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Abstract. Efficient and responsible management of water
resources relies on accurate streamflow records. However,
many watersheds are ungaged, limiting the ability to assess
and understand local hydrology. Several tools have been de-
veloped to alleviate this data scarcity, but few provide con-
tinuous daily streamflow records at individual streamgages
within an entire region. Building on the history of hydro-
logic mapping, ordinary kriging was extended to predict
daily streamflow time series on a regional basis. Pooling
parameters to estimate a single, time-invariant characteriza-
tion of spatial semivariance structure is shown to produce
accurate reproduction of streamflow. This approach is con-
trasted with a time-varying series of variograms, representing
the temporal evolution and behavior of the spatial semivari-
ance structure. Furthermore, the ordinary kriging approach is
shown to produce more accurate time series than more com-
mon, single-index hydrologic transfers. A comparison be-
tween topological kriging and ordinary kriging is less defini-
tive, showing the ordinary kriging approach to be signifi-
cantly inferior in terms of Nash–Sutcliffe model efficiencies
while maintaining significantly superior performance mea-
sured by root mean squared errors. Given the similarity of
performance and the computational efficiency of ordinary
kriging, it is concluded that ordinary kriging is useful for
first-order approximation of daily streamflow time series in
ungaged watersheds.

1 Introduction

One of the most fundamental problems confronting the fields
of hydrology and water resources management is the predic-
tion of hydrologic responses in ungaged basins (PUB) (Siva-

palan et al., 2003). While streamgages have long provided
point measurements of the daily time series of streamflow,
there are many regions of the globe that remain sparsely
gaged, and thus, there are many completely ungaged loca-
tions (for an example in the United States, see Kiang et al.,
2013). Building on the long history of hand-drawn maps
showing the spatial variation of hydrologic and climatic vari-
ables, geostatistical techniques are proposed as a means of
leveraging the information content of streamgage networks
to produce spatially and temporally continuous predictions of
historical daily streamflow. The primary goal of this work is
to demonstrate that simple geostatistical techniques can pro-
vide predictions of daily streamflow time series at ungaged
sites that are superior to those produced by the single-index,
transfer-based techniques. It is also hypothesized that simple
geostatistical techniques produce estimates nearly as good as
those produced by more advanced geostatistical tools.

Techniques for the reproduction of historical records of
streamflow largely fall into two main categories: process-
based models and transfer-based, statistical techniques. This
work is concerned with the latter, which rely on transfer-
ring information from an index site or set of index sites to
an ungaged site by the means of a statistical relationship.
These techniques include ungaged applications of record re-
construction techniques like the drainage-area ratio method
(see Asquith et al., 2006), the maintenance of variance ex-
tension (Hirsch, 1979, 1982), and nonlinear spatial interpo-
lation using flow duration curves (Fennessey, 1994; Hughes
and Smakhtin, 1996). A portion of this work is dedicated to
contextualizing geostatistical techniques within these tradi-
tional approaches.

The prediction of daily streamflow records in ungaged
basins, especially for statistical transfer methods, has largely
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been dominated by one-to-one transfers from an index
streamgage to an ungaged site (as in Archfield and Vogel,
2010; Farmer et al., 2014). In some cases, information from
a few neighboring streamgages has been blended to predict
values at an ungaged site (Andréassian et al., 2012; Shu and
Ouarda, 2012). Since not all streamgages are used to pro-
duce predictions, these approaches neglect some of the in-
formation content of the streamgage network. Alternatively,
regional hydrologic methods have sought to incorporate in-
formation from all the gaged sites to produce regression
equations (Vogel et al., 1999) or contour maps (Sauquet,
2006) describing the spatial variation of hydrologic vari-
ables of interest. It is hypothesized here that predictions of
daily streamflow time series can be improved by incorpo-
rating regional information beyond the information available
at single-index streamgages and that, building on previous
hydrologic time-series analysis (Solow and Gorelick, 1986;
Skøien and Blöschl, 2007), this can be achieved by utilizing
the geostatistical method known as kriging.

