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ABSTRACT
Training a multi-agent reinforcement learning (MARL) model with
a sparse reward is generally difficult because numerous combina-
tions of interactions among agents induce a certain outcome (i.e.,
success or failure). Earlier studies have tried to resolve this issue
by employing an intrinsic reward to induce interactions that are
helpful for learning an effective policy. However, this approach
requires extensive prior knowledge for designing an intrinsic re-
ward. To train the MARL model effectively without designing the
intrinsic reward, we propose a learning-based exploration strategy
to generate the initial states of a game. The proposed method adopts
a variational graph autoencoder to represent a game state such that
(1) the state can be compactly encoded to a latent representation
by considering relationships among agents, and (2) the latent repre-
sentation can be used as an effective input for a coupled surrogate
model to predict an exploration score. The proposed method then
finds new latent representations that maximize the exploration
scores and decodes these representations to generate initial states
from which the MARL model starts training in the game and thus
experiences novel and rewardable states. We demonstrate that our
method improves the training and performance of the MARL model
more than the existing exploration methods.
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1 INTRODUCTION
Along with deep neural networks, reinforcement learning (RL) has
dramatically improved in the past decades, exceeding human-level
performance in challenging games [23, 30, 31]. Learning with the
games or physical simulators helps to simulate and solve real-world
problems, such as smart grids [9], logistics [6, 36], and distributed
vehicles/robots [8, 11, 22]. The advances in RL have naturally gen-
erated a significant interest in MARL as the achievements in RL can
be extended to more complex problems involving multiple interact-
ing agents. However, the training of a MARL model is difficult even
for a simple multi-agent task because it needs to learn implicitly
how multiple agents interact with each other along with the envi-
ronment and how these interactions induce certain task outcomes
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from only a reward signal. Furthermore, training the MARL model
using typical exploration methods that are effective for RL has been
unsuccessful because of a large number of possible interactions
that the MARL model needs to explore.

Exploration methods employed by researchers for RL can be
categorized into three categories: exploration bonus, goal condi-
tioning, and initial state generation. The exploration bonus methods
provide an intrinsic reward to an agent if the agent visits a state
that has not been visited. Count-based exploration [2, 25, 32], and
curiosity-driven exploration [4, 5, 26] are some examples of this
method. Goal-conditioning methods manipulate a task’s goal in
the simulator to ensure that the agent keeps receiving a reward to
achieve different goals. These methods virtually endorse the agent
the experience of “success” to make training faster using virtual
reward signals of success [1, 12]. Finally, initial state generation
methods adjust the initial state distribution in the simulator to gen-
erate initial states where the agent can easily complete a task and
receive a reward [13, 14, 24, 27]. These methods assume that they
can arbitrarily reset the agent into any initial state at the beginning
of the training episodes in the simulator. The common purpose of
these three types of exploration methods is to expose the agent to
as many new and rewardable experiences as possible. In particular,
goal-conditioning and initial state generation methods are mainly
used for goal-oriented tasks where the reward signal is typically
sparsely given and depends on whether a goal is achieved or not.

On the contrary, MARL exploration methods are limited in com-
parison to RL. Most MARL exploration methods focus on designing
an intrinsic reward to induce certain collective behaviors of agents
that are believed to help solve a multi-agent task or game. For
example, intrinsic rewards are provided when one agent’s action
affects other agents’ state transition [3, 35], and when all agents
explore only different (novel) or same (rewardable) state space [15].
However, designing a good intrinsic reward is difficult because it
requires the prior knowledge of interaction types that can help
solve a multi-agent task or game. In addition, designing an effec-
tive intrinsic reward often requires an iterative reward shaping
procedure until satisfactory performance is achieved.

We herein propose a learning-based exploration method called
RElational representation for Multi-Agent eXploration (REMAX)
to effectively generate novel and rewardable initial states for im-
proving the training of a MARL model without designing an in-
trinsic reward. As an initial state generation method, REMAX has
additional networks that interact with the MARL model to gener-
ate initial states in the simulator. These networks consist of two
parts: state representation and generation. For state representation,
REMAX employs a variational graph autoencoder (VGAE) [18] to
extract latent vectors from the game states such that they can be
used as an effective input for a coupled surrogate model to predict
exploration scores. The exploration score quantifies the balance
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between exploitation and exploration to generate states that are
useful for MARL training. In particular, REMAX effectively encodes
the states by representing the relationships among agents using an
encoder constructed using a graph attention network (GAT) [34]
in VGAE. For state generation, REMAX optimizes the surrogate
model with respect to a latent vector to find new latent vectors
with high exploration scores and decodes them through a VGAE
decoder to generate new states. The generated states are then used
as the initial states of the training episodes in the simulator to train
the MARL model. To summarize, REMAX learns how to optimally
generate initial states that are helpful in boosting the MARL model
training through the coupled VGAE and surrogate model.

