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ABSTRACT
Among the most fundamental tools for social network analysis are

centrality measures, which quantify the importance of every node

in the network. This centrality analysis typically disregards the

possibility that the network may have been deliberately manipu-

lated to mislead the analysis. To solve this problem, a recent study

attempted to understand how a member of a social network could

rewire the connections therein to avoid being identified as a leader

of that network. However, the study was based on the assumption

that the network analyzer—the seeker—is oblivious to any evasion

attempts by the evader. In this paper, we relax this assumption by

modelling the seeker and evader as strategic players in a Bayesian

Stackelberg game. In this context, we study the complexity of vari-

ous optimization problems, and analyze the equilibria of the game

under different assumptions, thereby drawing the first conclusions

in the literature regarding which centralities the seeker should use

to maximize the chances of detecting a strategic evader.
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1 INTRODUCTION
Social network analysis tools have attracted significant attention

in the literature [6, 9, 13]. Such tools are typically used under an

assumption that the members of the network are not strategic, i.e.,

they do not manipulate the topology of the network to their advan-

tage. However, as argued by Michalak et al. [15], this assumption

does not hold in many situations, ranging from privacy-savvy users

of social media platforms [14], through political activists [23], to

the members of criminal and terrorist organizations whose primary

concern is to evade attention of security agencies [12].
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An attempt to fill this gap in the literature was carried out by

Waniek et al. [20], who considered how one could evade popu-

lar centrality measures, such as degree, closeness, and between-

ness. More specifically, the authors studied how a member of the

network—called the evader—can rewire the network (by adding or

removing edges) in order to optimally decrease the value of her

centrality while maintaining her influence over other members of

the network. The authors proved that, even without taking influ-

ence into consideration, the problem of decreasing the value of

either closeness or betweenness centrality is NP-complete, while

for the degree centrality the problem is in P. Nevertheless, the study

has a number of limitations. Firstly, in their complexity analysis,

the authors considered the problem of decreasing the value of the
evader’s centrality, which is insufficient if the evader is concerned

with decreasing her position in the centrality-based ranking of all

nodes, i.e., decreasing her centrality relative to that of other nodes

in the network. Secondly, the complexity analysis assumed that the

evader is able to add and remove edges in the entire network. This
seems unrealistic in many settings such as social media platforms,

where members are unable to view, let alone modify, any edge in

the network. Finally, the authors assumed that the party using the

social network analysis tools—the seeker—is not strategic, i.e., she
is unaware of the evasion efforts made by the evader. While this

assumption may hold in some settings, there are many others in

which the seeker expects the evader to go to great lengths in order

to mislead any analysis, as is the case with covert networks.

In this paper, we address all of the above limitations, and present

the first analysis of evading centrality measures in settings where

both parties act strategically. We start by analyzing the complexity

of decreasing the evader’s position in the centrality-based ranking,

as opposed to decreasing the value of the evader’s centrality. More

specifically, we require that the evader decreases her ranking by at

least 𝑑 positions, and allow the evader to add or remove edges only

locally, i.e., in her immediate neighbourhood. We prove that this

problem is NP-complete not only for closeness and betweenness

centralities but also for degree centrality. Table 1 presents the main

theoretical contributions of this paper.

We thenmodel the interaction between the seeker and the evader

as a Bayesian Stackelberg game [8, 10, 17], whereby the strategy

set of the seeker consists of degree, closeness, betweenness, and

eigenvector centralities, while the strategy set of the evader con-

sists of all possible sets of changes in her network neighbourhood.

Our extensive experimental analysis of this game draws the first

conclusions in the literature regarding which centralities the seeker

should use to maximize the chances of detecting a strategic evader.
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Centrality Disguising Hiding Local Hiding

Centrality [20] Leader [19] (this paper)

Degree P NP-complete NP-complete
Closeness NP-complete NP-complete NP-complete
Betweenness NP-complete unknown NP-complete

Table 1: Comparing our complexity results to the literature.

2 PRELIMINARIES
Let𝐺 = (𝑉 , 𝐸) ∈ G denote a network, where𝑉 is the set of 𝑛 nodes

and 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges, and let G(𝑉 ) denote the set of all
possible networks whose set of nodes is𝑉 . We denote by (𝑣,𝑤) the
edge between nodes 𝑣 and𝑤 . We restrict our attention to undirected

networks, and thus we do not discern between edges (𝑣,𝑤) and
(𝑤, 𝑣). We also assume that networks do not contain self-loops, i.e.,

∀𝑣∈𝑉 (𝑣, 𝑣) ∉ 𝐸. We denote by 𝑁 (𝑣) the set of neighbours of 𝑣 , i.e.,
𝑁 (𝑣) = {𝑤 ∈ 𝑉 : (𝑣,𝑤) ∈ 𝐸}.

A path in (𝑉 , 𝐸) is an ordered sequence of nodes, 𝑝 = ⟨𝑣1, . . . , 𝑣𝑘 ⟩,
in which every two consecutive nodes are connected by an edge in

𝐸. The length of a path equals the number of edges therein. For any

pair of nodes, 𝑣,𝑤 ∈ 𝑉 , we denote by Π(𝑣,𝑤) the set of all shortest
paths between these two nodes, and denote by 𝑑 (𝑣,𝑤) the distance
between the two, i.e., the length of a shortest path between them.

A centrality measure is a function, 𝑐 : G(𝑉 ) × 𝑉 → R, that ex-
presses the importance of any given node in the network [2]. We

consider four fundamental centrality measures, namely degree,

closeness, betweenness, and eigenvector.

