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ABSTRACT
Causal structure discovery from observational data is fundamen-

tal to the causal understanding of autonomous systems such as

medical decision support systems, advertising campaigns and self-

driving cars. This is essential to solve well-known causal decision

making and prediction problems associated with those real-world

applications. Recently, recursive causal discovery algorithms have

gained particular attention among the research community due

to their ability to provide good results by using Conditional Inde-

pendent (CI) tests in smaller sub-problems. However, each of such

algorithms needs a refinement function to remove undesired causal

relations of the discovered graphs. Notably, with the increase of the

problem size, the computation cost (i.e., the number of CI-tests) of

the refinement function makes an algorithm expensive to deploy in

practice. This paper proposes a generic causal structure refinement

strategy that can locate the undesired relations with a small number

of CI-tests, thus speeding up the algorithm for large and complex

problems. We theoretically prove the correctness of our algorithm.

We then empirically evaluate its performance against the state-of-

the-art algorithms in terms of solution quality and completion time

in synthetic and real datasets.
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1 INTRODUCTION
Causal structure discovery has emerged as a powerful computa-

tional method of identifying causal relationships from large quan-

tities of data. Unlike the state-of-the-art statistical learning ap-

proaches, causal discovery examines the data generation procedure

instead of inspecting the joint distribution of observed variables.

Understanding and predicting causality in such a way has received

significant interest in a large number of real-life application such as

gene regulatory network [9, 29], advertising campaign [5], causal
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feature selection [1], self-driving cars [16], medical decision support

systems [7] and many more besides [19, 24].

Causal discovery is generally formulated as a probabilistic graph-

ical model (i.e., causal graph) where each edge represents the causal

relationship between variables [12–15]. If controlled experiments

are not possible, inferring the causal relations becomes challenging.

Constraint-based methods can identify these relations by exploit-

ing conditional independence tests (CI-tests) [10] when experiment

samples are difficult to manipulate. In a CI-test, when two vari-

ables are independent given a conditioning set (i.e., d-separated by

the conditioning set, see definitions), then we can conclude that

there is no direct connection (i.e. causal relation) between them.

This helps to disconnect the variables during the construction of

the causal graph. Thus, following the faithfulness assumption (i.e.,

directed edges indicate causal relations) [17], existing constraint-

based methods such as IC-algorithm [23] and PC algorithm [25]

can discover partially directed acyclic graphs [21].

Now, constraint-based methods find it very difficult to deal with

d-separators in large problems. When the number of variables

increases, the number of possible conditioning set grows expo-

nentially, making the exploration of d-separators [4, 21] compu-

tationally expensive. Another major challenge is, as the size of

the conditioning set grows (i.e., high-order) with the number of

variables, CI-tests become unreliable and may experience Type II

errors (i.e., false CI hypothesis is accepted) [5, 8, 31]. As a result,

we observe (i) some edges go missing, although they should exist,

(ii) some undesired false edges are introduced.

To deal with these issues, researchers concentrated on recursive

split-and-merge strategies [5, 11, 18, 26, 27]. These methods divide

the original variable set into multiple subsets such that each subset

can be solved recursively as a sub-problem by using the existing

causal discovery algorithms. The results of these sub-problems are

later merged to recover the causal graph corresponding to the main

variable set. To learn the causal graphs, in place of using constraint-

based algorithms, we can employ these recursive approaches since

they avoid redundant CI-tests [30]. In effect, they provide more

accurate result in less amount of time.

One notable algorithm named SADA is proposed in [5], which

searches for causal cut over the variables in a sparse causal struc-

ture. Thus, it enables an efficient partitioning of the variables into

subsets, and as such, produces a causal graph with a smaller number

of samples. Nevertheless, SADA violates the d-separation (see Defi-

nition 2.1), and the causal cut searching process is costly since they

are generated randomly and repeatedly for getting better decompo-

sition. To address these issues, a new partitioning scheme, CAPA,

Main Track AAMAS 2021, May 3-7, 2021, Online

1028



decomposes the original variable set into three smaller subsets, and

can operate with low-order CI-tests to detect more causal directions

than its predecessors [30]. However, the CAPA algorithm experi-

ences severe execution time overhead, as well as a large number of

CI-tests are required due to an additional partition (i.e., the third

one). Recently, a split-and-merge strategy, named CP, has been

developed that is reported to keep the run-time and the number

of CI-tests at a lower margin. These are obtained by dividing the

variable set into two partitions and executing a refinement process

during the merge phase. This process is used to remove undesired

false edges [28]. It is worth noting that this process takes a major

portion of the execution time and a large amount of CI-tests since

CP cannot distinguish false edges separately and conducts CI-tests

for all of them.

As far as we know, no previous research has investigated false

edge detection due to the d-separation violation. This paper pro-

poses a recursive algorithm namedDsep-CP (d-separation preserv-

ing Causal Partition) to improve the scalability of causal discovery

without sacrificing the solution quality. The first contribution of

our paper includes the exploration of the conditions of d-separation

violation and the graphical structure analysis for detecting the false

edges. Dsep-CP employs this knowledge to refine the false edges

of causal structure with a parsimonious number of CI-tests. This is

the second key contribution of our work. Our theoretical analysis

proves that our algorithm returns the correct causal structure under

reliable CI-tests. Our empirical evaluation illustrates a substantial

reduction in execution time up to 14% compared to the state-of-

the-art without sacrificing the solution quality. In addition, during

the refinement phase of our approach, it reduces the number of

CI-tests up to 86% in different experimental settings.

2 BACKGROUND AND PROBLEMDEFINITION
This section formulates the causal discovery problem and the dis-

cuss the background necessary to understand our proposed method.

A causal graph is a directed acyclic graph (DAG), 𝐺 = (𝑉 , 𝐸)
where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a set of 𝑛 variables

1
and 𝐸 is a set of

directed edges. Each edge 𝑢 → 𝑣 represents the cause and effect

relations between variables 𝑢 and 𝑣 where 𝑢 is the parent (cause)

and 𝑣 is the child (effect) in the DAG. Let 𝐷 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}
represents a data sample set where each sample is a vector, i.e., 𝑥𝑖 =

{𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛}. Here 𝑥𝑖 𝑗 defines the value of variable 𝑣 𝑗 in sample

𝑥𝑖 . The sample data 𝐷 is generated from a causal graph 𝑇 with 𝑛

nodes (we define it as a true graph). We consider that during the

generation of data samples, the Causal Sufficiency [5] (i.e., the non-

existence of latent confounders of any two observed variables) and

the Faithfulness condition [17] (i.e., directed edges indicating causal

relations) assumptions are followed. However, we aim to recover

the causal graph𝐺∗ from𝐷 (Equation 1). Here 𝑠𝑐𝑜𝑟𝑒 (𝐺,𝑇 ) indicates
how close 𝐺 is compared to 𝑇 with respect to the causal relations

between variables. Ideally, 𝐺∗ is identical to 𝑇 , if not, as close as
possible. However, finding exact 𝑇 is computationally infeasible

due to Markov equivalence classes [6] (i.e., different graphs with

the same conditional independence relations among the variables).