2 RELATEDWORK
A representative task with sparse rewards is a goal-oriented task
where a binary reward is given only when agents achieve goals
(i.e., complete a task). Goal-conditioning and initial state genera-
tion methods are mainly used as RL exploration methods for goal-
oriented tasks. As one of the goal-conditioning methods, HER [1]
virtually exposes an agent to a task’s goal by setting the final state
of a training episode as a virtual goal in a simulator. Similarly, Goal
GAN [12] generates goals with an increasing difficulty using a
generator network. Meanwhile, RCG [13], one of the initial state
generation methods, adjusts the initial state of a training episode
in the simulator to ensure that the probability of an agent reach-
ing a task’s goal is within a specific bound. While adjusting the
initial state, RCG needs to know at least one state that can reach
the goal unconditionally, such as an exact goal state. Some meth-
ods perform imitation learning on the predicted state trajectory
to obtain a reward [14], or determine the initial state using expert
demonstrations on the task [24, 27].

MARL exploration methods for a multi-agent task with sparse
rewards, such as a multi-agent goal-oriented task, have not been
extensively studied. As one of the possible exploration strategies,
GENE [16] has been proposed to generate initial states in the simu-
lator for boosting the exploration of MARL models. This method
represents the state of a game as a latent vector using a variational
autoencoder (VAE) [17] and estimates the density of the latent vec-
tors using a kernel density estimation (KDE) [10]. By sampling
latent vectors from KDE and decoding them, GENE generates new
initial states that are believed to be novel and rewardable. However,
because GENE trains the state representation module (VAE) and
the state density estimation module (KDE) separately, the latent
representations may not be the best for generating novel and re-
wardable initial states. Another critical limitation of the method
is that it lacks of considering the relationships among agents. A
simple example illustrating this issue is when the relative positions
of 𝑛 homogeneous agents can be represented as 𝑛! different states
unless a permutation invariance is imposed on the state representa-
tion. When focusing on the relative configuration among agents, 𝑛!
different states can be considered as the same state. It can reduce the
state space to be explored and increase the efficiency of sampling
states during exploration.

We consider GENE as the main comparison method because
GENE and REMAX are both initial state generation methods that
can be used for multi-agent goal-oriented tasks without shaping

a reward. We also consider additional baseline methods for goal-
oriented tasks, such as HER and RCG. However, for a non-goal-
oriented task, where there is no goal to be reached, we exclude HER
and RCG. Instead, we consider EDTI [35], which uses an intrinsic
reward to quantify the influence of an agent’s action on the expected
returns of other agents. Note that we exclude the MARL exploration
methods using the intrinsic reward because they require a user-
designed or a domain-specific reward signal. Our study assumes
that we can arbitrarily reset agents into any initial state at the
beginning of training episodes in the simulator, which can be easily
satisfied for the current study that is focusing on offline training
using simulation environments.

3 BACKGROUND
3.1 Multi-Agent Reinforcement Learning
We consider a partially observable Markov game [20], which is
an extension of the partially observable Markov decision process
for a game with multiple agents. A partially observable Markov
game for 𝑁 agents is defined as follows: 𝑠 ∈ S denotes the global
state of the game; 𝑜𝑖 ∈ S ↦→ O𝑖 denotes a local observation cor-
related with the state that agent 𝑖 can acquire; and 𝑎𝑖 ∈ A𝑖 is an
action of agent 𝑖 . The reward for agent 𝑖 is obtained as a function
of state 𝑠 and joint action a as 𝑟𝑖 : S × A1 × · · · × A𝑁 ↦→ R.
The state evolves to the next state according to the state transition
function T : S × A1 × · · · × A𝑁 ↦→ S. Agent 𝑖 aims to maxi-
mize its discounted return, 𝑅𝑖 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑖,𝑡 , where 𝛾 ∈ [0, 1] is a
discount factor. In MARL, each agent learns an individual policy
that maps the observation to its action to maximize its expected
return, which is approximated by a 𝑄-function. While the policy
can be deterministic (𝑎𝑖 = 𝜇𝑖 (𝑜𝑖 )) or stochastic (𝑎𝑖 ∼ 𝜋𝑖 (·|𝑜𝑖 )),
the multi-agent deep deterministic policy gradient (MADDPG)
[21] adopts a deterministic policy. MADDPG comprises individ-
ual 𝑄-networks and policy networks for each agent. MADDPG lets
the 𝑄-network of agent 𝑖 be trained by minimizing the loss (TD
error) as follows: L(𝜑𝑖 ) = Eo,a,𝑟 ,o′∼D [(𝑄𝜇

