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ABSTRACT
In adversarial patrolling games, a mobile Defender strives to dis-

cover intrusions at vulnerable targets initiated by an Attacker. The

Attacker’s utility is traditionally defined as the probability of com-

pleting an attack, possibly weighted by target costs. However, in

many real-world scenarios, the actual damage caused by the At-

tacker depends on the time elapsed since the attack’s initiation to its
detection. We introduce a formal model for such scenarios, and we

show that the Defender always has an optimal strategy achieving

maximal protection. We also prove that finite-memory Defender’s

strategies are sufficient for achieving protection arbitrarily close to

the optimum. Then, we design an efficient strategy synthesis algo-
rithm based on differentiable programming and gradient descent.

We evaluate the efficiency of our method experimentally.
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1 INTRODUCTION
Patrolling games are a special type of security games [16] where a

mobile Defender moves among protected targets with the aim of

detecting possible incidents. Compared with static monitoring facil-

ities, patrolling is more flexible and less costly on implementation

and maintenance. Due to these advantages [19], patrolling is indis-

pensable in detecting crimes [6, 8], managing disasters [13], wildlife

protection [17, 18], etc. Apart from humanDefenders (police squads,

rangers [17], etc.) where the patrolling horizon is bounded, recent

technological advances motivate the study of robotic patrolling

with the unbounded horizon.
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Most of the existing patrolling models can be classified as ei-

ther regular or adversarial [3, 7, 14]. Regular patrolling is a form of

surveillance where the Defender aims at discovering accidents as

quickly as possible by minimizing the time lag between two con-

secutive visits for each target. In adversarial patrolling [1, 2, 4, 5],

the Defender strives to protect the targets against an Attacker

exploiting the best attack opportunities maximizing the damage.

The solution concept is typically based on Stackelberg equilibrium

[15, 20]. In infinite-horizon adversarial patrolling models, every

target 𝜏 is assigned a finite resilience 𝑑 (𝜏), and an attack at 𝜏 is dis-

covered if the Defender visits 𝜏 in the next𝑑 (𝜏) time units. Although

this model is adequate in many scenarios, it is not applicable when

the actual damage depends on the time elapsed since initiating the
attack. For example, if the attack involves setting a fire, punching a

hole in a fuel tank, or setting a trap, then the associated damage

increases with time. In this case, the Defender should minimize the
expected attack discovery time rather than maximize the probability

of visiting a target before a deadline.

Our main contribution can be summarized as follows:

• We propose a formal model for infinite-horizon adversarial

patrolling where the damage caused by attacking a target

depends on the time needed to discover the attack.

• We prove that regular strategies can achieve the same limit

protection value as general strategies.

• We design an efficient algorithm synthesizing a regular De-

fender’s strategy for a given patrolling graph, and we evalu-

ate its functionality experimentally.

A detailed presentation of our work can be found in [11].

2 THE MODEL
Terrain model. A patrolling graph is a tuple 𝐺 = (𝑉 ,𝑇 , 𝐸, tm, 𝛼)
where 𝑉 is a finite set of vertices (Defender’s positions), 𝑇 ⊆ 𝑉 is

a non-empty set of targets, 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges (admissible

Defender’s moves), tm : 𝐸 → N+ specifies the traversal time of an

edge, and 𝛼 : 𝑇 → R+ defines the costs of targets. We require that

𝐺 is strongly connected, and we write 𝑢 → 𝑣 instead of (𝑢, 𝑣) ∈ 𝐸.

The sets of all non-empty finite and infinite paths in 𝐺 are de-

noted by H (histories) and W (walks), respectively.
Defender and Attacker. A Defender’s strategy is a function 𝛾

assigning to every history ℎ ∈ H of Defender’s moves a probability
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distribution on 𝑉 such that 𝛾 (ℎ) (𝑣) > 0 only if ℎ𝑣 ∈ H , i.e., 𝑢 → 𝑣

where 𝑢 is the last vertex of ℎ. We also use walk(ℎ) to denote the

set of all walks initiated by a given ℎ ∈ H . For every initial vertex
𝑣 where the Defender starts patrolling, the strategy 𝛾 determines a

probability space over the walks in the standard way.

The Attacker observes the history of Defender’s moves and

decides whether and where to initiate an attack. An observation
is a sequence 𝑜 = 𝑣1, . . . , 𝑣𝑛, 𝑣𝑛→𝑣𝑛+1, where 𝑣1, . . . , 𝑣𝑛 is a path

in 𝐺 . Intuitively, 𝑣1, . . . , 𝑣𝑛 is the sequence of vertices visited by

the Defender, 𝑣𝑛 is the currently visited vertex, and 𝑣𝑛→𝑣𝑛+1 is

the edge taken next. The set of all observations is denoted by Ω.
An Attacker’s strategy is a function 𝜋 : Ω → {wait, attack𝜏 : 𝜏 ∈ 𝑇 }.
We require that for every walk 𝑤 = 𝑣1, 𝑣2, . . . there is a unique 𝑛
such that 𝜋 (𝑣1, . . . , 𝑣𝑛, 𝑣𝑛→𝑣𝑛+1) = attack𝜏 for some target 𝜏 .

Protection value. Suppose the Defender commits to a strategy 𝛾

and the Attacker selects a strategy 𝜋 . The expected damage caused
by 𝜋 against 𝛾 is the expected time to discover an attack scheduled

by 𝜋 weighted by target costs. More precisely, for every walk𝑤 =

𝑣1, 𝑣2, . . ., let 𝑛 be the unique index where 𝜋 (𝑣1, . . . , 𝑣𝑛, 𝑣𝑛→𝑣𝑛+1) =
attack𝜏 for some 𝜏 ∈ 𝑇 , and let𝑚 > 𝑛 be the least index such that

𝑣𝑚 = 𝜏 (if no such index exists, then𝑚 = ∞). Furthermore, we put

D𝜋 (𝑤) = 𝛼 (𝜏) ·∑𝑚
𝑖=𝑛 tm(𝑣𝑖 , 𝑣𝑖+1).

