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Abstract

Aggregating crowd wisdom infers true labels for
objects, from multiple noisy labels provided by var-
ious sources. Besides labels from sources, side in-
formation such as object features is also introduced
to achieve higher inference accuracy. Usually, the
learning-from-crowds framework is adopted. How-
ever, the framework considers each object in isola-
tion and does not make full use of object features to
overcome label noise. In this paper, we propose a
clustering-based label-aware autoencoder (CLA) to
alleviate label noise. CLA utilizes clusters to gather
objects with similar features and exploits clustering
to infer true labels, by constructing a novel deep
generative process to simultaneously generate ob-
ject features and source labels from clusters. For
model inference, CLA extends the framework of
variational autoencoders and utilizes maximizing
a posteriori (MAP) estimation, which prevents the
model from overfitting and trivial solutions. Ex-
periments on real-world tasks demonstrate the sig-
nificant improvement of CLA compared with the
state-of-the-art aggregation algorithms.

1 Introduction

Aggregating crowd wisdom aims at inferring true labels from
multiple noisy labels collected from sources, which is also
known as truth inference or label aggregation for crowdsourc-
ing [Li et al., 2016]. As a key technology for massive ob-
ject labeling, aggregating crowd wisdom is usually consid-
ered in the domain of unsupervised learning since labeling
tasks do not provide ground-truth labels. A traditional aggre-
gation algorithm takes multiple noisy labels from different
sources as input and infers true labels for objects. A sim-
ple aggregation algorithm, majority voting, has been widely
used in many voting scenarios, which infers the most voted
label as the true label. More sophisticated algorithms usually
exploit source credibility to model the relationship between
true labels and labels from sources (source labels), where
high credible sources are supposed more likely to provide
correct labels [Zheng er al., 2017]. Besides source labels,
recent work introduces side information as object features
to achieve higher inference accuracy [Raykar et al., 2010;

1542

Rodrigues and Pereira, 2018]. Those algorithms usually
adopt the learning-from-crowds framework where aggregated
labels from source labels guide the classification of object
features. The framework is analogized to supervised learn-
ing where aggregated labels are analogized to training labels.

However, label noise is still a crucial problem in previous
algorithms imitating supervised learning. Traditional super-
vised learning uses perfect training labels, but in label ag-
gregation, labels from real-world sources are noisy and may
lead to noisy aggregated labels. Using aggregated labels to
directly guide the classifier may cause imprecise decision
boundaries (Figure 1b). Side information such as object fea-
tures is expected to alleviate label noise by bringing objects
with similar features together. However, previous algorithms
utilizing object features consider each object in isolation and
do not provide explicit solutions to the label noise problem.