𝑖
(o, a;𝜑𝑖 ) − 𝑦𝑖 )2], 𝑦𝑖 =

𝑟𝑖 + 𝛾𝑄𝜇
′

𝑖
(o′, a′;𝜑 ′

𝑖
) |𝑎′

𝑗
=𝜇′

𝑗
(𝑜′

𝑗
;𝜗 ′

𝑗
) , where o = (𝑜1, . . . , 𝑜𝑁 ) and a =

(𝑎1, . . . , 𝑎𝑁 ) represent the joint observation and joint action of all
agents, respectively. D is an experience replay buffer that stores
(o, a, 𝑟 , o′) samples obtained from the training episodes. 𝑄𝜇

′
and

𝜇 ′ are target networks for the stable learning of 𝑄 and policy net-
works, respectively. The policy network, 𝜇𝑖 (𝑜𝑖 ;𝜗𝑖 ), of agent 𝑖 is op-
timized using the gradient computed as Eo,a∼D [∇𝜗𝑖𝑄

𝜇

𝑖
(o, a;𝜑𝑖 )] =

Eo,a∼D [∇𝜗𝑖 𝜇𝑖 (𝑜𝑖 ;𝜗𝑖 )∇𝑎𝑖𝑄
𝜇

𝑖
(o, a;𝜑𝑖 ) |𝑎𝑖=𝜇𝑖 (𝑜𝑖 ;𝜗𝑖 ) ].

3.2 Variational Graph Autoencoder
VGAE is an unsupervised representation learning model for graph-
structured data. It consists of a graph convolutional network (GCN)
[19] encoder and a simple inner product decoder. The GCN encoder
performs a posterior inference for latent representations using a
node feature matrix and an adjacency matrix of graph-structured
data. The decoder performs an inner product between the encoded
latent variables to reconstruct the adjacency matrix.
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Figure 1: Overview of REMAX.

3.3 Graph Attention Network
GAT is an effective model for processing graph-structured data. It
proposes to compute new node embeddings ℎ′

𝑖
for target node 𝑖 in

a graph by aggregating previous node embeddings ℎ 𝑗 from neigh-
boring nodes { 𝑗 ∈ N𝑖 } that are connected to target node 𝑖 as ℎ′

𝑖
=

𝜎 (∑𝑗 ∈N𝑖
𝛼𝑖 𝑗Wℎ 𝑗 ). The attention coefficient 𝛼𝑖 𝑗 = softmax𝑗 (𝑒𝑖 𝑗 ),

where 𝑒𝑖 𝑗 = 𝑎(Wℎ𝑖 ,Wℎ 𝑗 ), quantifies the importance of node 𝑗
to node 𝑖 in computing ℎ′

𝑖
. The attention mechanism effectively

differentiates the importance of different nodes in updating the em-
beddings of the target node. In addition, the attention mechanism
can be extended to a multi-head attention [33].

4 METHODS
Figure 1 shows how REMAX runs with a coupled MARL model.
First, MARL starts training by playing a game in a simulator. When
a certain number of states and associated rewards are collected
from the game during MARL training, REMAX trains (1) a VGAE
to represent the states as latent vectors by considering the relation-
ships among agents and (2) a surrogate model to map the latent
vectors into the exploration scores. The VGAE and surrogate model
undergo an end-to-end training. Once the training is finished, RE-
MAX gathers a set of optimized latent vectors by maximizing the
surrogate model with respect to a latent vector. Finally, REMAX
decodes these optimized latent vectors using the trained VGAE
decoder to generate new states. MARL then starts the next train-
ing episodes from the new initial states generated by REMAX in
the simulator and collects states again during training. The newly
collected states by MARL are used to retrain REMAX. In other
words, the policy training phase of MARL and the surrogate model
learning are alternated during training.

4.1 State Representation Using VGAE and
Surrogate Model

4.1.1 Encoder of VGAE. We propose GAT-based VGAE to trans-
form states and their latent vectors in both directions (forward and
backward) while considering the relationships among agents. Un-
like the original VGAE using GCN, we use GAT in the encoder part
of VGAE to effectively consider the relationships among agents
with the learnable and adjustable relational attentions [21, 28].