Degree centrality [18] of node 𝑣 is proportional to its degree:

𝑐𝑑𝑒𝑔𝑟 (𝐺, 𝑣) = |𝑁 (𝑣) |. Closeness centrality [3] assigns the highest

importance to the node with the shortest average distance to all

other nodes: 𝑐𝑐𝑙𝑜𝑠 (𝐺, 𝑣) = 1∑
𝑤∈𝑉 𝑑 (𝑣,𝑤) . Betweenness centrality [1, 7]

of node 𝑣 is proportional to the percentage of shortest paths be-

tween every pair of other nodes that go through 𝑣 : 𝑐𝑏𝑒𝑡𝑤 (𝐺, 𝑣) =∑
𝑤≠𝑤′≠𝑣

| {𝑝∈Π (𝑤,𝑤′) :𝑣∈𝑝 } |
|Π (𝑤,𝑤′) | . Eigenvector centrality [4] evaluates each

node based on the importance of its neighbours. Formally, 𝑐𝑒𝑖𝑔 (𝐺, 𝑣) =
𝑥𝑣 , where 𝑥 is the eigenvector corresponding to the largest eigen-

value of the adjacency matrix of 𝐺 .

We consider two influence models: independent cascade and lin-
ear threshold. Both models can be described in terms of spreading

the “activation” of nodes across the network. The process starts with

an active subset of nodes called the seed set. The activation then

propagates through the network in discrete time steps, whereby

nodes become influenced by their previously-activated neighbours.

Formally, let 𝐼 (𝑡) denote the set of nodes that are active at round
𝑡 , with 𝐼 (1) being the seed set. In the independent cascade model,

an activation probability 𝑝 : 𝑉 ×𝑉 → R is assigned to each pair of

nodes. For every round 𝑡 > 1 each node that became active in round

𝑡 − 1 has a single chance to activate each of her inactive neighbours

𝑤 with probability 𝑝 (𝑣,𝑤). In our experiments we assume that

for every pair of nodes, 𝑣,𝑤 , we have: 𝑝 (𝑣,𝑤) = 0.15. As for the

linear threshold model, every node, 𝑣 , is assigned a threshold, 𝑡𝑣 ,

sampled from the set: {0, . . . , |𝑁 (𝑣) |}. Then, in every round 𝑡 > 1,

each inactive node becomes activated if |𝐼 (𝑡 − 1) ∩ 𝑁 (𝑣) | ≥ 𝑡𝑣 . In

our experiments, the threshold of a node, 𝑣 , is sampled from the

set {1, . . . , |𝑁 (𝑣) |} uniformly at random. Notice that this variant is

slightly different than the standard linear threshold model [11], in

which edges are assigned random weights. We use this variant to

stay consistent with the previous literature on the topic [19, 20].

In both models, the process ends when there are no new active

nodes, i.e., when 𝐼 (𝑡 −1) = 𝐼 (𝑡). The influence of 𝑣 is then measured

as the expected number of active nodes at the end of the process,

when starting with {𝑣} as the seed set. Computing the exact influ-

ence requires exponential computations under both models, which

is intractable even for relatively small networks. Thus, in our exper-

iments we approximate the influence using Monte Carlo sampling,

stopping the process when the improvement over the last 1, 000

iterations is smaller than 0.00001. Note that even approximating

the influence of a node becomes challenging when the number of

nodes reaches thousands or more.

3 COMPLEXITY OF LOCAL HIDING
We now formally define the main computational problem of our

study, and analyze its computational complexity.

Definition 1 (Local Hiding). This problem is defined by a tuple
(𝐺, 𝑣𝑒 , 𝑏, 𝑐, 𝐴, 𝑅, 𝑑), where 𝐺 = (𝑉 , 𝐸) is a network, 𝑣𝑒 ∈ 𝑉 is the
evader, 𝑏 ∈ N is a budget specifying the maximum number of edges
that can be added or removed, 𝑐 : G(𝑉 ) × 𝑉 → R is a centrality
measure, 𝐴 ⊆ 𝑁 (𝑣𝑒 ) × 𝑁 (𝑣𝑒 ) is the set of edges allowed to be added,
𝑅 ⊆ {𝑣𝑒 } × 𝑁 (𝑣𝑒 ) is the set of edges allowed to be removed, and
𝑑 ∈ N is the safety margin. The goal is to identify a set of edges to be
added, 𝐴∗ ⊆ 𝐴, and a set of edges to be removed, 𝑅∗ ⊆ 𝑅, such that
|𝐴∗ | + |𝑅∗ | ≤ 𝑏 and the resulting network (𝑉 , (𝐸 ∪𝐴∗) \𝑅∗) contains
at least 𝑑 nodes with centrality 𝑐 greater than that of the evader.

As mentioned in the introduction, the two key differences be-

tween the above problem of Local Hiding and the problem ofDisguis-
ing Centrality studied by Waniek et al. [20] are as follows. Firstly,

instead of seeking the optimal way of decreasing the value of the

evader’s centrality (which may not provide sufficient cover, espe-

cially if she is still ranked among the top nodes in the network), we

want the position of the evader in the centrality-based ranking of all

nodes to drop below 𝑑 . Secondly, we assume that the evader is only

capable of rewiring edges within her network neighbourhood—an

assumption that holds in many realistic settings, e.g., the evader

is able to disconnect herself from any of her friends, or even ask

two of them to befriend one another, but is unable to connect to

a complete stranger at will, or ask two strangers to befriend or

unfriend one another. Notice that we do not allow to add any edges

incident to the evader, as in case of most centrality measures such

operation can only increase the ranking of the evader.

We also comment on the key differences between our Local Hid-

ing problem and the problem of Hiding Leaders studied by Waniek

et al. [19] in the context of constructing covert networks. Firstly,

the authors divide the nodes into leaders and the followers, where

the changes in the network are allowed only among the followers.

Secondly, they only allow edges to be added among the followers,

meaning that no edge can be removed from the network.

Theorem 1. The problem of Local Hiding is NP-complete given
the degree centrality measure.
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Figure 1: Network used in the proof of Theorem 1 for 𝑘 = 3.