To alleviate label noise and take advantage of object fea-
tures, we propose a clustering-based label-aware autoencoder
(CLA). CLA utilizes clusters to gather objects with similar
features, where objects in the same cluster are supposed to
have similar true labels. A simple and intuitive mechanism
is illustrated in Figure 1c. Specifically, CLA assigns each
cluster a centroid and a label distribution, and exploits a deep
generative process, to simultaneously generate latent embed-
ding from the cluster centroid and an intermediate label from
the label distribution. The latent embedding is further used to
generate object features, while the intermediate label is used
to generate source labels. The deep generative process is in-
spired by deep Gaussian mixture models in the framework of
variational autoencoders (VAE) [Dilokthanakul et al., 2016;
Jiang et al., 2016] and label-aware autoencoders [Yin et al.,
2017]. CLA combines generating source labels and object
features from clusters and adopts cluster labels to infer true
labels. Since a cluster label contains labeling information of
all objects in the cluster rather than a single object, CLA alle-
viates the problem of label noise. For model inference, CLA
introduces constraints for model parameters by extending the
framework of VAE [Kingma and Welling, 2013] and utilizing
maximizing a posteriori (MAP) estimation. The MAP esti-
mation can be written into a likelihood term and a prior term
over model parameters. The likelihood term is inferred by
constructing VAE. The prior term acts as a regularizer that
prevents model parameters from overfitting and trivial solu-
tions. Experiments on real-world tasks show that CLA signif-
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Figure 1: Comparing with the noise-free case (a), label noise causes
an imprecise decision boundary (b), and clustering alleviates the
problem (c). Consider a binary labeling task where circles denote
category 1 and triangles denote category 2. Features of objects are
represented by their relative positions in subfigures. We simply as-
sume an object o; infers an aggregated label by majority voting from
source labels and [,;, = 1 indicates the majority voting result is cat-
egory 1. A dashed line denotes the learned decision boundary. (a)
An ideal case where all sources provide correct labels. Therefore
aggregated results via majority voting are correct and the learned
decision boundary with the guide of aggregated results is precise.
(b) If object o3 has noisy labels from sources which lead to an incor-
rect majority voting label l,, = 2, then a classifier may mistake o3
as it is from category 2 and learn an imprecise decision boundary. (c)
Clustering is used to alleviate label noise. In the subfigure, objects
in relatively short distances form clusters. For a simple illustration,
majority voting is applied to inferred labels of objects in the same
cluster to achieve a cluster label (I, and [.,). Cluster labels are
more likely to be correct by considering all labeling information of
objects in the same cluster rather than a single object, that alleviates
label noise and guides a model to learn a correct decision boundary.

icantly improves inference accuracy compared with the state-
of-the-art aggregation algorithms.

2 Related Work

Traditional aggregation algorithms use source labels to in-
fer true labels. Among them, weighted majority voting [Ay-
din er al., 2014], trust propagation [Yin et al., 2008], and
generative models [Bachrach er al., 2012; Liu et al., 2012;
Simpson et al., 2013; Venanzi et al., 2014; Tian and Zhu,
2015] are extensively researched. Label-aware autoencoders
(LAA) build a bridge between label aggregation and neural
networks which makes aggregation modeling more flexible
[Yin et al., 2017]. Features of objects are utilized to fur-
ther achieve higher aggregation accuracy. Most work ex-
ploits the framework named learning from crowds [Raykar
et al., 2010]. Yan et al. further model source credibility af-
fected by features based on the framework [Yan ez al., 2014].
The learning-from-crowds framework originally uses a lin-
ear classifier to classify object features. Recent work utilizes
deep neural networks to enhance the learning capacity of the
classifier [Albarqouni et al., 2016; Dizaji and Huang, 2018;
Rodrigues and Pereira, 2018]. Besides learning from crowds,
a generative framework generates both source labels and ob-
ject features from a true label of the object [Felt ez al., 2014].
Among them, some algorithms design a specific model struc-
ture for specific data types (e.g., latent Dirichlet allocation
for textual data [Rodrigues et al., 2017] and convolutional
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neural networks for image data [Albarqouni et al., 2016;
Cao et al., 2019]). Our model CLA is a general approach
and does not assume a specific data type.

The other topic related to CLA is clustering, especially
in the framework of VAE. VAE providing effective model
inference for generative models, has advantages on unsu-
pervised and semi-supervised learning tasks [Kingma and
Welling, 2013; Kingma et al., 2014]. Label aggregation
as an unsupervised learning task can be modeled by LAA,
which is a variant of VAE. Deep clustering methods, es-
pecially deep Gaussian mixture models benefit from VAE
by simplifying model inference [Dilokthanakul er al., 2016;
Jiang et al., 2016]. Though label aggregation and clustering
problems are respectively modeled in the framework of VAE
and achieve attractive performance, to the best of our knowl-
edge, there is no pioneering work combining both of them in
a unified framework to utilize clustering to infer true labels.