First, the GAT encoder reshapes state 𝑠 ∈ R𝑁𝐹 as a set of node
features h = {ℎ1, ..., ℎ𝑁 }, where 𝑁 is the number of agents (nodes),
and ℎ𝑖 ∈ R𝐹 is the local state or observation (node feature) of

agent 𝑖 . The importance of node 𝑗 to node 𝑖 is then computed
as the attention coefficient 𝛼𝑖 𝑗 = softmax𝑗 (𝑒𝑖 𝑗 ) =

exp(𝑒𝑖 𝑗 )∑𝑁
𝑚=1 exp(𝑒𝑖𝑚) ,

where 𝑒𝑖 𝑗 = LeakyReLU(v𝑇 [Wℎ𝑖 ∥ Wℎ 𝑗 ]). The trainable parame-
ters W ∈ R𝐹 ′×𝐹 and v ∈ R2𝐹 ′ are shared for all nodes. The com-
puted attention coefficients for every node serve as “soft” edges in
a graph representing a state, which means the coefficients softly
quantify the level of interactions among agents to be between 0
and 1 in the state.

Employing a multi-head attention with 𝐾 heads, we compute the
updated node embeddingℎ′

𝑖
∈ R𝐾𝐹 ′ asℎ′

𝑖
= ∥𝐾

𝑘=1ReLU(
∑𝑁
𝑗=1 𝛼

𝑘
𝑖 𝑗
W𝑘ℎ 𝑗 ),

where 𝛼𝑘
𝑖 𝑗
andW𝑘 are the attention coefficients and parameters cor-

responding to the 𝑘-th head attention. In multi-agent settings, using
a multi-head attention is beneficial for extracting the distinctly dif-
ferent interactions as there are various types of interactions among
agents, especially for non-homogeneous agents.

Once h′ = {ℎ′1, ..., ℎ
′
𝑁
} is computed, it is concatenated as ∥𝑁

𝑖=1ℎ
′
𝑖
.

The concatenated node embedding is then used to output the mean
𝜇 and standard deviation 𝜎 for constructing the distribution for a
latent vector 𝑧 as 𝑧 ∼ 𝑞𝜙 (𝑧 |𝑠) = N(𝜇, 𝜎2I) with parameters 𝜙 .

4.1.2 Decoder of VGAE. A multi-layer perceptron (MLP) decoder
𝑔𝜃 is adopted to reconstruct the states 𝑠 from the latent vector 𝑧,
i.e., 𝑠 ∼ 𝑝𝜃 (𝑠 |𝑧) or simply 𝑠 = 𝑔𝜃 (𝑧) with parameters 𝜃 .

4.1.3 Surrogate Model. While VGAE is trained to represent states
as latent vectors, an MLP surrogate model 𝑓𝜓 (𝑧), where 𝑧 is a la-
tent vector in VGAE, is simultaneously learned to map 𝑧 to an
exploration score 𝑦𝑠 = 𝑓𝜓 (𝑧). The exploration score can be flexibly
determined depending on the MARL model. For example, if the
MARL model is MADDPG, then the 𝑄 and policy networks can be
used to define the exploration scores 𝑦𝑠 as

1
𝑁

𝑁∑︁
𝑗=1

[
𝑄 𝑗 (s, a) + 𝜆 |𝑄 𝑗 (s, a) − (𝑟 𝑗 + 𝛾𝑄 ′

𝑗 (s
′, a′)) |

]
, (1)

where s and a are, respectively, the joint state and the joint action. In
MADDPG, observations and rewards corresponding to the states are
obtained from the experience replay buffer. In Equation 1, the first
term 1

𝑁

∑𝑁
𝑗=1𝑄 𝑗 (s, a), which is an empirical mean of 𝑄 , quantifies

how valuable the corresponding (s′, a′) is for all agents. This term
corresponds to the objective of policy networks tomaximize their𝑄-
values.Meanwhile, the second term 1

𝑁

∑𝑁
𝑗=1 |𝑄 𝑗 (s, a) − (𝑟 𝑗 + 𝛾𝑄 ′

𝑗
(s′, a′)) |,

which is an empirical mean of TD error, quantifies how novel the
corresponding (s′, a′) is for all agents. This term corresponds to
the objective of 𝑄-networks to minimize their TD errors as losses.
In other words, the first and second terms respectively evaluate
how rewardable (exploitable) and novel (explorable) the state is. It
is a combination of exploration using the mean of 𝑄 [7] and TD
error [29]. The hyper-parameter 𝜆 ≥ 0 adjusts the balance between
exploitation and exploration.