𝐺∗ = argmax

𝐺

𝑆𝑐𝑜𝑟𝑒 (𝐺,𝑇 ) (1)

1
Throughout this paper, we use the terms variables and nodes interchangeably.

Independence 

Matrix (M)
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1 2 3 4 5

1 0 0 1 0 1

2 0 0 0 0 1

3 1 0 0 0 1

4 0 0 0 0 0

5 1 1 1 0 0

Causal graph (G)

Figure 1: Y-structure causal graph𝐺 , matrix𝑀 of𝑘_𝑜𝑟𝑑𝑒𝑟 = 1.

Definition 2.1 (D-separation). Two variables 𝑢 and 𝑣 are called

d-separated with respect to a conditioning set 𝑍 if at least one of

the following two conditions hold: (𝑖) the path (i.e., a consecutive

sequence of edges) between 𝑢 and 𝑣 contains a mediator (𝑢 →
w→ 𝑣) or a confounder (𝑢 ← w→ 𝑣) where𝑤 ∈ 𝑍 , (𝑖𝑖) the path
between 𝑢 and 𝑣 contains a collider (𝑢 → w ← 𝑣) where 𝑤 and

its descendants are not in 𝑍 [20]. We employ CI-tests to determine

d-separation
2
in DAGs utilizing the sample set 𝐷 . During causal

partitioning, we denote that d-separation is preserved if (i) adjacent

variable pairs cannot be d-separated, (ii) non-adjacent variable pairs

are either already divided into different subsets or d-separable in

at least one of the subsets [30]. Otherwise, d-separation is violated

during that partitioning process. Notably, if two variables 𝑢 an 𝑣

are conditionally independent given a variable set 𝑍 , we represent

it with 𝑢 ⊥⊥ 𝑣 |𝑍 .

Definition 2.2 (Y-structure and Independence matrix). We define

the formation of nodes as Y-structure where a collider exists with
its parents and descendants. Whereas, 𝑀 denotes an independence

matrix. Here, 𝑀𝑖 𝑗 = 1 indicates that 𝑣𝑖 ⊥⊥ 𝑣 𝑗 |𝑍 for some 𝑍 ⊆ 𝑉 \
{𝑣𝑖 , 𝑣 𝑗 } and |𝑍 | ≤ 𝑘_𝑜𝑟𝑑𝑒𝑟 . Otherwise, they are not yet d-separated

for 𝑘_𝑜𝑟𝑑𝑒𝑟 conditioning set. Here, 𝑘_𝑜𝑟𝑑𝑒𝑟 indicates the size of the

conditioning set, and it increases from 0 to 𝑘_𝑡ℎ𝑟𝑒𝑠ℎ which is a pre-

specified maximum limit. Figure 1 shows an example of Y-structure

causal graph 𝐺 and independence matrix𝑀 of 𝑘_𝑜𝑟𝑑𝑒𝑟 = 1. It can

be seen from this figure that in𝐺 , variable 2 is a collider for variables

1 and 3, variable 3 a confounder for variables 2 and 4, variable 4

a mediator for variables 2 and 5 according to Definition 2.1. Here,

1 ⊥⊥ 3|{}, 1 ⊥⊥ 5|{4}, 2 ⊥⊥ 5|{4} and 3 ⊥⊥ 5|{4} are represented in𝑀 .

2.1 Causal Refinement
During the merging phase of SADA, in order to hold the acyclicity

assumption (i.e., the causal graph is a DAG), it removes the less

significant edge(s) (according to CI-test) when a cycle is found.

Whereas, if two paths are found between a pair of variables, it elimi-

nates specific edges with CI-tests. However, SADA fails to preserve

d-separation during the partitioning phase. As a result, a number

of redundant edges is created. To resolve this issue, CAPA splits

the problem into three smaller sub-problems. The main purpose

of the third partition is to ensure the preservation of d-separation.

Due to this third sub-problem, CAPA does not have to perform any

refinement during the merging phase. However, this third parti-

tion created during each recursive decomposition notably degrades

CAPA’s runtime performance.

2
We use the terms conditional independence and d-separation interchangeably.
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The CP algorithm first arranges the variables in descending order

by the number of non-adjacent variables according to the indepen-

dence matrix𝑀 . This strategy makes the partitioning process more

efficient and extremely fast [28]. After that, CP divides the variable

set 𝑉 into three non-overlapping sets 𝐴, 𝐵 and 𝐶 = 𝑉 \ (𝐴 ∪ 𝐵)
such that ∀𝑖∈𝐴,∀𝑗 ∈𝐵, 𝑀𝑖 𝑗 = 1. Based on this decomposition, this

algorithm creates two partitions 𝑉1 = 𝐴 ∪𝐶,𝑉2 = 𝐵 ∪𝐶 . However,
in case of unsuccessful decomposition, CP increases the 𝑘_𝑜𝑟𝑑𝑒𝑟

by 1 and restarts the partitioning method. In the merge phase of

CP, it combines the resulting graphs from its two sub-problems and

executes a refinement procedure. During the causal partitioning,

the d-separation can be violated in some cases, which may produce

false edges. The aim of the refinement step is to remove those edges

from the causal graph. Therefore, CP performs CI-tests for every

pair of variables conditioning on their parents.

In light of the above discussion, to develop an efficient causal

discovery algorithm, we have to address two challenges: (i) detect

the false edges due to the d-separation violation, (ii) provide a

strategy that removes those false edges efficientlywithout losing the

solution quality. In the following section, we describe our method

that deals with the above challenges.

3 THE DSEP-CP ALGORITHM
Dsep-CP is a recursive method that effectively performs scalable

causal discovery. The algorithm initiates with an original variable

set, and at each level of recursive decomposition, the algorithm

performs three principal operations. Initially, the Find Causal Par-
titions step takes place to find two causal partitions of the variable

set, being careful about the d-separation violation. Secondly, the

Recursive Dsep-CP calling step proceeds to solve the two sub-

problems corresponding to the two partitions. Finally, theDsep-CP
Refinement step refines the causal graph that is discovered and

merged from the two partitions.

Algorithm 1 shows the pseudo-code for Dsep-CP. The input

of Dsep-CP is the variable set 𝑉 for which we need to construct

the causal graph. The algorithm starts by checking the size of the

variable set. If the size of the variable set is smaller than (or equal

to) a suitable threshold, 𝑔𝑟𝑎𝑝ℎ_𝑡ℎ𝑟𝑒𝑠ℎ_𝑠𝑖𝑧𝑒 , the PC algorithm
3
is

run on this variable set for constructing causal relations (Algorithm

1: lines 1-3). Next, at line 4, the Find Causal Partitions function is

called for finding suitable partitions of the main variable set.