Geostatistical tools have been used to develop regional
maps of measured and predicted hydrologic and climatic
variables for decades. The U.S. Geological Survey has devel-
oped contour or isoline maps of runoff in the United States as
far back as 1894 (Langbein, 1949). Langbein (1949) provides
a summary of early hydrologic mapping efforts in the United
States and elsewhere dating back to 1873. Such efforts pro-
duced largely hand-drawn maps of runoff, precipitation, and
evapotranspiration that relied heavily on expert judgment
rather than algorithmic geostatistics (Langbein, 1949; Busby,
1963). As researchers gained access to higher-powered com-
puters, efforts were made to automate the development of
maps of mean annual runoff (Langbein and Slack, 1982).
In both Europe and the United States, maps of mean annual
runoff generated by geostatistical techniques were found to
be as accurate as their hand-drawn predecessors (Rochelle
et al., 1989; Domokos and Sass, 1990; Bishop and Church,
1992, 1995). Mapping techniques have also been used to
explore other streamflow statistics (Gottschalk et al., 2006;
Archfield et al., 2013) and to assess the accuracy and perfor-
mance of hydrologic models (Sauquet and Leblois, 2001).

Geostatistical maps of runoff and other variables are usu-
ally based on kriging, a technique developed in the mining
industry (as described by Skøien et al., 2006). In kriging,
the predicted variable is considered to be spatially continu-
ous and predictions are based only on geospatial locations.
A method known as co-kriging can also be used to intro-
duce variables beyond geospatial locations into the predic-
tion. The use of geospatial locations is generally valid for
variables like precipitation and temperature, but runoff is
different. Streamflows are organized hierarchically along a
stream network and typically conserve mass (Sauquet et al.,
2000; Sauquet, 2006; Skøien and Blöschl, 2007). For this
reason, topological kriging (top-kriging) was developed to
incorporate the river network and its geographic extent into
kriging estimates (Bishop et al., 1998; Sauquet et al., 2000;

Sauquet, 2006; Skøien et al., 2006). In studies exploring
the prediction of mean annual runoff (Skøien et al., 2006),
percentiles, and other indices of the streamflow distribution
(Castiglioni et al., 2011; Archfield et al., 2013) and stream-
flow signatures (Viglione et al., 2013), top-kriging has been
shown to outperform many other techniques, including ordi-
nary kriging. However, ordinary kriging is better understood
than top-kriging and, according to Sauquet (2006), may pro-
vide a competitive first-order approximation.

Despite its wide application for the prediction of stream-
flow statistics, kriging, top-kriging, and mapping in general
have not widely been used to predict time series of stream-
flow and related variables. Despite the need for sub-monthly
predictions of streamflow statistics, the prediction of sub-
monthly variables was originally thought to be computation-
ally prohibitive (Arnell, 1995). Previous work (Solow and
Gorelick, 1986) showed kriging could be used for monthly
time-series prediction. With advances in computer technol-
ogy, Skøien and Blöschl (2007) applied top-kriging to the
prediction of hourly time series of runoff in Austria. Though
they did not compare their techniques to ordinary kriging,
they found that the embedded network structure of top-
kriging produces good estimates of the runoff time series, but
that additional spatial and temporal improvements, such as
the inclusion of complex river routing and lag times, yielded
diminishing returns. Aggregating their hourly model to daily
estimates, they showed that top-kriging was superior to a de-
terministic rainfall–runoff model. Because it has not been
previously considered, it is important to explore and contrast
the potential of ordinary kriging and top-kriging to predict
streamflow time series in ungauged basins.

This work explores the potential of ordinary kriging to
produce spatially and temporally continuous predictions of
historical daily streamflow in the southeastern region of the
United States. Streamflow is a volumetric quantity that typi-
cally accumulates along a river network; as it is not reason-
able to consider the regionalization of a volumetric quantity,
a transformation is needed. This has been the rationale for the
prediction of unit runoff values (Skøien and Blöschl, 2007),
where unit runoff is defined as the ratio of streamflow to
drainage area. Here, kriging is used to predict a time series
of the same variable, as it is both spatially continuous and
can be back-transformed to produce volumetric streamflow
predictions.