The expected damage caused by 𝜋 against 𝛾 initiated in 𝑣 is

defined as the expected value of D𝜋
in the probability space over

the walks determined by 𝛾 and 𝑣 , denoted by E𝛾,𝑣 [D𝜋 ]. Since the
Defender may choose the initial vertex 𝑣 , we define the protection
value achieved by 𝛾 and the limit protection value as follows:

Val(𝛾) = min

𝑣
sup

𝜋
E𝛾,𝑣 [D𝜋 ] Val = inf

𝛾
Val(𝛾)

We say that a Defender’s strategy 𝛾 is optimal if Val(𝛾) = Val.

3 FINITE-MEMORY DEFENDER’S STRATEGIES
A general Defender’s strategy depends on the whole history of

moves and cannot be finitely represented. A computationally fea-

sible subclass are finite-memory (or regular) strategies [9, 10, 12]
where the relevant information about the history is represented by

finitely memory elements assigned to each vertex.

Formally, let mem: 𝑉 → N be a function assigning to every ver-

tex the number of memory elements. The set of augmented vertices
is defined by 𝑉 = {(𝑣,𝑚) : 𝑣 ∈ 𝑉 , 1 ≤ 𝑚 ≤ mem(𝑣)}. We use �̂� to

denote an augmented vertex of the form (𝑣,𝑚) where𝑚 ≤ mem(𝑣).
A regular Defender’s strategy for 𝐺 is a function 𝜎 : 𝑉 → Dist (𝑉 )
where 𝜎 (𝑣,𝑚) (𝑣 ′,𝑚′) > 0 only if 𝑣 → 𝑣 ′. We say that 𝜎 is unam-
biguous if for all 𝑣, 𝑣 ′ ∈ 𝑉 and𝑚 ≤ mem(𝑣) there is at most one𝑚′

such that 𝜎 (𝑣,𝑚) (𝑣 ′,𝑚′) > 0.

Intuitively, the Defender starts patrolling in a designated initial
vertex 𝑣 with initial memory element 𝑚, and then traverses the

vertices of 𝐺 and updates the memory according to 𝜎 .

An important question is whether regular strategies can achieve

the same limit protection value as general strategies. The answer

is positive, and it is proven in two steps. First, we show that there

exists an optimal Defender’s strategy 𝛾 satisfying Val(𝛾) = Val.

Then, for arbitrarily small 𝜀 > 0, we demonstrate the existence of

a regular strategy 𝜎 such that Val(𝜎) ≤ Val(𝛾) + 𝜀. Proofs can be

found in [11].

Theorem 3.1. For every patrolling graph, there exists a Defender’s
strategy 𝛾 such that Val(𝛾) = Val.

Theorem 3.2. Let𝐺 be a patrolling graph, and let Reg be the class
of all regular strategies for 𝐺 . Then inf𝜎 ∈Reg Val(𝜎) = Val.

4 STRATEGY SYNTHESIS ALGORITHM
Let𝐺 be a patrolling graph and 𝜎 a regular strategy for𝐺 . First, we

show how to compute Val(𝜎).
Let 𝐸 be the set of all (𝑢, �̂�) ∈ 𝑉 ×𝑉 such that 𝜎 (𝑢) (�̂�) > 0, i.e.,

𝐸 is the set of augmented edges used by 𝜎 . For every target 𝜏 , let

𝜋 [𝜏] be the Attacker strategy where for all (𝑢, 𝑣) ∈ 𝐸 we have that

𝜋 [𝜏] (𝑢,𝑢 → 𝑣) = attack𝜏 , i.e., 𝜋 [𝜏] attacks 𝜏 immediately after the

Defender starts its walk.

For every �̂� = (𝑢, �̂�) ∈ 𝐸 and 𝜏 ∈ 𝑇 , let L𝜏,𝑒 be the expected

damage caused by an attack at 𝜏 scheduled right after the Defender

starts traversing �̂� , i.e.,

L𝜏,𝑒 = E𝜎,𝑢
[
D𝜋 [𝜏 ] | 𝑤𝑎𝑙𝑘 (�̂�)

]
.

Hence, L𝜏,𝑒 is the conditional expected value of D𝜋 [𝜏 ]
under the

condition that the Defender’s walk starts by traversing �̂� .

Consider the directed graph𝐺 = (𝑉 , 𝐸), and let B denote the set

of all bottom strongly connected components of 𝐺 . Let

L(𝜎) = min

𝐵∈B
max

𝜏 ∈𝑇
max

𝑒∈𝐸 (𝐵)
L𝜏,𝑒

where 𝐸 (𝐵) = 𝐸 ∩ (𝐵 × 𝐵) is the set of augmented edges in the

component 𝐵 used by 𝜎 . We have the following:

Theorem 4.1. Let 𝜎 be a regular strategy for a patrolling graph𝐺 .
Then Val(𝜎) ≤ L(𝜎). If 𝜎 is unambiguous, then Val(𝜎) = L(𝜎).

A proof of Theorem 4.1 can be found in [11]. Our strategy synthe-

sis algorithm is based on interpretingL as a piecewise differentiable

function and applying methods of differentiable programming. We

start from a random strategy 𝜎 , repeatedly compute L(𝜎) and
update the strategy against the direction of its gradient. This is

repeated many times and the algorithm returns the best strategy

found. A detailed description of the optimization scheme is given in

[11], together with two sets of experiments on graphs with increas-

ing sizes focusing on runtime analysis and the achieved protection

values.
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