The Find Causal Partitions step (Procedure 1) starts with ini-

tializing partitioning sets𝐴, 𝐵,𝐶 as empty sets, independencematrix

𝑀 (see Definition 2.2) as a |𝑉 | × |𝑉 | size zero matrix and 𝑘_𝑜𝑟𝑑𝑒𝑟

as 0 (line 1). Next, the matrix𝑀 is calculated at lines 2-3 and𝑀 is

copied to 𝑀 ′ at line 4. In the next step, we partition 𝑉 into three

non-overlapping variable sets𝐴, 𝐵, and𝐶 according to the optimiza-

tion process used in CP [28]. In that process (lines 5-13), we execute

|𝑉 | iterations, and in each iteration, we choose variable𝑤 with the

highest priority and assign it in either𝐴, 𝐵, or𝐶 . At line 6, we select

the variable𝑤 which is d-separated from the most number of vari-

ables according to𝑀 ′ (a copy of𝑀), i.e.,𝑤 = argmax

𝑟 ∈{1,..., |𝑉 | }

∑ |𝑉 |
𝑐=1

𝑀 ′𝑐,𝑟 .

The variable𝑤 is either appended to the set 𝐵 (or𝐴) if it is indepen-

dent of all the variables existing in 𝐴 (or 𝐵) (lines 7-10). Otherwise,

it is added into C (line 12). At last, the 𝑀 ′ matrix is updated for𝑤

(line 13) by setting the column values of 𝑤 to zero so that other

3
We have followed CP [28]. Other constraint-based algorithms can also be used.

Algorithm 1: Dsep-CP(V)

Input :A finite set of variables𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛 }
Output: Discovered causal structure, G

1 if 𝑙𝑒𝑛 (𝑉 ) ≤ 𝑔𝑟𝑎𝑝ℎ_𝑡ℎ𝑟𝑒𝑠ℎ_𝑠𝑖𝑧𝑒 then
2 𝐺 ← PC_Algorithm(V) // Discover causal relation

3 return 𝐺

4 [𝑉1,𝑉2 ] ← Find-Causal-Partitions(𝑉 )
5 if max(𝑙𝑒𝑛 (𝑉1), 𝑙𝑒𝑛 (𝑉2)) = 𝑙𝑒𝑛 (𝑉 ) then
6 𝐺 ← PC_Algorithm(V) // Discover causal relation

7 return 𝐺

8 else
9 𝑔𝑟𝑎𝑝ℎ1 ←Dsep-CP(𝑉1)

10 𝑔𝑟𝑎𝑝ℎ2 ←Dsep-CP(𝑉2)

11 𝐺′ ←Merge(𝑔𝑟𝑎𝑝ℎ1, 𝑔𝑟𝑎𝑝ℎ2) // Resolving conflicts

12 𝐺 ← Dsep-CP-Refinement(𝐺′, 𝑔𝑟𝑎𝑝ℎ1, 𝑔𝑟𝑎𝑝ℎ2)
13 return 𝐺

variables with lower priority can be chosen in the next iteration at

line 6.

After finishing all iterations, if the partition 𝐶 is not smaller

than the other two partitions 𝐴 and 𝐵, we do not consider these as

efficient partitions and try again with higher 𝑘_𝑜𝑟𝑑𝑒𝑟 if it is less

than the allowed max value, 𝑘_𝑡ℎ𝑟𝑒𝑠ℎ. In this case, the procedure

increases 𝑘_𝑜𝑟𝑑𝑒𝑟 by one and goes to line 2 to start the partitioning

procedure again (Procedure 1: lines 14-16). The procedure now

updates 𝑀 for many variable pairs that could not be d-separated

earlier but becomes independent now conditioning on a higher-

order variable set. On the contrary, in case of efficient partitioning,

lines 17-19 merge 𝐴 and 𝐶 to form 𝑉1 and also merge 𝐵 and 𝐶 to

form𝑉2. Finally, these two partitions are returned from Procedure 1,

and we use them in the next steps of Algorithm 1. For example, we

partition the variables of Figure 2a into three sets 𝐴 = {6, 7, 8}, 𝐵 =

{3, 4, 5} and 𝐶 = {1, 2} for 𝑘_𝑜𝑟𝑑𝑒𝑟 = 0. Then we take the union

of 𝐴 and 𝐶 to get 𝑉1 = {1, 2, 6, 7, 8} and the union of 𝐵 and 𝐶 to

get 𝑉2 = {1, 2, 3, 4, 5} (Figure 2b). Here, the dashed directed edges

indicate the causal relations between variables that are not yet

discovered but exist in the true graph (details in Section 2).

In Algorithm 1 (lines 5-7), if the largest of the resulting two

partitions 𝑉1 and 𝑉2 is the same as the main variable set 𝑉 , then

it indicates that the partitions are not efficient even after the par-

titioning procedure. This situation occurs when the variables are

more connected to each other and may form a dense sub-graph. In

that case, we execute the PC_Algorithm(V) for constructing the
causal structure G, similar to Algorithm 1: line 2. The PC algorithm

discovers and stores the causal relations in an adjacency matrix

𝐺.𝑑𝑖𝑟 . Here 𝐺.𝑑𝑖𝑟𝑖, 𝑗 = 1 indicates a directed edge, 𝑣𝑖 → 𝑣 𝑗 and

0 means no edge exists. We use dot operation to express specific

attributes of a graph, in this case, the direction matrix of graph𝐺 . It

is worth noting that our algorithm is compatible to deal with both

directed and undirected causal relations. So, if the PC algorithm

cannot detect the directions properly, then our algorithm consid-

ers the causal structure as an undirected causal skeleton. Under

this circumstance, Dsep-CP is still able to perform its improved

refinement procedure and provide significant result. Therefore, if

the causal skeleton is undirected then 𝐺 ′.𝑑𝑖𝑟𝑖, 𝑗 = 1 represents only

the existence of an edge.