Proof. The problem is trivially in NP, since after the addition

of a given set of edges 𝐴∗
and the removal of a given set of edges

𝑅∗ it is possible to compute the degree centrality of all nodes in

polynomial time. Next, we prove that the problem is NP-hard. To

this end, we give a reduction from the NP-complete problem of

Finding𝑘-Clique, where the goal is to determine whether there exist

𝑘 nodes in 𝐺 that form a clique. Given an instance of the problem

of Finding 𝑘-Clique, defined by 𝑘 ∈ N and a network 𝐺 = (𝑉 , 𝐸),
let us construct a network, 𝐻 = (𝑉 ′, 𝐸 ′), as follows:

• 𝑉 ′ = {𝑣𝑒 } ∪𝑉 ∪⋃
𝑣𝑖 ∈𝑉

⋃ |𝑁 (𝑣𝑖 ) |
𝑗=1

{𝑥𝑖, 𝑗 } ∪
⋃𝑘−2

𝑖=1 {𝑧𝑖 },
• 𝐸 ′ =

⋃
𝑣𝑖 ∈𝑉 ′{(𝑣𝑖 , 𝑣𝑒 )}∪

⋃
𝑥𝑖,𝑗 ∈𝑉 ′{(𝑣𝑖 , 𝑥𝑖, 𝑗 )}∪

⋃
𝑧𝑖 ∈𝑉 ′{(𝑧𝑖 , 𝑣𝑒 )}∪⋃

(𝑣𝑖 ,𝑣𝑗 )∉𝐸 {(𝑣𝑖 , 𝑣 𝑗 )}.
An example of such a network 𝐻 is illustrated in Figure 1. Now,

consider the instance (𝐻, 𝑣𝑒 , 𝑏, 𝑐, 𝑑, 𝐴, 𝑅) of the problem of Local

Hiding where 𝐻 = (𝑉 ′, 𝐸 ′) is the network we just constructed, 𝑣𝑒

is the evader, 𝑏 =
𝑘 (𝑘−1)

2
, 𝑐 is the degree centrality measure, 𝑑 = 𝑘 ,

𝐴 = 𝐸, and 𝑅 = ∅.
From the definition of the problem we know that the edges to

be added to 𝐻 must be chosen from 𝐸, i.e., from the network in the

Finding 𝑘-Clique problem. Out of those edges, we need to choose a

subset, 𝐴∗ ⊆ 𝐸, as a solution to the Local Hiding problem. In what

follows, we will show that a solution to the above instance of the

Local Hiding problem in𝐻 corresponds to a solution to the problem

of Finding 𝑘-Clique in 𝐺 .

First, note that 𝑣𝑒 has the highest degree in 𝐻 , which is 𝑛 +𝑘 − 2.

Thus, in order for 𝐴∗
to be a solution to the Local Hiding problem,

the addition of 𝐴∗
to 𝐻 must increase the degree of at least 𝑘 nodes

in𝑉 such that each of them has a degree of at least𝑛+𝑘−1 (note that
the addition of 𝐴∗

only increases the degrees of nodes in 𝑉 , since

we already established that 𝐴∗ ⊆ 𝐸). Now since in 𝐻 the degree of

every node 𝑣𝑖 equals 𝑛 (because of the way 𝐻 is constructed), then

in order to increase the degree of 𝑘 such nodes to 𝑛 + 𝑘 − 1, each

of them must be an end of at least 𝑘 − 1 edges in 𝐴∗
. But since the

budget in our problem instance is
𝑘 (𝑘−1)

2
, then the only possible

choice of 𝐴∗
is the one that increases the degree of exactly 𝑘 nodes

in𝑉 by exactly 𝑘 − 1. If such a choice of 𝐴∗
is available, then surely

those 𝑘 nodes form a clique in 𝐺 , since all edges in 𝐴∗
are taken

from 𝐺 . □

Theorem 2. The problem of Local Hiding is NP-complete given
the closeness centrality measure.

Proof. The problem is trivially in NP, since after the addition

of a given 𝐴∗
, and the removal of a given 𝑅∗, it is possible to

compute the closeness centrality of all nodes in polynomial time.

𝑢1 𝑢2 𝑢𝑙
...

𝑆1 𝑆𝑚... 𝑤1 𝑤2 𝑤𝑙
...

𝑣𝑒𝑡...𝑥1

𝑥𝑙+𝑚−𝑘+1

Figure 2: Network used in the proof of Theorem 2.

Next, we prove that the problem is NP-hard. To this end, we pro-

pose a reduction from the NP-complete 3-Set Cover problem. Let

𝑈 = {𝑢1, . . . , 𝑢𝑙 } be the universe, and let 𝑆 = {𝑆1, . . . , 𝑆𝑚} be the
set of subsets of the universe, where for every 𝑆𝑖 we have |𝑆𝑖 | = 3.

The goal is then to determine whether there exist 𝑘 elements of 𝑆

the union of which equals 𝑈 . Given an instance of the 3-Set Cover

problem, let us construct a network, 𝐺 = (𝑉 , 𝐸), as follows:
• 𝑉 = {𝑣𝑒 , 𝑡} ∪

⋃
𝑆𝑖 ∈𝑆 {𝑆𝑖 } ∪

⋃
𝑢𝑖 ∈𝑈 {𝑢𝑖 ,𝑤𝑖 } ∪

⋃𝑙+𝑚−𝑘+1
𝑖=1 {𝑥𝑖 },

• 𝐸 = {(𝑡, 𝑣𝑒 )} ∪
⋃

𝑥𝑖 ∈𝑉 {(𝑥𝑖 , 𝑡)} ∪
⋃

𝑤𝑖 ∈𝑉 {(𝑤𝑖 , 𝑣𝑒 ), (𝑤𝑖 , 𝑢𝑖 )} ∪⋃
𝑆𝑖 ∈𝑉 {(𝑆𝑖 , 𝑣𝑒 )} ∪

⋃
𝑢 𝑗 ∈𝑆𝑖 {(𝑆𝑖 , 𝑢 𝑗 )}.