The parameters (𝜃, 𝜙,𝜓 ) of VGAE and the surrogate model are
optimized by minimizing the total loss:

Ltotal = LVGAE + 𝛽Lsurrogate, (2)

where LVGAE is the negative variational lower bound expressed as
−E𝑧∼𝑞𝜙 (𝑧 |𝑠) [log𝑝𝜃 (𝑠 |𝑧)] + KL(𝑞𝜙 (𝑧 |𝑠)∥𝑝 (𝑧)), where KL is the KL
divergence, and 𝑝 (𝑧) is a prior expressed as N(0, I). Lsurrogate is
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Figure 2: Illustrations of the experimental environments.

the mean squared error loss expressed as E𝑧∼𝑞𝜙 (𝑧 |𝑠) [(𝑓𝜓 (𝑧) −𝑦𝑠 )2],
where 𝑧 ∼ 𝑞𝜙 (𝑧 |𝑠) is the latent vector encoded from states 𝑠 . 𝛽 > 0
is a hyper-parameter.

4.2 State Generation by Maximizing Surrogate
Model

4.2.1 Optimization in Latent Space. After training the surrogate
model 𝑓𝜓 (𝑧) to predict the exploration scores of states based on
their latent vectors 𝑧, we maximize 𝑓𝜓 (𝑧) with respect to 𝑧 to find
new latent vectors with high exploration scores.

First, the 𝑁𝑠 number of latent vectors z0 = {𝑧01, ..., 𝑧
0
𝑁𝑠

} are sam-
pled fromN(0, I). Every vector 𝑧0

𝑖
for 𝑖 = 1, ..., 𝑁𝑠 is then optimized

using the stochastic gradient ascent.

𝑧𝑡+1𝑖 = 𝑧𝑡𝑖 + 𝛿 (∇𝑧𝑡𝑖 𝑓 (𝑧
𝑡
𝑖 ) + 𝜂𝑡 ), (3)

where 𝛿 is a step size, and 𝜂𝑡 is a Gaussian noise with zero mean
and decreasing variance. The noise is injected to prevent the latent
vectors from being stuck in local optima over a latent space. After
𝐿 iterations of Equation 3, a set of optimized latent vectors z∗ =

{𝑧∗1, ..., 𝑧
∗
𝑁𝑠

} is obtained.

4.2.2 Decoding Latent Vectors. Once z∗ is obtained, it is decoded to
a set of new states s∗ = {𝑠∗1, ..., 𝑠

∗
𝑁𝑠

} through the decoder 𝑠∗
𝑖
= 𝑔𝜃 (𝑧∗𝑖 )

of VGAE. MARL then uses s∗ as the new initial states for the next
training episodes in the game.

4.3 Training MARL Policy
MARL policies are then trained while playing the game with the
training episodes having the initial states s∗ generated by REMAX.
To maintain a certain level of default initial states, MARL uses the
initial states generated from REMAX and the default initial states
provided by the game with a certain probability, such as 0.8:0.2.
After training MARL using 𝑁𝑠 training episodes, REMAX is trained
again using newly collected states from MARL and generates new
initial states for training MARL in the next round. In other words,
for every 𝑁𝑠 number of training episodes, REMAX is retrained
and generates new initial states for training MARL. The parame-
ters (𝜃, 𝜙,𝜓 ) of REMAX are reinitialized and retrained using only
newly collected states from just previous training episodes to reflect
the evolution of MARL. This is similar to employing curriculum
learning in that the game condition is dynamically being adjusted
depending on the current performance of the intermediate policy
that is being trained.

Table 1: Number of training episodes in maze.

Latent space dim. Episode(×10)
Random - 640± 223

HER - 601± 227

RCG - 574± 198

GENE 1 559±255
REMAX 1 456±202
REMAX 2 495±139

5 EXPERIMENTS
Figure 2 shows the environments (games) used to evaluate the
performances of the proposed and comparison methods. The envi-
ronments are designed to render more sparse rewards than existing
environments [21, 28]. We assume that the agents in the environ-
ments have the positions and velocities (or health) of all agents as
a state. In the environments, we consider random exploration and
GENE as main comparison methods.

• Goal-oriented tasks (a) and (b): In single-and multi-agent
goal-oriented tasks, we additionally consider HER and RCG
for goal-oriented tasks.

