, b−i) +

1

ti + 1
u−i(b

t
i, b−i).

From (1) and from the equality bti = b′
t
i follows that

∀b−i ∈ Bp
−iu−i(b̄

t+1
i , b−i) = u−i(b̄′

t+1
i , b−i),

and therefore also
max

b−i∈B
p
−i

u−i(b̄
t+1
i , b−i) = max

b−i∈B
p
−i

u−i(b̄′
t+1
i , b−i).

4.4 Memory and Time Efficiency
FPIRA needs to store the average behavioral strategy for ev-
ery action in every information set of the solved game, hence
storing the average strategy in Gt instead of G′ results in
significant memory savings directly proportional to the de-
crease of information set count. Additionally, when the al-
gorithm computes b̃ti, it can temporarily refine the informa-
tion set structure of Gt only in the parts of the tree that can
be visited when playing the pure best response bti according
to I ′i to avoid representing and storing G′. Moreover, one
typically does not have to store and traverse the whole game
tree when computing a best response. When storing the bti,
we do not store behavior in the parts of the game unreach-
able due to actions of i. For this reason, there are typically
large parts of the game tree omitted, since i plays only 1 ac-
tion in his information sets. Hence, the best response com-
putation does not prevent us from solving large domains with
excessive memory requirements (we provide results showing
that the best responses are small in Section 5). Finally, effi-
cient domain-specific implementations of best response (e.g.,
on poker [Johanson et al., 2011]) can be employed to fur-
ther reduce the memory and time requirements. The itera-
tion of FPIRA takes approximately twice the time needed to
perform one iteration of FP in G′, as it now consists of the
standard best response computation in G′, the modified best
response computation to obtain ∆t

i and two updates of aver-
age behavioral strategies (which are faster than the update in
G′ since the average strategy is smaller).

5 Experiments
We introduce the domains used for experimental evaluation
of FPIRA. We follow by the discussion of the convergence
and the size of abstractions needed to solve these domains.
Leduc Hold’em. Leduc Hold’em is a two-player poker,
which is used as a common benchmark in imperfect-
information game solving because it is small enough to be
solved but still strategically complex. There is a deck of cards
with a given number of card types and a given number of
cards per type (in standard Leduc hold’em there are 3 types
of cards, 2 cards for each type). There are two rounds. In
the first round, each player places an ante of 1 chip in the pot
and receives a single private card. A round of betting follows.
Every player can bet from a limited set of allowed values or
check. After a bet, the player can raise, again choosing the
value from a limited set, call or forfeit the game by folding.
The number of consecutive raises is limited. A public shared
card is dealt after one of the players calls or after both play-
ers check. Another round of betting takes place with identical
rules. The player with the highest pair wins. If none of the
players has a pair, the player with the highest card wins.
Random Games. Since there is no standardized collection of
benchmark EFGs, we use randomly generated games to ob-
tain statistically significant results. We randomly generate a
perfect recall game with varying depth and branching factor
5. To control the information set structure, we use observa-
tions assigned to actions – for player i, nodes h with the same
observations generated by all actions in history belong to the
same information set. Every action generates a temporary
utility which is randomly generated in the interval (−2, 2).
The utility for player 1 in every leaf is then computed as the
sum of the temporary utilities of actions leading from the root
of the game to the leaf. In this way, we create more realistic
games, with the notion of good and bad moves.

5.1 Results
In all the presented results, FPIRA was terminated when the
difference of the expected values of best responses against the
average strategies was below 10−2.
Leduc Hold’em. In Figure 2 (a) we show the exploitabil-
ity of the average strategies computed by the FP and FPIRA
(y-axis) as a function of iterations (log x-axis) on Leduc
Hold’em with 4 card types, 3 for each type, 2 possible bet
and raise values and 4 consecutive raises allowed. The ob-
served identical convergence rate of FPIRA and the FP is
a direct consequence of Theorem 1. Both algorithms needed
∼ 5·103 iterations to converge to the gap 10−2 in the expected
values of best responses against the average strategies. In Fig-
ure 2 (b) we show the information set count ofGt andG′ (log
y-axis) as a function of iterations (log x-axis) in the same set-
ting. As expected, the highest increase in the information set
count of Gt is at the beginning of the algorithm since the in-
formation set structure is extremely coarse and the strategies
vary significantly between iterations. In the later stages of
the convergence, we observe almost no changes in the infor-
mation set structure. Additionally, in Figure 2 (c) we present
relative information set counts for initial and final abstraction,
relative size of the largest best response which needed to be
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Figure 2: (a) The exploitability of the average strategies on Leduc Hold’em with 4 card types, 3 for each, 2 bet and raise values and 4
consecutive raises allowed. (b) The information set count of Gt and G′ in the same setting. (c) Relative information set counts of G1 and
final abstraction G∞, relative size of the largest best response which needed to be stored, and total information set count of G′ for Leduc
holdem with deck with 4 types of cards, 3 cards for each, for increasing number of bets and raises (rows 1 to 4) and increasing consecutive
raise count (row 1, 5 - 7)