In Figure 2b, we consider 𝑔𝑟𝑎𝑝ℎ_𝑡ℎ𝑟𝑒𝑠ℎ_𝑠𝑖𝑧𝑒 = 5 and thus, we

execute the PC algorithm on each partition for discovering the
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Procedure 1: Find-Causal-Partitions(𝑉 )

Input :A finite set of variables𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛 }
Output: The causal partitions𝑉1,𝑉2

1 Initialize 𝐴, 𝐵,𝐶 as empty set, M as |𝑉 | × |𝑉 | zero matrix and

𝑘_𝑜𝑟𝑑𝑒𝑟 ← 0

2 foreach 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 do
3 𝑀𝑖,𝑗 ← 1 such that 𝑣𝑖 ⊥⊥ 𝑣𝑗 |𝑍 where ∃𝑍 ⊆ 𝑉 \ {𝑣𝑖 , 𝑣𝑗 } and

|𝑍 | ≤ 𝑘_𝑜𝑟𝑑𝑒𝑟

4 𝑀′ = 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 (𝑀)
5 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1 to |𝑉 | do
6 𝑤 ← argmax

𝑟∈{1,...,|𝑉 |}

∑|𝑉 |
𝑐=1

𝑀′𝑐,𝑟

7 if 𝑤 independent of ∀𝑣𝑖 ∈ 𝐴 according to𝑀 then
8 𝐵 ← 𝐴𝑝𝑝𝑒𝑛𝑑 (𝐵, 𝑤)
9 else if 𝑤 independent of ∀𝑣𝑖 ∈ 𝐵 according to𝑀 then
10 𝐴← 𝐴𝑝𝑝𝑒𝑛𝑑 (𝐴, 𝑤)
11 else
12 𝐶 ← 𝐴𝑝𝑝𝑒𝑛𝑑 (𝐶, 𝑤)
13 Update𝑀′ for 𝑤 //𝑀′ gets updated, M remains fixed

14 if ( |𝐶 | ≥ |𝐴 | + |𝐵 |) ∧ (𝑘_𝑜𝑟𝑑𝑒𝑟 + 1 < 𝑘_𝑡ℎ𝑟𝑒𝑠ℎ) then
15 𝑘_𝑜𝑟𝑑𝑒𝑟 ← 𝑘_𝑜𝑟𝑑𝑒𝑟 + 1
16 Goto line 2 // Try again for efficient decomposition

17 else
18 𝑉 1← 𝐴 ∪𝐶 // Two new partitions

19 𝑉 2← 𝐵 ∪𝐶
20 return [𝑉1,𝑉2 ]

causal structures. The resulting graphs are shown in Figure 2c. Here,

black edges indicate the relations that are correctly discovered, and

red edges refers to false edges that are created due to d-separation

violation (see Definition 2.1). The discovered causal relations {(1→
2), (6 → 1), (6 → 2), (6 → 7), (6 → 8), (7 → 2), (7 → 8)}
form 𝑔𝑟𝑎𝑝ℎ1 from the left partition and 𝑔𝑟𝑎𝑝ℎ2 consists of {(1→
2), (2 → 3), (3 → 1), (3 → 4), (3 → 5), (4 → 2), (5 → 4)}
produced from the right partition.

Notably, the d-separation may get violated in some specific sit-

uations during the partitioning process. For example, in the left

partition𝑉1 of Figure 2b, to detect the causal relation between 2 and

6, we perform CI-tests conditioning on Z={1,7,8}. The result of the

CI-tests indicates that Z cannot d-separate variables 2, 6 and creates

the edge 6→ 2 in Figure 2c. However, this is a false edge since it

does not exist in the true graph of 𝑉1 in Figure 2b. In the whole

true graph of Figure 2a, the paths 6 → 7 → 2 and 6 → 1 → 2

can be blocked by conditioning on 7 and 1, respectively. However,

conditioning on collider node 1 of the figure also opens the paths

6 → 1 → 3 → 4 → 2 and 6 → 1 → 3 → 5 → 4 → 2. Hence,

to make 6 and 2 conditionally independent, we have to condition

on {1,3,7} or {1,4,7}. But we do not have access to all of these d-

separators from the left partition, 𝑉1 in Figure 2b. Hence, it can be

inferred that d-separation is violated, and a false edge 6 → 2 is

created. Similarly, another false edge 2→ 3 is constructed.

In case of efficient partitions at Algorithm 1: line 4, we further

proceed and recursively run the Dsep-CP algorithm for each indi-

vidual partitions𝑉1,𝑉2 (lines 9-10). The causal graphs constructed at

lines 2 and 6 are returned as the return value of the sub-procedures

called at line 9 and line 10. The resulting causal graphs, 𝑔𝑟𝑎𝑝ℎ1
and 𝑔𝑟𝑎𝑝ℎ2, are combined with a𝑀𝑒𝑟𝑔𝑒 (𝑔𝑟𝑎𝑝ℎ1, 𝑔𝑟𝑎𝑝ℎ2) function
to form 𝐺 ′ at Algorithm 1: line 11. In this function, a new causal

Procedure 2: Dsep-CP-Refinement(𝐺,𝑔𝑟𝑎𝑝ℎ1, 𝑔𝑟𝑎𝑝ℎ2)

Input:Merged graph𝐺 , sub-problem graphs 𝑔𝑟𝑎𝑝ℎ1, 𝑔𝑟𝑎𝑝ℎ2
Output: Refined graph𝐺

1 if G structure is directed then
2 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟_𝑠𝑒𝑡 ← 𝑔𝑒𝑡_𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟𝑠 (𝐺)
3 else
4 foreach 𝑣𝑘 ∈ variables in G do
5 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟_𝑠𝑒𝑡 ← 𝐴𝑝𝑝𝑒𝑛𝑑 (𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟_𝑠𝑒𝑡, 𝑣𝑘 ) in case

∀𝑣𝑖 , ∀𝑣𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣𝑘 ) : ∃𝑍, 𝑣𝑖 ⊥⊥ 𝑣𝑗 |𝑍 and 𝑣𝑘 ∉ 𝑍

6 foreach 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟 ∈ 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟_𝑠𝑒𝑡 do
7 if 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟 ∉ 𝑔𝑟𝑎𝑝ℎ1 or 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟 ∉ 𝑔𝑟𝑎𝑝ℎ2 then
8 Goto line 6 // Skip this collider

9 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑒𝑡 ← 𝑔𝑒𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟 )
10 if G structure is directed then
11 𝑝𝑎𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 ← 𝑔𝑒𝑡_𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟 )
12 else
13 𝑝𝑎𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑒𝑡

14 if 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟 not in 𝑌 − 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 then
15 Goto line 6

16 foreach 𝑐𝑢𝑟_𝑝𝑎𝑟 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑒𝑡 do
17 Remove the edge between 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟 and 𝑐𝑢𝑟_𝑝𝑎𝑟𝑒𝑛𝑡 of𝐺

if ∃𝑍 ⊆ 𝑝𝑎𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 (0 < |𝑍 | < 𝑘_𝑜𝑟𝑑𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ) such
that 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟 ⊥⊥ 𝑐𝑢𝑟_𝑝𝑎𝑟𝑒𝑛𝑡 |𝑍

18 return𝐺

structure 𝐺 ′ is created appending the variables of both graphs i.e.,

𝐺 ′.𝑉 = 𝑔𝑟𝑎𝑝ℎ1.𝑉 + 𝑔𝑟𝑎𝑝ℎ2.𝑉 . We merge another attribute, direc-

tion matrix, 𝑑𝑖𝑟 such that 𝐺 ′.𝑑𝑖𝑟𝑖, 𝑗 = 0 when any of the graphs

has 𝑑𝑖𝑟𝑖, 𝑗 = 0. Otherwise, 𝐺 ′.𝑑𝑖𝑟 takes the same values from both

graphs. Precisely, these conditions can be expressed with an AND

operation in Equation 2.