3 Methods

3.1 Problem Definition

Given a label set {l;,n}, m € {1,..., M} andn € {1,...,N},
where M is the number of objects and N is the number of
sources. l,,,, denotes a label object m receives from source
n. lmn € {1,..., K} is a categorical label, where K is the
number of categories. For the convenience of representation,
all labels belonging to object m are collected to form a label
vector l,,,. 1,,, has N source blocks and contains all labeling
information of the object [Yin ef al., 2017]. Traditional label
aggregation aims to infer a true label #,, for each object m
given the label vector. In this paper, feature vector z,, € R’
of each object is also utilized to make high-quality inference.
1 is the dimensionality of the feature vector.

3.2 Clustering-based Label-aware Autoencoder

Given label set {l,,, } and feature set {,, }, a clustering-based
label-aware autoencoder (CLA) optimizes model parameters
® via maximizing a posteriori (MAP) estimation.

e = arg(f)naXp(@Hlm}a {zm})

M
= arg max > 10gpllm, Tm|©) +1ogp(©). (1)
m=1

The first term on the right hand is the log-likelihood, and the
second term is the log-prior of model parameters. The equa-
tion assumes each object has a label vector and a feature vec-
tor independent with other objects given model parameters.
We also use p(l, z) to denote p(l,,, &, |®), for simplicity.
To model the log-likelihood, we introduce a deep genera-
tive process to generate label vectors and feature vectors from
clusters (Figure 2a). Suppose there are C' clusters. For an
object, we first draw a cluster index z € {1,...,C}. Given
cluster index z, we draw intermediate label y from the cho-
sen cluster, and then draw label vector I from y. Meanwhile,
we draw latent embedding h from the cluster, and then draw
feature vector  from h. A formal description is given below.
For each object:
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Figure 2: Plate notation for CLA. (a) The generative process
(decoder) describes joint distribution p(z,y, h,l,z). (b) Encoder
q(z,y,h|l,z) is decoupled into ¢(z|l,z), q(y|l), and q(h|z). q(y|l)
and g(h|z) are modeled by neural networks respectively, while
q(z|l,z) is computed directly. Gray circles illustrate observed data.
Prior distributions for model parameters are omitted for simplicity.

1. Draw cluster index z with

p(z) = Cat(m,). )
T, represents the probability of each cluster being chosen in
the categorical distribution. Subscript 2z in 7, is only a name
indicating the distribution is used to generate variable z.
2. Draw intermediate label y given cluster index z with

p(ylz) = Cat(my), ©)
where y € {1, ..., K'}. The superscript z in ] indicates each

cluster has its own distribution 77, z € {1,...,C}.
3. Draw label vector I from y with

N
ply) = T paly),
n=1

p(lnly) = Cat(mi' (). “
Since label vector I is a combination of N source blocks, we
draw a label for each source block from a categorical distri-
bution independently. Each source n has its own distribution
parameter 7} (y), which is calculated by using y as input, via
a neural network with weight matrix w7 . To make a brief
representation, we concatenate all N weight matrices into a
weight matrix w,, to form a big network, which computes
labels for all source blocks and generates label vector ! from
the intermediate label y.

4. Draw latent embedding h from cluster z with

plhi2) = (1 diag (0°)7) ) )
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h € R’ where J is the dimensionality of the embedding
feature space. Each cluster has a multivariate normal dis-
tribution with mean pj and a simplified covariance matrix
diag((a2)fl). o? is a vector where each element measures
the variance of the corresponding element in h.

5. Draw feature vector  from h with

p(x|h) = Ber(p,(h)), (6)

if each element in z is Bernoulli distributed. Ber(p,(h)) is
a multivariate Bernoulli distribution. Vector p,(h) € [0, 1]
is calculated via a multi-layer neural network with weights
w,_ . An alternative is a multivariate normal distribution if
is normally distributed.