An example of the resulting network,𝐺 , is illustrated in Figure 2.

Now, consider the following instance of the problem of Local Hiding,

(𝐺, 𝑣𝑒 , 𝑏, 𝑐, 𝐴, 𝑅, 𝑑), where 𝐺 is the network we just constructed, 𝑣𝑒
is the evader, 𝑏 = 𝑘 (where 𝑘 is the parameter of the 3-Set Cover

problem), 𝑐 is the closeness centrality measure, 𝑑 = 1, 𝐴 = {(𝑡, 𝑆𝑖 ) :
𝑆𝑖 ∈ 𝑆}, and 𝑅 = ∅.

From the definition of the problem, we see that the only edges

that can be added to the graph are those between 𝑡 and the members

of 𝑆 . Notice that any such choice of 𝐴∗
corresponds to selecting a

subset of |𝐴∗ | elements of 𝑆 in the 3-Set Cover problem. In what

follows, we will show that a solution to the above instance of Local

Hiding corresponds to a solution to the 3-Set Cover problem.

First, we will show that for every 𝑣 ∈ 𝑉 \ {𝑡, 𝑣𝑒 } and every

𝐴∗ ⊆ 𝐴 we either have 𝑐 (𝐺 ′, 𝑣) < 𝑐 (𝐺 ′, 𝑡) or have 𝑐 (𝐺 ′, 𝑣) <

𝑐 (𝐺 ′, 𝑣𝑒 ), where 𝐺 ′ = (𝑉 , 𝐸 ∪𝐴∗). To this end, let 𝐷 (𝐺 ′, 𝑣) denote
the sum of distances from 𝑣 to all other nodes, i.e., 𝐷 (𝐺 ′, 𝑣) =∑

𝑤∈𝑉 \{𝑣 } 𝑑 (𝑣,𝑤). Note that 𝐷 (𝐺 ′, 𝑣) = 𝑛−1
𝑐 (𝐺′,𝑣) . We will show that

the following holds:

∀𝑣∈𝑉 \{𝑡,𝑣𝑒 }∀𝐴∗⊆�̂�
(
𝐷 (𝐺 ′, 𝑣) > 𝐷 (𝐺 ′, 𝑡) ∨ 𝐷 (𝐺 ′, 𝑣) > 𝐷 (𝐺 ′, 𝑣𝑒 )

)
.

Let𝑑𝑡 denote
∑
𝑢𝑖 ∈𝑈 𝑑 (𝑡,𝑢𝑖 )+

∑
𝑆𝑖 ∈𝑆 𝑑 (𝑡, 𝑆𝑖 ). Notice also that 𝑘 ≤ 𝑚.

Next, we compute 𝐷 (𝐺 ′, 𝑣) for the different types of node 𝑣 :
• 𝐷 (𝐺 ′, 𝑣𝑒 ) = 5𝑙 + 3𝑚 − 2𝑘 + 3;

• 𝐷 (𝐺 ′, 𝑡) = 3𝑙 +𝑚 − 𝑘 + 2 + 𝑑𝑡 ;
• 𝐷 (𝐺 ′, 𝑥𝑖 ) = 6𝑙 + 3𝑚 − 2𝑘 + 3 + 𝑑𝑡 > 𝐷 (𝐺 ′, 𝑡);
• 𝐷 (𝐺 ′,𝑤𝑖 ) = 8𝑙 + 5𝑚 − 3𝑘 + 2 > 𝐷 (𝐺 ′, 𝑣𝑒 );
• 𝐷 (𝐺 ′, 𝑢𝑖 ) ≥ 9𝑙+4𝑚−3𝑘+2 > 𝐷 (𝐺 ′, 𝑣𝑒 ) as

∑
𝑆 𝑗 ∈𝑆 𝑑 (𝑢𝑖 , 𝑆 𝑗 ) ≥

𝑚;

• 𝐷 (𝐺 ′, 𝑆𝑖 ) ≥ 7𝑙 + 4𝑚 − 2𝑘 − 4>𝐷 (𝐺 ′, 𝑣𝑒 ) as 𝑑 (𝑆𝑖 , 𝑣𝑒 ) ≥ 1.

Based on this, either 𝑡 or 𝑣𝑒 has the highest closeness centrality,

therefore 𝐴∗ ⊆ 𝐴 is a solution to the problem of Local Hiding

if and only if 𝐷 (𝐺 ′, 𝑡) < 𝐷 (𝐺 ′, 𝑣𝑒 ). This is the case when 𝑑𝑡 <

2𝑙 + 2𝑚 − 𝑘 + 1. Let 𝑈𝐴 = {𝑢𝑖 ∈ 𝑈 : ∃𝑆 𝑗 ∈𝑆𝑢𝑖 ∈ 𝑆 𝑗 ∧ (𝑡, 𝑆 𝑗 ) ∈ 𝐴∗}.
We have that 𝑑𝑡 = |𝐴∗ | + 2(𝑚 − |𝐴∗ |) + 2|𝑈𝐴 | + 3(𝑙 − |𝑈𝐴 |) which
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gives us 𝑑𝑡 = 3𝑙 − |𝑈𝐴 | + 2𝑚 − |𝐴∗ |. Since by definition |𝑈𝐴 | ≤ 𝑙

and |𝐴∗ | ≤ 𝑘 , it is possible that 𝑑𝑡 < 2𝑙 + 2𝑚 − 𝑘 + 1 only when

|𝑈𝐴 | = 𝑙 and |𝐴∗ | = 𝑘 , i.e., ∀𝑢𝑖 ∈𝑈 ∃𝑆 𝑗 ∈𝑆𝑢𝑖 ∈ 𝑆 𝑗 ∧ (𝑡, 𝑆 𝑗 ) ∈ 𝐴∗
. This

solution to the problem of Local Hiding corresponds to a solution

to the given instance of the 3-Set Cover problem, which concludes

the proof. □

Theorem 3. The problem of Local Hiding is NP-complete given
the betweenness centrality measure.