𝐺.𝑑𝑖𝑟𝑖, 𝑗 = 𝑔𝑟𝑎𝑝ℎ1 .𝑑𝑖𝑟𝑖, 𝑗 ∧ 𝑔𝑟𝑎𝑝ℎ2 .𝑑𝑖𝑟𝑖, 𝑗 (2)

The reason is that there can be some situations when we observe

conflicting relations between variables in the graphs produced from

two partitions. In one partition, two variables may be causally con-

nected, and in another partition, they may be disconnected. In that

case, we take the independent relation, 𝑣𝑖 ⊥⊥ 𝑣 𝑗 (i.e., disconnected)

as the correct one. Because, if two variables 𝑣𝑖 and 𝑣 𝑗 are found

independent in one partition, they are still independent after merg-

ing the sub-problems since the conditioning set also exists in the

merged graph. The causal graph of Figure 2d is the result of merging

two graphs produced in Figure 2c. This resulting graph 𝐺 has 13

edges in total: {(1→ 2), (2→ 3), (3→ 1), (3→ 4), (3→ 5), (4→
2), (5→ 4) (6→ 1), (6→ 2), (6→ 7), (6→ 8), (7→ 2), (7→ 8)}.
In some cases, there exist some undesired false edges resulting

from inefficient decomposition due to d-separation violations. Here,

(2→ 3) and (6→ 2) are false edges according to the true graph of

Figure 2a (see Section 2 for more details).

The Dsep-CP_Refinement (Procedure 2) is called as a sub-

procedure of Algorithm 1 at line 12. Similar to the other algorithms

described in Section 2, the purpose of the refinement procedure in

Dsep-CP is to refine the resulting causal graph constructed from

the sub-problems. This procedure finds a set of selected edges, 𝐸

and eliminates the false ones by executing CI-tests on each of them.

To measure the performance of the refinement procedure, we define

a function 𝐻𝑖𝑡_𝑟𝑎𝑡𝑒 (𝐸) in Equation 3 that indicates the proportion
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(c) Discovered the causal relations (d) The Merge(graph1, graph2) function

(e) The Refinement phase (f) The final causal graph

Figure 2: Illustration of Dsep-CP algorithm. Find-Causal-
Partitions procedure divides the variable set 𝑉 of Figure 2a
into 𝑉1= {1, 2, 6, 7, 8} and 𝑉2 = {1, 2, 3, 4, 5} in Figure 2b.
Since, partition size has reached the size threshold (=5), we
can execute the causal discovery PC algorithm. It discovers
𝑔𝑟𝑎𝑝ℎ1 and 𝑔𝑟𝑎𝑝ℎ2 in Figure 2c. In Figure 2d, the merge func-
tion combines the discovered graphs to form 𝐺 . We observe
that, (6 → 2) and (2 → 3) are false edges. The refinement
phase performs CI-test for 5 (blue) edges={(1,2), (2,3), (4,2),
(6,2), (7,2)} and refines 2 edges in Figure 2e. Figure 2f is the
final graph.

of the number of CI-tests required for refining the false edges with

respect to the total number CI-tests performed on all edges in 𝐸.

𝐻𝑖𝑡_𝑟𝑎𝑡𝑒 (𝐸) = 𝐹 (𝐸)
𝐹 (𝐸) +𝑇 (𝐸) (3)

𝐸∗ = argmax

𝐸⊆𝑉×𝑉
𝐻𝑖𝑡_𝑟𝑎𝑡𝑒 (𝐸) (4)

Here, 𝐹 (𝐸) is the number of CI-tests requited to find the false edges

in 𝐸. This is fixed for a specific causal structure.𝑇 (𝐸) is the number

of CI-tests that are required to detect which edges are not false.

Note that, these CI-tests do not help us to remove undesired edges.

So, they are redundantly performed in a refinement procedure. The

objective is to choose an optimal edge set 𝐸∗ which includes all the

false edges and least number of edges that are not false such that the

function 𝐻𝑖𝑡_𝑟𝑎𝑡𝑒 is maximized in Equation 4. Notably, in the CP

algorithm refinement, CI-tests needs to be performed on the whole

edge set of the causal structure. However, in Dsep-CP, we reduce
the size of 𝐸 and therefore, reduce the number of redundant CI-

tests. This reduction is performed by searching for Y-structure (see
Definition 2.2) and utilizing the colliders in it (correctness proved in

Theorem 4.2). The colliders in the Y-structure must belong to both

sub-graphs (i.e., 𝑔𝑟𝑎𝑝ℎ1, 𝑔𝑟𝑎𝑝ℎ2). It indicates the presence of the

colliders in the variable set𝐶 that was formed during the execution

of the Find-Causal-Partitions procedure (Procedure 1: line 12).

To remove the false edges, theDsep-CP_Refinement takesmerged

graph 𝐺 and the resulting graphs (𝑔𝑟𝑎𝑝ℎ1, 𝑔𝑟𝑎𝑝ℎ2) from the sub-

problems as input. The first step of this procedure is to create

a 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟_𝑠𝑒𝑡 that consists of colliders of the graph. If the re-

sulting causal graph is directed, we find colliders by choosing

such nodes that have at least two incoming edges (Procedure 2:

lines 1-2). In Figure 2e, variables 1, 2, 4 and 7 are colliders, i.e.,

𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟_𝑠𝑒𝑡 = {1, 2, 4, 7}. On the contrary, if the graph is undi-

rected, we first select a node 𝑣𝑘 and a list of its neighbors. Then

for each pair of its neighbors 𝑣𝑖 , 𝑣 𝑗 , we check if 𝑣𝑖 ⊥⊥ 𝑣 𝑗 for any

conditioning set 𝑍 . Now, if they are independent but the consid-

ered node 𝑣𝑘 does not belong to the set 𝑍 , we can admit it as a

collider (Procedure 2: lines 3-5) [25]. For example, in Figure 2e, we

can consider about variable 2 and its neighbors = {1, 3, 4, 6, 7}. Now,
1 ⊥⊥ 7|{6} but 2 ∉ {6}. So, 2 is a collider in this graph.

Next, we iterate through the colliders listed in 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟_𝑠𝑒𝑡 and

remove the suitable false edges (lines 6-17). If a collider does not ex-

ist in both graphs,𝑔𝑟𝑎𝑝ℎ1 and𝑔𝑟𝑎𝑝ℎ2, we skip it (lines 7-8). At line 9,

we save all the neighbors connected to the collider in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑒𝑡 .