By introducing the generative process, we have the joint
distribution for each object

p(2,y,h,1,z) = p(2)p(yl2)p(|y)p(h|2)p(z|h).  (7)

The log-likelihood in Eqn. (1) is then deduced into an ELBO
and solved by constructing VAE [Kingma and Welling, 2013]

log p(l, z)
= ELBO(l,z) + KL(q(z,y,h|l,z)||p(z, y, h|l, z))
> ELBO(l,z)

B p(z,y,h,1, )
—;/hq(z,y,hﬂ,x) log Couhlla) dh (®)

where p(z,y,h,l,z) can be regarded as the decoder, and
q(z,y, h|l,z) can be regarded as the encoder in CLA.
With the mean-field method, ¢(z, y, h|l, z) is decoupled

q(Z,y,h|l,$) = Q(Z|l7m)Q(y|lvm)Q(h|laz)
=q(zll,z)q(yl)q(h|z). ©)

y is assumed to be conditionally independent with z given [.
Similar assumption applies for h. In the equation, g(z|l, z) is
directly computed (see Eqn. (15)).

q(y|l) is a categorical distribution

q(ylt) = Cat(w (1)), (10)

where probability 7 (1) is computed via a neural network with
weight matrix ws, given [ as input.
q(h|z) is a multivariate normal distribution

o(hja) = A (i) diog(@*@) ).

where fi(z) and &°(z) are modeled by two multi-layer neural
networks with weights w; and ws respectively.

By introducing the decoder and the encoder, the framework
of CLA is illustrated in Figure 2, with model parameters

6= {’”27 {ﬂ;}ﬂwﬂm {Mz}’ {(02)}21}’“);017wﬁ7wﬂ7w5(}1'2)
According to Eqn. (1) and (8), CLA is optimized by maxi-
mizing the ELBO and the log-prior term.

After model optimization, cluster labels are utilized to in-
fer a true label for object m. Cluster labels contain labeling
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information of all objects belonging to the cluster and are ef-
fective to alleviate the problem of label noise.

p(tNM) yllmvmm Zp Z|lm7xm y| )
C
~ Cat(Zq(zm = c|lm,zm)1r;) (13)
c=1

An inferred true label is then chosen by the category which
achieves the maximum probability. We use posterior prob-
ability g(z|l,z) instead of p(z|l,z) since p(z|l, ) is not di-
rectly modeled in CLA.

3.3 Model Inference: ELBO
We write out the ELBO by using Eqn. (7) and (9).

ELBO(l, )

- Z/Q(z,y,h\m) log p(2)p(y
7 /n

[2)p(h|2)py)p(zlh)
I,

4Gl g(ya(hl)

=3 gzl 2) 1o +Z 2|, z)q(yll) log p(yl2)
) plalh)

+%h@mm%@m+éﬂmwmhmwﬁ

+3° [ atcle)a(hle) g p(hl:)an (14)

All terms in the equation can be derived by directly using
distribution definitions (we do not show detailed solutions),
except for ¢(z|l, z). Here we solve ¢(z|l,z) via

(z|l,z) = Z/hq(y‘l,x)q(hu,x)q(zw,h)dh
= Z/hq(y\l)Q(h\m)p(zw,h)dh

1 T K
~f;§_: Dle p(zly = k,b"),  (15)

where v|;; denotes the k-th element in the vector. The integral
over g(h|z) is approximated by sampling h' from distribution
q(h|z) T times. p(z|y = k, h') is a calculable probability by
exploiting the generative process

p(Z = c|y = k»ht)
__ ply=klz=c)ph'|z=c)p(z =)
S0 p(y = K|z = ¢)p(ht|z = ¢)p(z = )

where p(y = k|z = ¢), p(ht|z = ¢), and p(z = ¢) can
be directly computed from corresponding distributions (3),
(5), and (2), respectively. Eqn. (16) is an analogy to the ‘E-
step’ in Expectation-Maximization methods which estimates
the distribution of latent variables by using current model pa-
rameters. We calculate probability p(z|y, h) rather than di-
rectly modeling ¢(z|y, k), since there is no simple distribu-
tion describing ¢(z|y, h), to the best of our knowledge.