The proof can be found in Waniek et al. [21].

4 THE SEEKER-EVADER GAME
Player strategies:We model the problem of strategically hiding

in a network as a game between two players: the evader and the

seeker. In particular, the seeker analyzes the network using a set of

strategies, 𝑇𝑠 , consisting of the fundamental centrality measures:

degree, closeness, betweenness, and eigenvector. On the other hand,

the goal of the evader is to decrease her position in the centrality-

based ranking of all nodes, while maintaining her influence within

the network (notice that the theoretical problems presented in

Section 3 are focused on providing safety to the evader by lowering

her ranking position, while here we additionally allow the evader

to take into consideration her influence in the network). To this

end, she utilizes a set of strategies, 𝑇𝑒 , consisting of combinations

of edge modifications in her neighbourhood, with the maximum

number of permitted modifications being specified by a budget, 𝑏.

In our experiments, we pay particular attention to the only avail-

able evader strategy in the literature, namely ROAM (Remove One

Add Many) [20]. In particular, the ROAM heuristic involves two

steps. Step 1: Remove the edge between the evader, 𝑣𝑒 , and its neigh-

bour of choice, 𝑣0; Step 2: Connect 𝑣0 to 𝑏 − 1 nodes of choice, who

are neighbours of 𝑣𝑒 but not of 𝑣0. This simple heuristic has been

shown to be rather effective in practice.

Utility functions: For any given pair of strategies, (𝑡𝑠 , 𝑡𝑒 ), such
that 𝑡𝑠 ∈ 𝑇𝑠 and 𝑡𝑒 ∈ 𝑇𝑒 , the utility of the evader is:

𝑈𝑒 (𝜙, 𝑡𝑠 , 𝑡𝑒 ) = 𝜙𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) + (1 − 𝜙)𝑈 𝐼

𝑒 (𝑡𝑒 )
where:

• 𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) ∈ R is the evader’s utility from the change in her

rank according to the centrality measure 𝑡𝑠 chosen by the

seeker, when the evader plays strategy 𝑡𝑒 ,

• 𝑈 𝐼
𝑒 (𝑡𝑒 ) ∈ R is the evader’s utility from the change in her

influence within the network when she plays strategy 𝑡𝑒 ,

• 𝜙 ∈
{

1

𝑚+1 , . . . ,
𝑚

𝑚+1
}
represents the evader’s evaluation of

𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) relative to𝑈 𝐼

𝑒 (𝑡𝑒 ), we will refer to 𝜙 as the type of
the evader, with𝑚 being the number of types.

Next, we specify how 𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) and 𝑈 𝐼

𝑒 (𝑡𝑒 ) are calculated (Fig-

ure 3 depicts both functions). Let 𝑟𝑒 (𝑡𝑠 , 𝑡𝑒 ) be the evader’s ranking
when she plays strategy 𝑡𝑒 and the seeker plays strategy 𝑡𝑠 . Then,

𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) is calculated as follows:

𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) =

1

𝛼
(
1 + 𝑒−𝑘 (𝑟𝑒 (𝑡𝑠 ,𝑡𝑒 )−𝑑)

) − 𝛽

𝛼
,

where 𝑒 is Euler’s number,𝑘 is the curve steepness,𝑑 is the inflection

point, 𝛽 = 1

1+𝑒−𝑘 (1−𝑑 ) and 𝛼 = (1 − 2𝛽). This formula has the

following desirable properties:
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Figure 3: The evader’s utility functions for 𝑑 = 15 and 𝑘 = 3

𝑑
.

• The evader’s utility is 0 when ranked first, i.e., fully exposed.

Formally,𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) = 0 when 𝑟𝑒 (𝑣) = 1.

• The evader’s utility increases when she becomes more hid-

den. Formally, 𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) increases with 𝑟𝑒 (𝑡𝑠 , 𝑡𝑒 ).

• 𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) is convex for 1 ≤ 𝑟𝑒 (𝑡𝑠 , 𝑡𝑒 ) ≤ 𝑑 , meaning that the

marginal gain in utility increases with ranking drop, as long

as the evader does not reach position 𝑑 .

• 𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) is concave for 𝑑 ≤ 𝑟𝑒 (𝑡𝑠 , 𝑡𝑒 ) ≤ 𝑛, i.e., dropping be-

yond position 𝑑 produces diminishing returns to the evader.

Finally, note that 𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) → 1 + 𝛽

𝛼 when 𝑟𝑒 (𝑡𝑠 , 𝑡𝑒 ) → 𝑛. Hav-

ing specified how 𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ) is calculated, we now move to 𝑈 𝐼

𝑒 (𝑡𝑒 ).
Recall that the evader’s influence is measured according to either

the independent cascade model or the linear threshold model [3, 18].

Regardless of which model is used, let Δ𝑒 (𝑡𝑒 ) denote the relative
change in the evader’s influence when she plays strategy 𝑡𝑒 , i.e.,

Δ𝑒 (𝑡𝑒 ) = (𝐼𝑒 (𝑡𝑒 ) − 𝐼0𝑒 )/𝐼0𝑒 , where 𝐼𝑒 (𝑡𝑒 ) is the evader’s influence

when she plays strategy 𝑡𝑒 , and 𝐼
0

𝑒 is the evader’s initial influence

before playing. Then, 𝑈 𝐼
𝑒 (𝑡𝑒 ) is calculated as follows:

𝑈 𝐼
𝑒 (𝑡𝑒 ) =

{
Δ𝑒 (𝑡𝑒 ), if Δ𝑒 (𝑡𝑒 ) > 0

−Δ𝑒 (𝑡𝑒 )2, if Δ𝑒 (𝑡𝑒 ) ≤ 0

This formula has some desired properties. Firstly,𝑈 𝐼
𝑒 (𝑡𝑒 ) is concave

when Δ𝑒 (𝑡𝑒 ) ≤ 0, meaning that the marginal loss in utility grows

with the loss in influence (this is intuitive in scenarios where the

evader does not mind a negligible drop in influence in return for a

better disguise, but strongly opposes a significant drop in influence).