After that, if the causal graph is directed, we acquire the list of col-

lider’s parents in the 𝑝𝑎𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 with the help of directed adjacency

matrix 𝐺.𝑑𝑖𝑟 . If not directed, then we use collider’s 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑒𝑡

as the alternative of its 𝑝𝑎𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 . (Procedure 2: lines 10-13). Next,

lines 14-15 checks whether the collider is a descendant of another

collider that (i.e., the ancestor) has at least two of its parents in

different sub-graphs ensuring the Y-structure. For example, in Fig-

ure 2e, we continue with variable 2 since its ancestor 1 (a collider)

has two parents 6 ∈ 𝑔𝑟𝑎𝑝ℎ1 and 3 ∈ 𝑔𝑟𝑎𝑝ℎ2.
After that, we iterate through each 𝑐𝑢𝑟_𝑝𝑎𝑟 in the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑒𝑡

of the collider (lines 16-17). We perform a conditional independence

test between the collider and the 𝑐𝑢𝑟_𝑝𝑎𝑟 where any subset (size

less than pre-specified 𝑘_𝑡ℎ𝑟𝑒𝑠ℎ) of the 𝑝𝑎𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 can be used as

conditioning set. If they are independent, we remove the edge be-

tween the collider and the 𝑐𝑢𝑟_𝑝𝑎𝑟 . Finally, after removing suitable

edges following the conditions, the refined graph𝐺 is returned from

the Dsep-CP-Refinement procedure. The final causal graph is re-

turned from Algorithm 1 at line 13. We can visualize the illustration

of these steps with Figure 2e. Our current 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟_𝑠𝑒𝑡 = {1, 2, 4, 7}.
Now, we exclude those variables that do not belong to both graphs

and are not descendant of any nodes in Y-structures. So, the up-

dated 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟_𝑠𝑒𝑡 is {2}. For collider 2, we execute CI-tests on

{(1, 2), (2, 3), (4, 2), (6, 2), (7, 2)}. Altogether, we examine in total

5 distinct edges and among them two of them are removed i.e.,

6 ⊥⊥ 2|{1, 3, 7} and 2 ⊥⊥ 3|{1, 4, 6}. So, the hit rate = 2/5. On the

other hand, a major drawback in CP algorithm is that, it tests every

edge in the graph for refinement. So, for this graph, CP performs

CI-tests for all 13 edges and refines only 2 of them. This results in

a hit rate of 2/13. After the refinement step depicted in Figure 2e,

we can see the final causal graph in Figure 2f.

4 THEORETICAL ANALYSIS
In this section, we prove the validity of Dsep-CP in detecting the

false edges created due to d-separation violation (see Definition 2.1).

The violation occurs during the partitioning process when we

construct partitions 𝐴, 𝐵,𝐶 from 𝑉 and create two sub-problems
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𝑉1 = 𝐴 ∪𝐶,𝑉2 = 𝐵 ∪𝐶 . Notably, the following Lemma 4.1 builds

the premise for proving the correctness of our refinement approach

in Theorem 4.2. Lemma 4.3 verifies the optimization technique

used in this approach. We also analyze the time complexity of our

algorithm in this section.

Lemma 4.1. If a false edge 𝑥 → 𝑦 created in sub-problem 𝑉1 due
to d-separation violation, can be removed after merging in 𝑉 with
independence test 𝑥 ⊥⊥ 𝑦 |{𝑤𝐴∪𝐶 ,𝑤𝐵} then we can prove that there
exist 𝑥 ∈ 𝐴,𝑦 ∈ 𝐶,𝑤𝐴∪𝐶 ∈ 𝐶 𝑎𝑛𝑑 𝑤𝐵 ∈ 𝐵.

Proof. We know that any pair of variables 𝑥,𝑦 in 𝐴 are d-

separable in 𝑉1 = 𝐴 ∪ 𝐶 if they are non-adjacent [28]. So, the

only d-separation violation can occur when 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐶 . In the

sub-problem𝑉1, 𝑥 ⊥̸⊥ 𝑦 but 𝑥 ⊥⊥ 𝑦 |𝑍 in the merged graph, therefore,

it is obvious that few variables 𝑤𝐵 ⊂ 𝑍 must be from the other

partition 𝐵. So, the rest,𝑤𝐴∪𝐶 ⊂ 𝑍 is from set 𝐴 or 𝐶 . □

Theorem 4.2. Existence of false edge 𝑥 → 𝑦 can be detected
through Y-structures.

Proof. From Lemma 4.1, we can infer that the variable 𝑤𝐵

blocks the causal effect from variable 𝑥 to𝑦 that flows through parti-

tion B. However, we know that 𝑥 ⊥⊥ 𝑤𝐵 |𝑐 ⊂ 𝐶 since 𝑥 ∈ 𝐴,𝑤𝐵 ∈ 𝐵
are divided during the partitioning process. That means, the path

between 𝑥 and 𝑤𝐵 gets open when we condition on a variable

𝑤 ′ ∈ 𝑤𝐴∪𝐶 . This situation occurs only when we condition on vari-

able 𝑤 ′ to block the chain 𝑥 → 𝑤 ′ → · · · → 𝑦 (path 1) and 𝑤 ′

also acts as a collider in the path 𝑥 → 𝑤 ′ ← 𝑤𝐵 → · · · → 𝑦

(path 2). Since,𝑤 ′ is a collider and a false edge 𝑥 → 𝑦 exists, path

1 must be a chain. We cannot replace path 1 with another path

𝑥 → 𝑤 ′ ← · · · → 𝑦, because in that case 𝑥,𝑦 would be indepen-

dent and no false edge would exist in the sub-problem. However, 𝑦

is a descendant of collider𝑤 ′ ∈ 𝐶 and𝑤𝐵 ∈ 𝐵. So, the arrangement

of the variables forms a 𝑌 structure. That concludes that we can

locate the possible false edges by searching for 𝑌 structure without

testing all the edges of the merged graph. As a result, if the PC

algorithm and the CI-tests are both reliable, Dsep-CP returns the

actual causal graph by removing the false edges. □

Lemma 4.3. To check the independence between 𝑥 and 𝑦 in Y-
structure, CI-tests with only conditioning on the parents of the collider
𝑦 is sufficient.

Proof. From Theorem 4.2, we can locate the position of the

variable 𝑦 that may have false edges but not sure about which of

its connected edges is false. So, we have to perform CI-test for each

of its edges. However, in Theorem 4.2, we prove that the direction

of the causal effect is from 𝑥 to 𝑦. Now, a path 𝑦 → · · · → 𝑥 is

not possible because it creates a cycle which violates the acyclicity

assumption. It indicates that the causal effect of 𝑥 passes through

the parents of 𝑦. Therefore, we can perform CI-test conditioning on

only the parent variables of 𝑦 instead of conditioning on parents of

both 𝑥 and 𝑦. □

We now consider time complexity of our algorithm. During the

partitioning procedure, we use a conditioning set of size maximum

𝑘_𝑜𝑟𝑑𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ(= 𝜎). So, in the worst case, we have to calculate the
independence matrix𝑀 (see Definition 2.2) for 𝜎 𝑜𝑟𝑑𝑒𝑟 . For variable

set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} with conditioning set of size 𝑘_𝑜𝑟𝑑𝑒𝑟 =