, (16)
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3.4 Model Inference: Regularizer

The log-prior term in Eqn. (1) plays an assistant but impor-
tant role: prevent parameters from overfitting and set prior
distributions to avoid trivial solutions. We use the term as a
regularizer and assign coefficient A to control the strength.

For neural network weights, namely, w,, w, , wz, wg,
and wz, a prior is normal distribution A'(0, 1) for each ele-
ment in weights to prevent weights from overfitting.

For parameters related with clusters, namely ., {w;},

{p:}, and {(?)3 }, following prior distributions are used.

p(w) = Dir(a™), a7
p(my) = Dir(8%), (18)
ppi) = N(p*.I), (19)
p((6®);|;) = Inv-Gamma(a, b). (20)

Dir(a™) assigns each object a prior Dirichlet distribution.
Dir(8*) assigns each cluster a prior Dirichlet distribution.
Mean uj of each cluster is assigned a multivariate normal
distribution. The variance vector o2 has each element gener-
ated from an Inverse-Gamma distribution. We seta = b = 2
to make E[o?|;] = 1, j € {1,..., J}. We find these prior dis-
tributions work well in practice, while a shared distribution
(no regularizer or a uniform regularizer) has a force to push
clusters together which leads to fewer clusters than expected
and inferior results. The coefficient A of the regularizer is set
as the reciprocal of the size of model parameters. This is a
balance between ELBO and regularizer, which prevents the
optimizing process from favoring the regularizer term even if
a model has a million parameters.

We exploit pre-training to find appropriate prior distribu-
tions. Specifically, we pre-train ¢(h|z) by constructing a mir-
ror structure to form an autoencoder, which learns embedding
h in the middle layer by reconstructing . Then we concate-
nate h and majority voting label ,,, from I and apply the
K-means clustering on the concatenated vectors to obtain ini-
tial C' clusters. The cluster index for each object is encoded
into a smoothed one-hot vector to avoid zeros and used as
a™ in Eqn. (17). The centroid of each cluster is used as p*
in Eqn. (19). Source labels in each cluster are collected by
majority voting, which forms vector 87 in Eqn. (18).

4 Experiments

4.1 Implementation Details

CLA has only a few hyperparameters and is easy to train. w,,
has a fully connected multi-layer structure with node num-
bers {40,100, 1/2, I} from the bottom up. I is the number
in the output layer, while 40 is the dimensionality of embed-
ding feature space. wj, ws have similar structures with VAE
and we use node numbers {I, I/2,100,40} from the bottom
up. Sampling time 7" = 5. Cluster number C' is discussed in
the subsequent section. We implement CLA by TensorFlow
and use gradient ascent for training'. Hyperparameter search
adopts a similar manner with LAA by splitting a dataset into
a training set and a validation set [Yin er al., 2017]. Here the
learning rate is 0.001. Training is stable and usually achieves
desirable inference accuracy after 1,500 epochs.

'"Demo code is at https://github.com/coverdark/cla_demo
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| Algorithm | document [ bill | head | shape | forehead [ throat [ underpart | breast |
MV 0.7128 0.8168 | 0.8760 | 0.8754 0.8651 0.8934 0.9385 0.7608
TF 0.7223 0.8170 | 0.8760 | 0.8797 0.8651 0.8934 0.9385 0.7608
DS 0.6937 0.8221 0.8584 | 0.8777 0.8540 0.8772 0.9415 0.7499
IBCC 0.7088 0.8216 | 0.8473 | 0.8944 0.8497 0.8677 0.9370 0.7457
DARE 0.7245 0.8145 | 0.8652 | 0.9105 0.8619 0.8913 0.9430 0.7630
LAA 0.7251 0.8175 0.8762 | 0.8996 0.8651 0.8936 0.9385 0.7610
MOInReSpT 0.8416 0.8248 0.8810 | 0.9113 0.8719 0.8964 0.9466 0.7656
LCT 0.8632 0.8263 | 0.8881 0.9090 0.8662 0.8971 0.9456 0.7661
DLC 0.8763 0.8381 0.8777 | 0.9108 0.8674 0.8936 0.9417 0.7684
MLT - 0.8410 | 0.8873 | 0.9211 0.8704 0.8959 0.9468 0.7633
CrOWdDeepAEJr 0.8781 0.8377 0.8870 | 0.9135 0.8780 0.8957 0.9388 0.7615
CLAT 0.8931" | 0.8654* | 0.9112% | 0.9316" | 0.8992* | 0.9174" | 0.9483" | 0.8024"