Secondly, when Δ𝑒 (𝑡𝑒 ) ≥ −1, we have𝑈 𝐼
𝑒 (𝑡𝑒 ) ≥ −1, and as Δ𝑒 (𝑡𝑒 )

increases, 𝑈 𝐼
𝑒 (𝑡𝑒 ) reaches a similar order of magnitude as that of

𝑈𝑅
𝑒 (𝑡𝑠 , 𝑡𝑒 ), meaning that the equilibrium is not dominated by any

of those two utilities.

Let us now turn our attention to the utility of the seeker. In our

analysis we consider two different versions of the game: zero-sum
game and non-zero-sum game. In the zero-sum version of the game

we assume that the seeker is interested in minimizing the total

utility of the evader, i.e., the seeker’s utility is 𝑈𝑠 = −𝑈𝑒 . In the

non-zero-sum version in the game we assume that the seeker is

interested solely in identifying the evader, i.e., the seeker’s utility is

𝑈𝑠 = −𝑈𝑅
𝑒 . Notice that in the latter version of the game the seeker

completely disregards any utility that the evader might gain from

the change in her influence. We assume that the payoffs and the

distribution of evader types are common knowledge, while the

actual evader’s type is private.
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Network Network All Undominated

size strategies strategies

WTC 36 14190 60

Bali 17 280840 7

Madrid 70 45760 5

Scale-Free 30 61365 17

Small-World 30 902 36

Erdos-Renyi 30 4122 47

Table 2: The number of possible strategies vs. the number of
undominated strategies (for random networks, the number
is taken as the average over 100 such networks).

The Stackelberg game: Our model allows for mixed strategies.

More specifically, let 𝑝𝑠 (𝑡𝑠 ) be the probability that the seeker plays

pure strategy 𝑡𝑠 ∈ 𝑇𝑠 . Moreover, let 𝑝 (𝜙) be the probability that the

evader type is 𝜙 , and let 𝑝
𝜙
𝑒 (𝑡𝑒 ) be the probability that an evader

of type 𝜙 plays pure strategy 𝑡𝑒 ∈ 𝑇𝑒 . Now since the evader moves

second, i.e., she knows the strategy of the seeker, then we can

restrict her available strategies to only pure ones. Hence, the prob-

ability that an evader of type 𝜙 plays pure strategy 𝑡𝑒 ∈ 𝑇𝑒 is

𝑝
𝜙
𝑒 (𝑡𝑒 ) ∈ {0, 1}. The seeker’s objective is to maximize her expected

payoff. This optimization problem can be formulated as a Mixed-

Integer Quadratic problem:

max

∑
𝜙 ∈Φ

∑
𝑡𝑠 ∈𝑇𝑠

∑
𝑡𝑒 ∈𝑇𝑒

𝑝 (𝜙)𝑝𝜙𝑒 (𝑡𝑒 )𝑝𝑠 (𝑡𝑠 )𝑈𝑠 (𝜙, 𝑡𝑠 , 𝑡𝑒 )

s.t.

∑
𝑡𝑠 ∈𝑇𝑠

𝑝𝑠 (𝑡𝑠 ) = 1∑
𝑡𝑒 ∈𝑇𝑒

𝑝
𝜙
𝑒 (𝑡𝑒 ) = 1

𝜆 ≥
∑
𝑡𝑠 ∈𝑇𝑠

𝑝𝑠 (𝑡𝑠 )𝑈𝑒 (𝜙, 𝑡𝑠 , 𝑡𝑒 )

𝜆 ≤ (1 − 𝑝
𝜙
𝑒 (𝑡𝑒 ))𝜂 +

∑
𝑖∈𝑇𝑠

𝑝𝑠 (𝑡𝑠 )𝑈𝑒 (𝜙, 𝑡𝑠 , 𝑡𝑒 )

The first and second constraints correspond to the probability

distributions over the sets of strategies available to the players. As

for 𝜂 ∈ R, it is an arbitrarily large number. This way, the third and

fourth constraints ensure that, by solving the problem, we get:

𝜆 = max

𝑡𝑒 ∈𝑇𝑒

∑
𝑡𝑠 ∈𝑇𝑠

𝑝𝑠 (𝑡𝑠 )𝑈𝑒 (𝜙, 𝑡𝑠 , 𝑡𝑒 ) .

This is because, when 𝜂 is arbitrarily large, (1 − 𝑝
𝜙
𝑒 (𝑡𝑒 ))𝜂 reflects

the fact that the evader will play the strategy that maximizes her

expected payoff. Finally, in order to solve the problem efficiently, we

linearize it by substituting variables: 𝑧𝜙 (𝑡𝑠 , 𝑡𝑒 ) = 𝑝
𝜙
𝑒 (𝑡𝑒 )𝑝𝑠 (𝑡𝑠 ). We

use the linearization procedure described by Paruchuri et al. [16].