{0, . . . , 𝜎}, we have to perform 𝑛2 ∗ (
(𝑛
0

)
+
(𝑛
1

)
+ · · · +

(𝑛
𝜎

)
) ≈ 𝑛2 ∗

𝑛 ∗𝑛𝜎 = 𝑛𝜎+3 number of CI-tests to construct independence matrix

𝑀 . During the refinement step, Dsep-CP performs CI-tests only for

those edges that are connected to any collider of the Y-structure and

remain in the middle partition,𝐶 (see Theorem 4.2 for the proof). If

the size of the variable set is |𝑉 | = 𝑛, the size of final selected node

set is,𝑛′ = 𝑛∗𝑑∗𝑝 where,𝑑 is the ratio of the variables in𝐶 to𝑉 and 𝑝

is the ratio of the Y-structure colliders in𝐶 to all variables in𝐶 . Both

of these ratios help lowering 𝑛. Therefore, if the average degree is 𝑒 ,

the required number of CI-tests is (𝑛′ ∗𝑒) ∗ (
(𝑚
0

)
+
(𝑚
1

)
+ · · · +

(𝑚
𝜎

)
) ≈

𝑛 ∗ 𝑚𝜎+1
𝑚𝑎𝑥 (Here, 𝑚𝑚𝑎𝑥 denotes the max number of neighbors).

Finally, the complexity of the PC algorithm for solving sub-problems

is 𝑂 (𝑠𝑘2𝑚𝑎𝑥 ∗ 2𝑘𝑚𝑎𝑥−2) where 𝑠 is the number of sub-problems and

𝑘𝑚𝑎𝑥 is size of the largest of them. So, the total time complexity is

=𝑂 (𝑛𝜎+3 +𝑛 ∗𝑚𝜎+1
𝑚𝑎𝑥 + 𝑠𝑘2𝑚𝑎𝑥 ∗ 2𝑘𝑚𝑎𝑥−2) ∗𝐶𝑇 where𝐶𝑇 is the time

complexity for a single CI-test. However, the time complexity for

solving the complete problem with PC is𝑂 (𝑛22𝑛−2) ∗𝐶𝑇 . Since the
parameter 𝑘𝑚𝑎𝑥 used in Dsep-CP is much lower than 𝑛, Dsep-CP
experiences notably reduced time complexity than PC.

5 EMPIRICAL RESULTS
In this section, we empirically evaluate Dsep-CP compared to three

different state-of-the-art causal learning algorithms in terms of

solution quality and scalability.We run our experiments on different

simulated causal structures and on eight real-world causal networks.

We show that Dsep-CP performs better than CAPA [30], SADA [5]

and CP [28] in terms of scalability while yielding solutions of similar

or better quality. To conduct all these experiments, we run parallel

instances of all the competing algorithms in an Intel Xeon 20 Core

machine with 92GB RAM (code: github.com/softsys4ai/Dsep-CP.)
In all the experiments, we use the linear non-Gaussian model

for sample data generation from any causal structures, according

to [5]. Briefly, for each node 𝑖 in topologically sorted order, we

generate a linear function 𝑣𝑖 =
∑

𝑗𝜖𝑃𝑖 𝑤 𝑗𝑖𝑣 𝑗 + 𝑟𝜀𝑖 and evaluate it

for a number of times called sample size to produce the sample set.

Here 𝑃𝑖 is the set of parents of node 𝑖 ,𝑤 𝑗𝑖 is a weight denoting the

effect of 𝑣 𝑗 on 𝑣𝑖 , 𝜀𝑖 is the non-Gaussian noise term and 𝑟 = 0.3

is a constant value denoting the effect of the noise term on 𝑣𝑖 .

During the generation of these linear functions, for each node 𝑖 ,

we ensure that the arithmetic mean of 𝜀𝑖 is 0 and the variance is

1, as well as

∑
𝑗𝜖𝑃𝑖 𝑤 𝑗𝑖 = 1. Finally, we shift all the values of 𝑣𝑖

by their arithmetic mean and scale them by their variance (i.e.,

normalize the values) such that the new arithmetic mean and the

new variance of these values also become 0 and 1, respectively. We

set the maximum size of conditioning sets for CI-tests to 3. We do

this because most practical causal networks are sparse and this

threshold is sufficient to discover them. Also, size > 3 may produce

type II errors [30]. Moreover, we terminate the causal partitioning

process when the size of the corresponding subset is smaller than

or equal to max(⌊𝑁 /10⌋, 3), where 𝑁 is the total number of nodes.

Finally, each algorithm deploys the PC algorithm to discover causal

graphs from the smallest sub-problems.

In our experiments, we employ the algorithms on the generated

sample data to find causal skeletons (without directions) instead

of finding the causal structures (with directions). We do this based

on the recommendation in [28]. However, we can use V-structure

based methods [3, 4], Additive Noise Models [22], Information Geo-

metric Causal Inference [2], etc. to acquire the directions of causal

skeletons. To report each of the results, we run each algorithm 20

times for a different number of nodes (or samples). In so doing, we
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Figure 3: Results of experiments on simulated structures

consider the arithmetic mean value over all corresponding runs and

95% confidence interval (for error bars). The confidence interval

is based on the standard error of mean and z-value = 1.96. All our

reported results are significant for p-value < 0.05.

5.1 Experiments on Simulated Structures
In this group of experiments, we compare CAPA, SADA, CP and

Dsep-CP on linear non-Gaussian sample data generated by ran-

domly generated causal structures. During the generation of each

node in true causal structure, we select an average of 1.5 previously

generated nodes as the child of the current node, as recommended

in [30]. We first run all the algorithms using different sample sizes

{250, 500, 1000, 1500, 2000}, following [28], with fixed dimension (i.e.,

we choose 50 nodes to save time for all algorithms). The results are

presented in Figures 3a - 3c. For all algorithms, these figures show

comparative precision (i.e., indicator of the amount of redundant

edges), recall (i.e., indicator of the amount of missing edges) and

F1 scores, respectively (see [28] for more detail). It can be observed

from these figures that Dsep-CP produces solutions of similar qual-

ity compared to the benchmarking algorithms for varying sample

sizes on simulated networks. This result is significant because it

illustrates that our algorithm does not sacrifice the solution quality

compared to its competitors.

We also run CAPA, SADA, CP and Dsep-CP using the same

simulated model over varying dimensional networks {25, 50, 100,

200, 400} as done in [30], with fixed (500) sample size. However, the

run-time of CAPA is prohibitively so expensive that we are not able

to run this algorithm for simulated networks of a size larger than

100
4
. The results are presented in Figures 3d - 3f. These figures

show comparative run-time (in seconds), numbers of refining CI-

tests and refining time (in seconds), respectively. We define the

number of CI-tests and execution time required for the refinement

purpose of all the algorithms as the number of refining CI-tests and

refining time, respectively. These parameters help us to investigate

the contribution of our improved refinement phase.