stored and total information set count of the original perfect
recall game in poker domains, first when increasing number
of bets and raises and when increasing number of allowed
consecutive raises. The size of both abstractions decreases
in both parameters, hence the sizes of the average strategies
stored in FPIRA decrease proportionally. Besides storing the
average strategy in the current abstraction, FPIRA also stores
the best response computed inG′ before updating the average
strategy. To show the maximal memory needed to store these
best responses we provide the number of information sets of
G′ for which there is an action prescribed in the largest best
response during the run of FPIRA. These results show that
the sizes of the best responses do not threaten the memory
efficiency of FPIRA. This leads to significant memory sav-
ings in large domains with only approximately twice as much
time needed per iteration compared to the FP applied directly
to the perfect recall game. Additionally, the results suggest
that further scaling of the solved domains will significantly
reduce the relative size of the abstractions. This observation
is further supported by the fact that the relative support size of
Nash equilibria in poker-like domains decreases as the game
size increases [Schmid et al., 2014].
Random games. To show the performance of FPIRA in
games with varying structure, we performed additional exper-
iments on 50 instances of random games for depth 7 and 30
instances for depth 8. FPIRA was able to solve the instances
using abstractions which had on average only 4.9% ± 0.7%
of the information sets of the original game for depth 7 and
1.2%± 0.3% for depth 8. The perfect recall instances had on
average 2.6 · 104± 4 · 103 and 1.1 · 105± 3 · 104 information
sets for depth 7 and 8 respectively. Notice that the sizes of ab-
stractions needed to solve the random games are significantly
smaller than in the case of poker with similar information set
counts. This is caused by the moves of nature at the start of
poker, which cause large parts of the game tree to be visited
when playing according to one pure strategy. Hence when
computing ∆t

i, there is a significantly higher number of pure
strategies of −i that we need to check, and therefore more
information set splits, compared to games with no nature.

6 Conclusion
We present the first algorithm that automatically creates im-
perfect recall abstractions and uses them to solve the origi-

nal extensive-form game with perfect recall. While the im-
perfect recall abstractions of perfect recall games can sig-
nificantly reduce the space necessary for storing strategies,
their use has been rather limited. Previous works use ei-
ther very restricted subclasses of imperfect recall abstrac-
tions [Lanctot et al., 2012; Kroer and Sandholm, 2016;
Bošanský et al., 2015], heuristic approaches [Waugh et al.,
2009], or only focus on solving the given imperfect recall
game [Čermák et al., 2017].

Our main contribution is the memory efficient algorithm
FPIRA that provides an automatically created imperfect re-
call abstraction that is sufficient for a Nash equilibrium strat-
egy in the original perfect recall game. As a consequence, a
strategy from the abstracted game can be used directly in the
original game without the need to use translation techniques,
nor is the quality of such strategy affected by choice of the
abstraction. The FPIRA algorithm is based on fictitious play
(FP) and provides the same guarantees of the convergence as
if FP were applied directly to the original perfect recall game.
The experimental evaluation shows that we are able to solve
modification of Leduc hold’em with 7 · 105 information sets
using an abstracted game with 1.8% of information sets of the
original game. Furthermore, the experiments on different ver-
sions of Leduc hold’em and random games suggest that the
relative size of the needed abstractions significantly decreases
as the size of the solved games increases.

A natural step for future work is to generalize FPIRA to
other learning algorithms – e.g., Counterfactual Regret Mini-
mization (CFR) [Zinkevich et al., 2008] that is used for solv-
ing large extensive-form games with perfect recall. However,
this generalization is not straightforward since the updates,
and the identification of whether an information set should be
split is significantly more challenging in that case.
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