• Mixed cooperative-competitive games (c) and (d):We
exclude HER and RCG because they are not suitable for non-
goal-oriented tasks. Instead, we additionally consider EDTI,
which uses intrinsic rewards that quantify the influence of
one agent on others.

We use MADDPG as the MARL model. Note that any MARL
model can be used; however, only MADDPG, one of the most gen-
eral MARL models, is used as a representative in this study because
the focus of this study is on investigating the effectiveness of explo-
ration methods, irrespective of the MARL model used. In addition,
all results in this study were averaged across five different seeds.

5.1 Maze
Maze, shown in Figure 2 (a), is a single-agent environment which
requires an agent (blue circle) to search for a landmark (red cross).
The agent obtains +1 as a reward when it reaches the landmark, and
0 otherwise. Because there is only one agent in this environment,
considering the relationships among agents is unnecessary. Thus,
REMAX has VGAE without GAT, which is similar to VAE. Although
both REMAX and GENE use VAE, they are different in that REMAX
uses the surrogate model while GENE uses KDE.

Main Track AAMAS 2022, May 9–13, 2022, Online

1140



z

f(z)
z *

z

f(z)
z *

z

f(z)
z *

z

f(z)
z *

z

f(z)
z *

z

f(z)
z *

training

Figure 3: Generated states and surrogate models with one-dimensional latent space in maze.

Table 2: Number of training episodes (×10) in cooperative navigation. In the table, “>2000” indicates that the policy cannot be
learned to complete the task by the corresponding method within the given number of training episodes.

Additional architecture Number of agents

VAE KDE GAT Surrogate 2 3 4 6 8

Random 583± 271 834± 168 1178± 542 >2000 >2000
HER 489± 140 790± 217 1071± 618 >2000 >2000
RCG 353± 133 674± 309 877± 679 >2000 >2000
GENE ✓ ✓ 342± 145 632± 265 742± 540 1401± 625 >2000

GENE with GAT ✓ ✓ ✓ 177± 64 400±256 454±310 920± 551 1204± 698

REMAX ✓ ✓ ✓ 161± 69 272±80 331±114 602 ± 287 908 ± 601

Table 1 presents the number of training episodes required for
training a policy to complete the task. Here, completing a task
is defined as achieving ten consecutive successes, starting from
the initial states provided by the environment. Thus, a smaller
number in the table means that fewer training episodes are needed
to train the successful policy. The latent space dimension denotes
the dimension of the latent vector 𝑧. GENE is reported as having
the best performance with a one-dimensional latent space. The
table shows that REMAX requires fewer episodes than HER (a goal-
conditioning method) and RCG, although it does not need to specify
the goal state during training. Note that to train and run RCG, one
needs to specify the goal state. We believe that REMAX performs
better than GENE because it trains the VAE and the surrogate model
together in an end-to-end learning, while GENE separately trains
VAE and KDE.

5.1.1 Analysis of Generating States. The first-row plots in Figure
3 show the distribution of generated states s∗ as green dots, and
the second-row plots show how the surrogate model 𝑓𝜓 (𝑧) and
the optimized latent vectors z∗ change with the training’s progress.
These states s∗ are generated by decoding z∗. As MARL and REMAX
are trained with more samples, as shown in the figures, REMAX
tends to generate states near the landmark because it learns that
these states are easily rewardable and helpful for MARL training.

5.2 Cooperative Navigation
Cooperative navigation shown in Figure 2 (b) is a multi-agent envi-
ronment where homogeneous agents (blue circles) are required to
be positioned at landmarks (red crosses) at the four corners. There
are as many landmarks as there are agents. Each agent obtains a
reward +1 when every landmark is occupied by one agent, and
0 otherwise. Thus, all agents should be coordinated to occupy a
distinct landmark and thus receive the reward.

5.2.1 Effectiveness of the REMAX Structure. We conducted ablation
experiments to evaluate the synergistic effects of VGAE and the
surrogatemodel in REMAX, and the results are summarized in Table
2. The table presents the number of training episodes required for
training a policy to complete the task. In the table, GENE with GAT
indicates GENE whose VAEmodule is replaced with VGAE with the
GAT encoder. Compared with GENE, adding GAT to GENE reduces
the number of training episodes, as indicated in the table. Because
REMAX requires fewer episodes than the other methods, regardless
of the number of agents, the use of both VGAE and the surrogate
model is validated as being effective for training the MARL model,
especially when the number of agents is large. In addition, the
number of episodes for REMAX increases more slowly with the
number of agents, which implies that REMAX enables MARL to
train the policy scalably even when the number of agents increases.
Meanwhile, HER and RCG require a rapidly increasing number
of episodes for training the policy with an increasing number of
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Figure 4: Attention of GAT in REMAX in cooperative navigation with 4 agents.
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Figure 5: Surrogate models and generated states in cooperative navigation with 4 agents.