It can be observed from figures 3d - 3f that for higher dimensional

networks, Dsep-CP scales better than the competing algorithms.

To be precise, for 200-400 nodes, Dsep-CP runs 83-92% faster than

SADA and 13-14% faster than CP while reducing both refining time

and refining CI-tests by 98-99% compared to SADA and by 73-75%

compared to CP. This improvement is possible due to its ability to

detect and remove false edges with less number of CI-tests during

its refinement procedure. We also see from these figures that for

higher dimensional networks, CAPA is not scalable. Notably, from

Figures 3a - 3c, we see that the quality of solutions produced by

CAPA is similar to some of the other algorithms. Considering this,

coupled with its scalability issue, we opt not to include CAPA in

the remaining experiments.

5.2 Experiments on Real-World Structures
In this group of experiments, we compare SADA, CP and Dsep-CP
on linear non-Gaussian sample data generated by some real-world

causal structures. We select these causal structures because they

cover a variety of applications, including causal inference (Asia),

protein signaling network (Sachs), waste water treatment (Wa-

ter), disease risk forecasting (Mildew), diagnosis of liver disorders

(Hepar2), printer troubleshooting (Win95pts), intelligent tutoring

system (Andes) and the pedigree of breeding pigs (Pigs). More-

over, we particularly select these networks to cover different sizes

of networks. Table 1 and 2 show the names and some structural

information about each network, in their first three columns.

We run SADA, CP andDsep-CP using different sample sizes {250,

500, 1000, 1500, 2000} for each of the real-world causal structures

following [28]. However, for two very large networks i.e. Andes and

Pigs, we cannot run all algorithms 20 times. Instead, we run all al-

gorithms on Andes and Pigs networks 18 and 5 times, respectively.

The results for Mildew network is presented in Figures 4a - 4c.

These figures show comparative run-times (in seconds), numbers

of refining CI-tests and refining times (in seconds), respectively.

From these figures, we see that Dsep-CP runs faster than the other

algorithms while producing solutions of similar quality for varying

sample sizes for real-world networks. Notably, we observe similari-

ties between the figures of number of refining CI-tests and refining

time (in Figure 3e and 3f, or Figure 4b and 4c) since they are pro-

portionate to each other. Additionally, in Figure 4b - 4c, SADA gets

closer to Dsep-CP with increasing number of samples, but it is

outperformed by Dsep-CP due to its solution quality.

We observe comparable results by running our experiments on

other real-world networks. Due to lack of space, we present these

results for a fixed sample size (i.e. 500) in Table 1 and Table 2.

Table 1 shows the solution quality of the three algorithms in terms

of F1 scores, recall scores and precision scores. From this table, we

again see that Dsep-CP yields solutions of similar quality compared

4
Note that, we are particularly concerned about the larger networks, as the smaller

ones are trivial to handle by any of the algorithms.
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Figure 4: Results of experiments on a real-world causal structure (Mildew)

Table 1: Solution quality of algorithms on the real-world causal structures with sample size = 500 (best values in bold font).

Network Average Maximum F1 score Recall score Precision score

name degree in-degree SADA CP Dsep-CP SADA CP Dsep-CP SADA CP Dsep-CP

Asia 2 2 0.620294 0.910476 0.908452 0.600000 0.837500 0.843750 0.644048 1.000000 0.987500

Sachs 3.09 3 0.985714 0.967023 0.968538 0.997059 0.947059 0.950000 0.975000 0.988235 0.988235
Water 4.12 5 0.425022 0.766123 0.787150 0.337879 0.635606 0.679545 0.576877 0.964537 0.936064

Mildew 2.63 3 0.641518 0.839170 0.878156 0.660870 0.740217 0.817391 0.624779 0.969078 0.949457

Hepar2 3.51 6 0.507614 0.580315 0.637615 0.426016 0.479675 0.560976 0.629615 0.735451 0.739092
Win95pts 2.95 7 0.533644 0.862308 0.898965 0.463839 0.785714 0.856696 0.631409 0.956089 0.946412

Andes 3.03 6 0.354775 0.917100 0.929056 0.304241 0.900066 0.943294 0.427975 0.934940 0.915381

Pigs 2.68 2 0.692010 0.893390 0.911480 0.785811 0.855405 0.928716 0.619149 0.935103 0.895006

Table 2: Scalability of algorithms on the real-world causal structures with sample size = 500 (best values in bold font).

Network Number Number Run-time (s) Number of refining CI-tests Refining time (s)

name of nodes of arcs SADA CP Dsep-CP SADA CP Dsep-CP SADA CP Dsep-CP

Asia 8 8 0.45 0.26 0.23 38.45 36.80 10.60 0.04 0.04 0.01
Sachs 11 17 1.41 1.20 0.84 98.00 343.15 8.00 0.10 0.37 0.01
Water 32 66 30.99 27.43 20.21 1787.85 8262.15 1660.80 1.93 9.02 1.79
Mildew 35 46 27.90 26.73 22.90 2512.90 5013.00 1485.30 2.75 5.46 1.60
Hepar2 70 123 142.12 146.85 125.23 4685.05 25247.75 5526.60 5.23 27.88 6.06

Win95pts 76 112 99.20 129.49 97.90 8968.60 36720.70 7597.15 9.83 40.05 8.21
Andes 223 338 3446.13 2465.09 2185.73 87477.50 294446.89 42588.89 102.28 337.62 48.43
Pigs 441 592 17952.85 8729.67 7560.66 1120269.20 1166059.60 223835.60 1338.21 1354.75 258.20

to SADA and CP. Table 2 shows the performance of the three

algorithms in terms of total run-time, numbers of refining CI-tests

and refining times. We also observe from the table that for very

large real-world networks (200+ nodes), Dsep-CP runs around 37-

58% faster than SADA and around 11-13% faster than CP while

reducing both refining time and CI-tests by 51-81% compared to

SADA and by 81-86% compared to CP. So, we can conclude that

Dsep-CP is more applicable to causal discovery in high-dimensional

cases than the state-of-the-art algorithms.

6 CONCLUSIONS AND FUTUREWORK
This paper introduces a recursive causal structure learning algo-

rithm, Dsep-CP, to support effective and efficient causal discovery

for large sets of variables. To incorporate our recursive method,

we present an improved refinement mechanism that can reduce

the algorithm’s execution time without compromising the solu-

tion quality. In our theoretical section, we prove the correctness of

Dsep-CP. Finally, our extensive empirical observation illustrates

that Dsep-CP outperforms the state-of-the-art algorithms in both

synthetic and real-world structures. To be precise,Dsep-CP runs up

to 92% faster than SADA and up to 14% faster than the CP algorithm.

In the future, we intend to investigate whether this algorithm can

be improved for faster causality discovery while increasing the re-

call value (i.e., recovering the falsely removed edges) by analyzing

the characteristics of CI-tests.
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