5 EMPIRICAL ANALYSIS
For each network, following the work by Waniek et al. [20], the

evader is chosen as the node with the smallest sum of centrality

ranks (based on Degree, Closeness, Betweenness and Eigenvector);

0.00 0.25 0.50 0.75 1.00
Payoff as % of maximal payoff

0

2

4

6

8

10

O
cc

ur
an

ce
s

WTC

0.00 0.25 0.50 0.75 1.00
Payoff as % of maximal payoff

0.0

2.5

5.0

7.5

10.0

12.5

O
cc

ur
an

ce
s

Bali

0.00 0.25 0.50 0.75 1.00
Payoff as % of maximal payoff

0

2

4

6

8

10

O
cc

ur
an

ce
s

Madrid

0.00 0.25 0.50 0.75 1.00
Payoff as % of maximal payoff

0

1

2

3

4

5

O
cc

ur
an

ce
s

Scale-free

0.00 0.25 0.50 0.75 1.00
Payoff as % of maximal payoff

0.0

2.5

5.0

7.5

10.0

O
cc

ur
an

ce
s

Small-world

0.00 0.25 0.50 0.75 1.00
Payoff as % of maximal payoff

0

2

4

6

O
cc

ur
an

ce
s

Random graph

Figure 4: The distributions of the evader’s payoffs for budget
3. Values are provided for evader type 𝜙 = 0.5 and averaged
over the seeker’s equilibrium strategies. For each network,
the red and black lines denote the average payoff and 0, re-
spectively.

ties are broken uniformly at random. The evader type 𝜙 is sampled

uniformly at random from the set {0.2, 0.4, 0.6, 0.8}. See Waniek et

al. [21] for the description of the network datasets we consider in

our simulations. All results for random networks are presented as

an average over 100 samples.

While the number of pure strategies of the seeker is rather small

(we assume them to be the four main centrality measures), the

number of pure strategies of the evader is much larger, since ev-

ery possible way of rewiring the evader’s neighbourhood may be

considered a unique strategy. This very quickly becomes compu-

tationally challenging even for small networks and small budgets.

For instance, in the case of the WTC network, the number of the

evader’s strategies for budget 𝑏 = 3 is 14, 190, for 𝑏 = 4 it is 148, 995,

and for 𝑏 = 5 it is 1, 221, 759.

With this in mind, to study the evader’s entire space of pos-

sible strategies, we focus first on a version of the game that is

more computationally feasible. More specifically, we analyze the

zero-sum version of the game, where the seeker’s gain equals the

evader’s loss. This implies that the seeker is not only interested

in the evader’s centrality (as in the aforementioned model), but

is also interested in the evader’s influence (this is implied by the

fact that the evader’s utility does not only depend on her centrality

but also on her influence). Importantly, this version of the game

can be formulated as a linear program; hence, it is much easier to

solve. By analyzing the zero-sum version of the model, we aim to
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Figure 5: The evader’s average payoff given the three terrorist networks (WTC, Bali, andMadrid), and scale-free networks, and
given budgets 3, 4, and 5. The x-axis represents the number of neighbours the evader is disconnected from, while the y-axis
represents the number of edges added between the evader’s neighbours. The color intensity of each cell represents the evader’s
average payoff for given strategy.

understand the properties of the evader’s most rewarding strategies.

This understanding will help us identify effective heuristics for the

evader, which in turn would enable us to study the original, more

computationally-challenging version of the game.

5.1 The Zero-Sum Version
For each network we generated the payoff matrices corresponding

to budgets 3 and 4 and both influence measures. We were also

able to consider 10% of the strategies corresponding to budget 5

(except for the WTC network, where we considered 100%). Our

main observations regarding the strategies are threefold.

Firstly, most of the evader’s strategies are strongly dominated,
regardless of the evader’s type. Specifically, given different networks,

Table 2 specifies the number of all strategies as well as those that are

undominated. As shown, less than 1% of strategies are undominated,

and this percentage is even smaller for larger networks.

Secondly, for any given equilibrium strategy of the evader, the

difference in the seeker’s payoff between her optimal strategy and

other strategies is minimal (less than 1%). This suggests that, for

the zero-sum game, the seeker could, in principle, use any central-

ity measure to analyse the network, without compromising much

efficiency. Conversely, for any given equilibrium strategy of the

seeker, the difference in the evader’s payoff between her optimal

strategy and other strategies is much more pronounced (more than

100%, see Figure 4). Hence, the outcome of the game relies heavily on
the evader’s choice of strategy, while the seeker’s choice of centrality
measure has negligible impact.

Thirdly, the strategies that yield similar payoffs seem to involve

rewiring the network in similar ways; see Figures 5 and 6. Interest-

ingly, the ROAM heuristic of Waniek et al. [20] is often among the
evader’s most rewarding strategies.

Based on these observations, we next analyze the non-zero-sum

version of the game when the evader uses the ROAM heuristic.

5.2 The Non-Zero-Sum Version
In this version of the game, we assume that the evader’s strategies

are instances of the ROAM heuristic. More specifically, the evader’s

total budget 𝑏 is used to repeatedly run ROAM. We write ROAM(𝑥 ),

where 𝑥 is the number of added between the evader’s neighbours.

The budget of a single iteration is between 1 and
𝑏
2
, i.e., there are

at least two iterations. The evader repeatedly run ROAM, until

the entire budget 𝑏 is spent. For example, for 𝑏 = 10, we have

the following set of evader strategies: {ROAM(1) repeated 5 times,
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Figure 6: Same as Figure 5, but for small-world and random-
graph networks.

ROAM(2) repeated 3 times + ROAM(0), ROAM(3) repeated twice +

ROAM(1), ROAM(4) repeated twice}.
We calculate the equilibrium strategy profiles for different net-

works. For each network, we consider budgets𝑏 ∈ {5, 10, 15, 20, 25, 35},
assuming that 𝑏 is no more than 25% of all edges in the network.

This cap is meant to limit the changes in the network characteristics

resulting from the evader’s actions.

Figure 7 illustrate the mixed strategies played by the seeker in

the equilibrium for different networks and evader budgets. For each

centrality, Tables 3 and 4 present the average probability of being

used in different networks.

