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ABSTRACT
Graceful degradation is a desirable trait in applications that require
coverage with real, failure-prone robots. This paper uses methods
informed by Reliability Engineering to study the Reliability-Aware
Multi-Agent Coverage Path Planning (RA-MCPP) problem. An aug-
mented stochastic framework is applied to evaluate a strategy’s
probability of mission completion (PoC) on 3D lattice graph en-
vironments. A Genetic Algorithm optimisation approach is then
proposed to find RA-MCPP path plans which maximise PoC. It is
shown that the GA provides good solutions at reasonable runtimes,
complementing previous approaches which focused on global opti-
mality guarantees at the cost of massive computation, especially
for medium and large environments.

KEYWORDS
Multi-Robot Systems; Coverage Path Planning; Reliability Analysis
ACM Reference Format:
Mickey Li, Arthur Richards, and Mahesh Sooriyabandara. 2021. Reliability-
Aware Multi-UAV Coverage Path Planning using a Genetic Algorithm: Ex-
tended Abstract. In Proc. of the 20th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAA-
MAS, 3 pages.

1 INTRODUCTION
Multi-agent systems offer significant advantages of reliability, re-
silience and fault tolerance compared to single-agent systems [7, 18].
This robustness property is especially suited to aerial robotics ap-
plications as small Unmanned Aerial Vehicles (UAVs) are prone
to failure [1, 4, 6]. The Reliability-Aware Multi-Agent Coverage
Path Planning (RA-MCPP) problem seeks to find coverage paths
for each failure-prone UAV which will maximise the probability of
mission completion within the deadline. A failure occurring in most
existing mCPP methods which minimise distance [2, 8] or energy
[11, 12] would require reactive re-routing through resilient methods
[14, 16], likely exceeding the deadline. Preliminary work in [10]
used an agent’s failure model to a-priori find paths that maximise
the probability of mission completion in 1D cyclic environments.
This work extends [10] by applying reliability evaluation to 3D
lattice graph environments (such as Fig 1), and proposing a genetic
algorithm (GA) approach to solving RA-MCPP.
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Figure 1: Consider 3 failure prone drones covering this environ-
ment. What plan might route agents such that the probability of
mission completion (all points/tasks visited) is maximised?

2 MARKOV RELIABILITY EVALUATION
Let the state of the system of 𝑛 agents at a time 𝑡 to be 𝑥𝑡 =

(𝜏𝑡1, . . . , 𝜏
𝑡
𝑛) ∈ N𝑛 = S where 𝜏𝑡

𝑖
= 𝜏𝑡−1

𝑖
+ 1 each time step if the

agent survives, with 𝜏𝑡
𝑖
= 𝜏𝑡−1

𝑖
otherwise. Differing from [10], the

environment is a unit graph 𝐺 (J, 𝐸), defining a set of𝑚 discrete
tasks described by the nodes J = ( 𝑗1, . . . , 𝑗𝑚), with the edges 𝐸
describing valid traversable paths between tasks. For each agent 𝑖 ,
𝑓𝑖 (𝑡) and 𝐹𝑖 (𝑡) are the failure probability and cumulative density
respectively, with Reliability 𝑅𝑖 (𝑡) = 1− 𝐹𝑖 (𝑡) [13]. Considering the
state as ‘work done’, instead of involving explicit locations of agents
and completion of tasks, allows the decoupling of state analysis
from the probability analysis with the possibility of accommodating
different failure models (this paper uses a constant failure rate).
A strategy 𝜓 then represents a set of finite connected tasks 𝑗 ∈ J,
i.e. paths for each agent. For a strategy 𝜓 , in each possible state
𝑥 , either all tasks have been visited and the mission is completed,
or not. The allocation matrix 𝑇𝜓 ∈ R𝑛×𝑚 can be defined, where
the elements 𝑇𝜓

𝑖 𝑗
are the first time at which agent 𝑖 is scheduled to

complete the task 𝑗 . Therefore a task 𝑗 is considered completed by
agent 𝑖 if 𝜏𝑖 ≥ 𝑇

𝜓

𝑖 𝑗
, and the Completion Region C𝜓 ⊆ S can be

defined and computed as follows:

C𝜓 = {𝑥 ∈ S | ∀𝑗 ∃𝑖 𝜏𝑖 ≥ 𝑇
𝜓

𝑖 𝑗
} (1)

= {𝑥 ∈ S | min
𝑗 ∈[1..𝑚]

max
𝑖∈[1..𝑛]

𝜏𝑖 −𝑇
𝜓

𝑖 𝑗
≥ 0} (2)
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Method Small 3x3x3 (Fig. 1) Medium 3x4x4 (Fig 2 top) Large 4x4x4 (Fig 2 bottom)
PoC @ 𝑡 = 20 comp. time (s) PoC @ 𝑡 = 35 comp.time (s) PoC @ 𝑡 = 49 comp. time (s)