Table 3: Number of training episodes (×10) according to types of exploration scores for the surrogate model of REMAX. 𝑓𝑖 (𝑠) is
the inverse of state visit count of agent 𝑖 and𝑚(𝑠) = 1

𝑁

∑𝑁
𝑗=1 𝑓𝑗 (𝑠).

Naive reward Intrinsic reward: Burrowing Intrinsic reward: Covering Proposed
𝑟

∑𝑁
𝑖=1 𝑓𝑖 (𝑠)111[𝑓𝑖 (𝑠) > 𝑚(𝑠)] ∑𝑁

𝑖=1 𝑓𝑖 (𝑠)111[𝑓𝑖 (𝑠) < 𝑚(𝑠)] Equation 1

471± 193 392± 159 338± 126 161± 69

agents, and can no longer train the policy when the number of
agents exceeds 6.

5.2.2 Analysis of Representing/Generating States. Figure 4 shows
the normalized attention coefficients of GAT in the VGAE encoder
in REMAX; the thicker the line is, the larger the coefficient is. The
coefficients between agents increase as multiple agents with their
actions (blue arrows) approach a common landmark. This trend
can be observed in the second figure of Figure 4, which shows the
two agents approaching the upper-right landmark, and the fifth
figure of Figure 4, which shows the two agents approaching the
lower-right landmark.

Figure 5 compares the two types of states: 𝑠0 decoded from an
initial latent vector 𝑧0 and 𝑠∗ decoded from an optimized latent
vector 𝑧∗. The second-row figures show 𝑧0 and 𝑧∗ over 𝑓𝜓 (𝑧). In
addition, the first-and third-row figures show the decoded states,

𝑠0 and 𝑠∗, from 𝑧0 and 𝑧∗ using 𝑔𝜃 . As MARL and REMAX are
trained with more samples, as shown in the figure, REMAX tends
to generate states near the landmarks, enabling the agents to easily
complete the task.

5.2.3 Effectiveness of the REMAXExploration Score. Table 3 presents
the number of training episodes according to the types of explo-
ration scores for the surrogate model of REMAX in a cooperative
navigation with two agents. In the table, 𝑟 is the case where the
score is replaced with agents’ naive rewards corresponding to states.
Burrowing and Covering are reward signals designed empirically
to minimize and maximize the inverses of state visit counts of
agents, which are similar to intrinsic rewards [15], thus boosting
exploitation and exploration, respectively. In the table, Equation 1
requires fewer episodes than the other types of scores. This may be
because the naive reward is too sparse to be used as a score, and
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Figure 7: Multi-head attention of GAT in REMAX in predator-prey.

a) Random b) GENE c) REMAX

Figure 6: Occupation in cooperative navigation with 20
agents.

Table 4: Occupation rate in cooperative navigation.

Random GENE REMAX

10 agents 0.71± 0.23 0.82± 0.21 0.96± 0.05

20 agents 0.55± 0.19 0.63± 0.23 0.88± 0.12

30 agents 0.42± 0.17 0.51± 0.21 0.81± 0.14

the others are designed only to induce specific behaviors of agents,
while Equation 1 balances exploitation and exploration and boosts
MARL training. The balance of Equation 1 changes according to
the hyper-parameter 𝜆, and it is discussed in the appendix.

5.2.4 Scalability Test. Table 4 presents the rate of occupied land-
marks in cooperative navigation with more agents. In the table,
REMAX has higher occupation rates than the other methods, which
implies that the agents trained by REMAX cooperate effectively
to occupy distinct landmarks, even when their numbers are large.
Figure 6 shows how 20 agents occupy landmarks positioned in a
circular shape after trained by each method. In the figure, the agents
in Random and GENE tend to cluster (dotted red circles) at some
landmarks, while the agents in REMAX occupy distinct landmarks.

5.3 Predator-Prey
As shown in Figure 2 (c), predator-prey is a multi-agent environ-
ment where three homogeneous predator agents (red circles) aim
to capture one prey agent (green diamond), which is called 3 vs. 1
predator-prey. Because the prey has a faster speed and acceleration

Table 5: Returns of predators in predator-prey.