The equilibrium strategies show, on one hand, which heuristics

the evader should use to minimize her centrality while maintaining

as much influence as possible. On the other hand, they indicate

which centrality the seeker should adopt to have the greatest chance

of identifying the evader among the top nodes in the network. Our

first key observation in the non-zero-sum game setting is that the

choice of the strategy by the seeker has a much greater impact

on her payoff than in the zero-sum game. Hence, in what follows,

we will focus particularly on the strategies of the seeker, i.e., we

will consider which centrality a network analyzer should use when

facing a strategic evader.

Regarding the results for the randomly-generated networks, we

observe clear, robust patterns, suggesting that it is possible to iden-

tify some combination(s) of centrality measures that can be used

against the evader. In particular:

Network 𝑐𝑏𝑒𝑡𝑤 𝑐𝑐𝑙𝑜𝑠 𝑐𝑑𝑒𝑔𝑟 𝑐𝑒𝑖𝑔

Scale-free 0 0.04 0.94 0.04

Random graphs 0.05 0.08 0.25 0.62

Small-world 0 0 0.06 0.94

Table 3: The average probability of using each centrality
given randomly-generated networks.

Network 𝑐𝑏𝑒𝑡𝑤 𝑐𝑐𝑙𝑜𝑠 𝑐𝑑𝑒𝑔𝑟 𝑐𝑒𝑖𝑔

WTC 0.04 0.03 0.03 0.89

Bali 0.39 0.27 0.33 0

Madrid 0.27 0 0 0.73

Overall Terrorist 0.23 0.10 0.12 0.54

Facebook 0 0.14 0 0.86

Google+ 0 0.14 0 0.86

Twitter 0 0.56 0.44 0

Overall Social 0 0.28 0.15 0.57

Table 4: The average probability of using each centrality
given different real-life networks.

• Scale-free networks: degree centrality is used almost exclu-

sively. Due to the power-law distribution of nodes’ degrees

in scale-free networks, the “hubs” have extremely high de-

gree, and the evader is most certainly one of them. As such,

even with a large budget, any attempts to reduce the evader’s

position in the degree-based ranking have limited impact.

• Small-world networks: eigenvector centrality consistently

proves to be most difficult to manipulate, it is played by the

seeker in almost every small-world network.

• Random graph networks: For low values of the evader’s bud-

get, eigenvector centrality is the most effective. However,

for larger budgets, it is often replaced by closeness centrality.

This shift occurs when budget reaches about 15, regardless

of the network size.

Regarding the results for the real-life networks, we also find

regularities. Overall, for the networks with lower average clustering

coefficient and lower density (Madrid and WTC attacks, Facebook,

Google+), eigenvector centrality seems to be played most often.

Furthermore, degree centrality is never played against the evader

in larger networks. In more detail:

• Covert organizations: for theWTC 9/11 attack and theMadrid

train attack networks, eigenvector centrality is played almost

exclusively. On the other hand, for the Bali attack network,

degree and betweenness centralities are chosen. This last

network, in addition to being the smallest, consists of two

subnetworks connected by one node—Samudra—the leader

of the terrorist organization. This atypical topology of the

network may be responsible for the difference. Moreover,

the average clustering coefficient and the density for the Bali

network are much greater than for the other networks.
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(a) Scale-free
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(b) Random graphs
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(c) Small-world
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(e) Terrorist networks

Figure 7: The seeker’s equilibrium strategies given the evader types {0.2, 0.4, 0.6, 0.8}, in (a) scale-free, (b) random graph and (c)
small-world networks with 100, 250, 500, 750 and 1000 nodes, as well as in (d) social media and (e) terrorist networks. Results are
presented for 𝑑 = 15, and the independent cascade influence model. A darker color indicates that the corresponding centrality
measure has a greater weight in the seeker’s mixed strategy.

• Social media: eigenvector centrality is the most frequent

choice for Facebook and Google+ networks, but for the Twit-

ter network it is replaced by closeness and betweenness. This

could be due to the former networks having a lower density

and average clustering coefficient than the last one, making

them more similar to small-world networks.

The above analysis of equilibrium strategies, both for real-life

and randomly-generated networks, allows us to derive a number

of policy recommendations:

• Eigenvector centrality should be used by the seeker in net-

works exhibiting small-world properties. This finding is sup-

ported by the results for both randomly generated small-

world networks and real-life social media networks.

• Degree centrality should be used by the seeker in scale-

free networks, as evident by the results for Barabasi-Albert

networks. However, since those networks exhibit some small-

world properties, eigenvector centrality can be considered

as a second choice.

• For networks that resemble random graphs, eigenvector cen-

trality proves to be useful, at least against evaders whose

budget is small. As for larger budgets, closeness centrality

yields superior results.

• For two of the three terrorist networks under consideration,

eigenvector centrality dominates the alternatives, highlight-

ing its potential benefits when facing covert networks.

In general, eigenvector centrality seems to be a reliable choice

for a variety of network types. Although for some networks it is

the second best choice, generally it outperforms other measures,

and seems to be more resilient against strategic manipulation.

6 CONCLUSIONS
We investigated the problem of concealing the importance of an

individual in a social network, where both the evader, i.e., the per-

son who wishes to hide, and the seeker, i.e., the party analyzing the

network, act strategically. We focused on settings where the evader

cannot rewire edges between complete strangers, but instead can

only modify connections involving her neighbours in the networks.

We showed that even in this simplified setting, the problem of find-

ing an optimal way to hide from the most fundamental centrality

measures is NP-complete. In light of these hardness results, we

analyzed a number of instances of the game under both the zero-

sum and the non-zero-sum payoffs; this highlighted some potential

policy implications for network analyzers in the face of a strategic

evader.

For future work, we intend to study this setting more rigorously,

e.g., by analyzing the case in which multiple evaders are acting

simultaneously, andmore broadly, e.g., by considering awider range

of centrality measures available to the seeker. Another interesting

follow-up of this study is to analyze the problem of hiding from

link-prediction algorithms [5, 22, 24] under the assumption that

both the evader and the seeker act strategically.
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