T Algorithms utilizing object features.

* The bolder values are significant via a t-test: p-values < 0.005 on all tasks.

Table 1: Overall Inference Accuracy Comparison

4.2 Datasets

Reuters contains a document categorization task. 1,786 doc-
uments from 8 categories receive labels from online users.
38 users contribute labels giving an average of 3 answers per
document [Rodrigues et al., 2017]. We apply latent Dirich-
let allocation to bag-of-words feature vectors to obtain 200
topics as object features [Blei et al., 2003].

CUB-200-2010 dataset contains tasks to label local charac-
teristics for 6,033 bird images [Welinder et al., 2010]. We use
7 binary labeling tasks, namely bill (bill shape is all-purpose
or not), head (head pattern is plain or not), shape (shape is
perching-like or not), forehead (forehead is black or not),
throat (throat is black or not), underpart (underpart is yel-
low or not), and breast (breast pattern is solid or not). For
each task, there are about 500 users contributing labels and
each image receives 5 labels. We collect ground truth from
whatbird.com for evaluation. For an image, we use 287 local
attributes collected from online users as object features.

4.3 Overall Inference Accuracy

We compare inference accuracy among representative aggre-
gation algorithms. Overall inference accuracy is the ratio of
the number of correct inferred objects to the overall number
of objects. Compared algorithms are: MV (majority voting),
TF (TruthFinder [Yin et al., 2008]), DS (Dawid & Skene’s
model [Dawid and Skene, 1979]), IBCC (a bayesian ver-
sion of the DS model [Kim and Ghahramani, 2012]), DARE
(a generative model with source credibility and object diffi-
culty [Bachrach et al., 2012]), LAA (label-aware autoend-
coders [Yin et al., 2017]), MomResp (a model generating
both object features and source labels from true labels [Felt et
al., 2014]), LC (learning from crowds [Raykar et al., 2010]),
DLC (deep learning from crowds [Rodrigues and Pereira,
2018], ML (a multiple labelers method [Yan et al., 2014]),
CrowdDeepAE ([Dizaji and Huang, 2018]), CLA (proposed
model, a clustering-based label-aware autoencoder). A K-
coin model [Raykar et al., 2010] (K is the number of label
categories) is exploited to model source credibility for Mom-
Resp, LC, DLC, ML, CrowdDeepAE, and CLA for fair com-

parison. Since there is randomness in the clustering of CLA,
we run the algorithm 20 times and report the average. Results
are illustrated in Table 1.

From Table 1, TF, DS, IBCC, DARE, and LAA have only
a slight or no advantage compared with MV, which indicates
the difficulty of modeling source credibility from sparse and
conflicting source labels. On the other hand, algorithms uti-
lizing object features usually achieve higher performance. In
these algorithms, DLC and CrowdDeepAE are better than LC
on some tasks, which indicates the advantage of exploiting
deep neural networks. However, on the other tasks, DLC
or CrowdDeepAE do not show advantages because of label
noise. Deep neural networks enhance learning capability but
are easier to be trapped in imprecise decision boundaries in
unsupervised learning. ML has a good performance on CUB-
200-2010 tasks, but fails on the document task, due to the
difficulty of modeling source credibility from noisy features.
Among the compared methods, CLA achieves the highest ac-
curacy. The result is significant by conducting a t-test be-
tween CLA and the other algorithm achieving the highest ac-
curacy. CLA uses clusters to alleviate label noise and is more
effective than the state-of-the-art algorithms.?