ILP [10] 0.9966 (timeout) 14400 0.9514 (timeout) 14400 0.8706 (timeout) 14400
TSP + Exhaustive 0.9887 44 0.9668 4676 0.9520 11438

TSP + ILP 0.9770 13 0.9868 400 0.9706 2043
GA PoC 0.9818 100 0.8318 352 0.7808 423

GA PoC + Time 0.9881 67 0.8000 277 0.6829 537
Partition 0.8262 < 1 0.6111 < 1 0.547 < 1

Overlap Partition 0.9517 < 1 0.6764 < 1 0.3594 <1
Random Walk 0.2440 < 1 0.1194 3 0.0240 11

Table 1: Performance and computation time comparison of RA-MCPP methods on different sized environments.

The Probability of Completion (PoC) for strategy 𝜓 at time 𝑡 ′
is the sum of the probabilities of surviving to a state within the
Completion Region C𝜓 :

𝑃𝑜𝐶 (𝜓, 𝑡 ′) =
∑
𝑥 ∈C𝜓

𝑝 (𝑥, 𝑡 ′) =
∑
𝑥 ∈C𝜓

∏
𝑖∈[1..𝑛]

𝑝𝑖 (𝜏𝑖 , 𝑡 ′) (3)

𝑝𝑖 (𝜏, 𝑡 ′) =
{
𝑓𝑖 (𝜏), if 𝜏 < 𝑡 ′

𝑅𝑖 (𝜏), if 𝜏 ≥ 𝑡 ′
(4)

This evaluation runs in 𝑂 (𝑛𝑚). This method focuses on static, pre-
allocated strategies. Refer to [10] for a discussion on non-static and
reactive strategies.

3 PATH BASED GENETIC ALGORITHM
Multi-agent coverage can be considered equivalent to the Multiple
Travelling Salesman Problem (mTSP) [15]. A Genetic Algorithm
(GA) approach was chosen as it has been successfully applied to
solving mTSP [3, 9, 17]. The chromosome represents a RA-MCPP
strategy allocation 𝑇𝜓 . In particular, each agent’s path is encoded
as its first visit to each task. The population is of size 𝜇, initialised
by environment partitioning. Two chromosome fitness functions
are defined: (i) only PoC, and (ii) A weighted sum of PoC and the
time taken to completion with no failures (‘POC+time’) in order
to encourage valid paths in larger environments. The optimisa-
tion goal is thus to maximise the fitness function. Furthermore as
shortest paths between tasks are evaluated as part of the fitness
function, backtracking routes can also be found for environments
with no Hamiltonian Cycles where the previous Linear Program
[10] method would be infeasible. The following operators are imple-
mented for reproduction. Mutations: (1) swap-mutation randomly
swaps consecutive tasks from a random agent. (2) add-mutation and
(3) delete-mutation are used to add or remove tasks from a random
agent in the chromosome. (4) roll-mutation randomly cycles the
starting task of a random agent by a random amount in the chromo-
some. Crossover (both based on [9]): (1) sequence-crossover chooses a
random agent from each chromosome. A split point on each agent’s
path is also randomly chosen, and the paths are spliced together.
(2) path-crossover chooses a random agent from each chromosome
and swaps their respective paths. Finally, for selection operators,
random selection is used for reproduction, and tournament selection
is used for constructing the next generation.
The evaluation was implemented using DEAP [5] with 2000 gener-
ations and a population of 100, crossover and mutation probabil-
ities set to 0.5 and 0.3 respectively, constant failure rate 𝜆 = 0.01
and run on 8-core 1.8Ghz CPU. Table 1 shows a comparison of

Figure 2: Medium (Top) and Large (Bottom) graph environ-
ments running GA PoC Agent Paths

performance and computational time with existing methods on
cubic-lattice environments (Figures 1 and 2). The partition methods
represent existing mCPP methods and whilst quick, are much less
reliable. The ILP [10] and ‘TSP phasing’ methods (agents allocated
by exhaustive evaluation or an ILP on a cycle found by solving the
Travelling Salesman Problem) often found highly reliably paths,
but computational times clearly scale poorly as environment size
increases. Conversely, both highlighted GA methods provide rela-
tively good solutions, but are an order of magnitude faster for large
environments, potentially trading off highly reliable strategies for
computation time.

4 CONCLUSIONS
In this paper, the novel Reliability-Aware Multi-Agent Coverage
Path Planning (RA-MCPP) problem is investigated. An updated
reliability evaluation method for the probability of completion met-
ric in graph-based environments is presented. Finally, a Genetic
Algorithm approach to solving RA-MCPP is compared to existing
approaches and shown to sit within the trade-space providing rea-
sonable solutions for reasonable computation times. Future work
will focus on applying RA-MCPP to real Inspection scenarios. This
will include investigate the effect of relaxing the current set of as-
sumptions, namely solving the problem in continuous space and
time.
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