Random EDTI GENE REMAX

3 vs. 1 1.6± 0.4 3.7± 1.0 14.3± 4.9 18.7± 4.6

6 vs. 2 1.8± 0.6 2.8± 0.8 8.3± 1.8 13.5± 4.4

9 vs. 3 2.6± 0.7 3.2± 1.1 9.1± 2.7 14.4± 4.1

than predators, the predators are required to cooperate for captur-
ing the prey. In the 3 vs. 1 game, each predator obtains a reward +10
when two or more predators capture the prey simultaneously, and
0 otherwise. Meanwhile, the prey obtains a reward -10 for getting
captured. If there are 6 predators and 2 preys, it is denoted as 6 vs.
2 predator-prey, and the rewards are obtained when three or more
predators capture the prey simultaneously. 9 vs. 3 predator-prey is
also similar to 6 vs. 2 predator-prey. In predator-prey, we used the
GAT encoder with a𝐾 = 2multi-head attention for REMAX because
there are at least two types of relationships, predator-predator and
predator-prey. We exclude HER and RCG as they are not suitable
for a non-goal-oriented task. Instead, we consider EDTI, which uses
intrinsic rewards quantifying the influences of one agent’s action
on other agents’ rewards and transitions.

Table 5 compares the returns of the predators. After the preda-
tors and prey are trained together by each method, the predators
are validated for 200 test episodes against the prey trained by a
random exploration. In the table, REMAX has higher returns than
the other methods, which implies that the predators trained by RE-
MAX cooperate effectively to capture the prey. Meanwhile, EDTI
ends up achieving significantly lower returns than GENE and RE-
MAX. These lower returns may be because EDTI cannot accurately
predict the influences of intrinsic rewards. Accurate prediction re-
quires many samples, especially when there are many agents in a
continuous state-action space.

5.3.1 Analysis of Representing States with Multi-Head Attention.
Figure 7 shows two sets of the normalized attention coefficients, 𝛼1
and 𝛼2, of the GAT encoder with a 𝐾 = 2 multi-head attention in
REMAX. The two sets of coefficients can quantify the levels of co-
operation among predators and the competition between predators
and prey, respectively (upper and lower figures). In the figures, the
coefficients (the thickness of the line) increase when two predators
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Figure 8: Surrogate models and generated states in predator-prey.

Table 6: Winning rates of controlled marines in SMAC.

Random EDTI GENE REMAX

3 vs. 3 0.86± 0.05 0.88± 0.06 0.94± 0.08 1.00± 0.00

5 vs. 6 0.00± 0.00 0.00± 0.00 0.10± 0.04 0.43± 0.11

with their actions (red arrows) approach the prey with its action
(green arrows) simultaneously. For example, in the fourth figure
of Figure 7, two predators relate to a strong attention (upper fig-
ure), and, at the same time, both predators are connected strongly
with the prey they are about to capture together (lower figure).
We identified that the two predators connected by larger attention
coefficients tend to cooperate to capture the prey.

5.3.2 Analysis of Generating States. Figure 8 compares the two
types of states: 𝑠0 decoded from an initial latent vector 𝑧0 and
𝑠∗ decoded from an optimized latent vector 𝑧∗. The second-row
figures show 𝑧0 and 𝑧∗ over 𝑓𝜓 (𝑧). In addition, the first-and third-
row figures show the decoded states, 𝑠0 and 𝑠∗, from 𝑧0 and 𝑧∗ using
𝑔𝜃 . As MARL and REMAX are trained with more samples, as shown
in the figure, REMAX tends to generate states where the predators
are located more closely to the prey or surround the prey. This
allows the predators to easily capture the prey and thus receive a
reward, which expedites the MARL training.

5.4 Starcraft Multi-Agent Challenge (SMAC)
SMAC [28] is a more realistic multi-agent environment, as shown
in Figure 2 (d), where three marines (agents) aim to fight against
equivalent marines of game AI. SMAC originally has dense reward
signals. However, we simply modify the SMAC’s rewards to be
more sparse at the final timestep of each episode: a victory reward
1, while a defeat -1, with an attack reward 1 to encourage attacking
the enemies, rather than running away.

Table 6 presents winning rates of controlled marines against
game-AI marines in SMAC. In the table, REMAX outperforms other
methods with higher winning rates.

6 CONCLUSIONS
We proposed REMAX, an exploration method that generates initial
states for accelerating the training of a MARL model. Empirically,
we demonstrated that REMAX generates states by representing
relationships among agents, and the generated states improve the
training and performance of the MARL model more than existing
exploration methods.
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