4.4 Effect of Cluster Number

A key factor making CLA effective is that CLA usually ex-
ploits more clusters than label categories. Since CLA as-
sumes objects in the same cluster have similar true labels,
the assumption is satisfied when the number of clusters is
sufficient. Though ideally, the deep generative process can
perfectly cluster objects into corresponding label categories,
the ideal case generally does not happen on real-world data.
More clusters make it easier to form small clusters that con-
tain similar objects in a relatively short distance in the em-
bedding feature space. In Figure 3, we illustrate the inference

’Here we remind the limit of CLA when object features are
too noisy to form effective clusters. We conduct experiments on
a sentiment polarity dataset [Rodrigues et al., 2013], but CLA (Acc.
0.9078) and other algorithms utilizing object features cannot outper-
form IBCC (0.9150).
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Figure 3: Inference accuracy varies with different cluster numbers.
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Figure 4: The clustering result on the bill task (C' = 200). 20 bird
categories are illustrated with different colors.

accuracy along with different numbers of clusters. The ac-
curacy increases when the number of clusters increases, and
achieves the highest when the number ranges from 100 to
400. Then the accuracy slightly goes down when the num-
ber of clusters is very large. When the number is too small,
each cluster contains too many objects even they are not very
similar. That breaks the assumption of CLA and results in
inaccurate cluster labels. When the number of clusters is too
large, a cluster contains too few objects, which is insufficient
to infer a reliable cluster label.

Interestingly, the CUB-200-2010 dataset contains images
from 200 real-world bird categories and clusters from CLA
correspond to these underlying bird categories. In Figure
4, we show the clustering result on the bill task when clus-
ter number C = 200. For a clear illustration, we use t-
SNE [Maaten and Hinton, 2008] to map embedding h into
2-dimension and plot 20 bird categories with different col-
ors. This figure intuitively shows the learned embedding and
clusters, where bird categories roughly accord with learned
clusters. Images of the same bird category usually share the
same characteristics, that supports the effectiveness of CLA.

4.5 Effect of Regularizer

To show the effect of the regularizer in CLA, we compare re-
sults with no regularizer, with a uniform regularizer, and with
an appropriate regularizer as described in the Regularizer sec-
tion. The uniform regularizer uses a uniform distribution in
Eqn. (17), (18), and a normal distribution A/(0,I) in Eqn.
(19). We experiment on the forehead task, the other tasks
show similar trends. In Figure 5, we illustrate the number of
objects in each cluster with cluster number C' = 200. Clus-
ters are sorted by the number of objects in descending order.
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Figure 5: Effect of the regularizer on the forehead task (C' = 200).
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Figure 6: CLA is robust with different settings of embedding size.

A model collapses to a few clusters with no regularizer, or
with a uniform regularizer. The collapse leads to a similar in-
ferior result of insufficient cluster numbers, as shown in Fig-
ure 3. The collapse does not happen with a CLA regularizer,
and the model can give full play to the advantages of CLA.

4.6 Effect of Embedding Size

CLA is robust with different settings of embedding size. We
set dimensionality of the embedding feature space ranging
from 10 to 100 for CLA and illustrate the corresponding re-
sults in Figure 6. The accuracy does not show a significant
change with different embedding sizes.

5 Conclusion

This paper proposes a clustering-based label-aware autoen-
coder (CLA) to utilize object features and alleviate label noise
for crowd wisdom aggregation. CLA exploits a deep gener-
ative process to generate both source labels and object fea-
tures from clusters. CLA extends the framework of VAE and
utilizes MAP estimation for model inference. Experimental
results on real-world tasks show that CLA significantly im-
proves inference accuracy compared with the state-of-the-art
aggregation algorithms. Besides high performance and ro-
bustness, experiments show the intuition of learned embed-
ding and clusters to support the effectiveness of CLA.
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