Spatial interpolation driven by semivariance – kriging –
among daily streamflows is not new. Skøien and Blöschl
(2007) used a single, temporally aggregated representation
of spatial correlation to predict all daily values. Similarly,
Archfield and Vogel (2010), in their map correlation method,
leverage the spatial correlation structure of hydrographs in
streamgage networks to identify ideal index streamgages.
This work presents a different approach, exploring the tem-
poral evolution of daily variograms and seeking to character-
ize the spatial correlation of daily streamflows in a region.
This work evaluates the ability to estimate daily streamflow
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series at ungaged sites. Using a leave-one-out validation pro-
cedure, the predicted time series of daily flows at gaged-but-
omitted sites are assessed across a range of goodness of fit
metrics. Furthermore, the temporal evolution and stationar-
ity of the spatial semivariance structure of daily streamflow
are explored through time-series analysis. It is shown that
ordinary kriging of the logarithms of unit runoff can pro-
vide accurate streamflow predictions at ungaged sites, signif-
icantly outperforming more traditional approaches that em-
ploy a single-index streamgage for transfer. The work pre-
sented in this paper is an extension of the material presented
by Farmer (2015).

2 Data and methodology

2.1 Study area and streamflow data

Using a data set identical to that used by Farmer et al. (2014),
this analysis was conducted with data from 182 stream-
gages in the southeastern United States. Basin characteris-
tics are summarized in Table 1 of Farmer et al. (2014), but
drainage areas averaged 979 km2. The range of drainage ar-
eas was from 14 to 38 849 km2, with a median of 417 km2

and first and third quartiles of 150 and 886 km2. Because the
basins are free of major regulation or development, all of the
streamgages were considered near reference quality accord-
ing to their designation in the GAGES-II classification (Fal-
cone, 2011) or their local approval and utilization in previ-
ous flood-frequency studies (Gotvald et al., 2009). The two
sources provide a more thorough description of their criteria.
Figure 1 shows the geographic extent of the study area and
streamgage locations, which are defined by the Albers pro-
jection, in meters, of the latitude and longitude of basin outlet
with respect to the North American Datum of 1983. As de-
scribed by Farmer et al. (2014), the 355 000 km2 study area,
covering portions of seven Southern states, is warm, humid,
temperate, and nearly 50 % forested. Only 9 % of the land-
scape is categorized as developed, while 18 % is occupied by
agricultural uses.

Daily streamflow records were obtained from the U.S. Ge-
ological Survey National Water Information System (http:
//waterdata.usgs.gov) for the period from 1 October 1980
through 30 September 2010. As documented by Farmer et al.
(2014), very small portions of the streamflow records – for
periods ranging from 1 to 33 days long – were reconstructed
using standard techniques. To avoid the complications of
zero values, zero-valued streamflows were assigned a value
of 0.00003 m3 s−1, a value smaller than the smallest stream-
flow reported by the U.S. Geological Survey. Farmer et al.
(2014) and Farmer (2015) found that this substitution had
only a minimal effect on the interpretation of results. A full
description of their data set, which was used without ad-
ditional modification, is presented by Farmer et al. (2014).
Across the 182 streamgages considered, there were 1.6 mil-
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Figure 1. Map of the study area showing the locations of the 182
streamgages used for analysis and validation.

lion observations of daily streamflow. Contained at only 7
of the 182 sites, 5435 observations were zero, an occurrence
of only 0.3 %. If zero values were more prevalent, they may
have had a substantial impact on the results presented herein.

2.2 Ordinary kriging

Ordinary kriging is a geostatistical tool by which the dis-
tance between two points is used to predict the semivariance
of some dependent variable. The inter-site semivariances of
data from a measured network can be used to create a system
of linear equations predicting the semivariance at an unmea-
sured site to be a linear sum of the semivariance between
all observed sites. For an unmonitored site, this allows for
the derivation of linear weights between the unmonitored site
and all monitored sites in the network. If all the assumptions
of ordinary kriging are valid, this tool provides the best linear
unbiased estimate.

Journel and Huijbregts (1978), Isaaks and Srivastava
(1989), Cressie (1993), Skøien et al. (2006), Archfield and
Vogel (2010) and many others provide an elegant and sim-
ple description of the mathematics of kriging; only a sum-
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mary of the general principles is provided here. Consider
a network of measurements z(xi) for i = [1, . . .,n], where
xi is the location of the measurement. Ordinary kriging al-
lows for the prediction of an unmeasured value at location
x0, z(x0), by calculating a weighted sum of the observations
ẑ(x0)=

∑n
i=1λi,0z(xi). The kriging weights, λi,0, for a par-

ticular ungaged location are determined by solving the linear
system

γ λ0 = γ 0 (1)

for the vector of weights, λ0, where

γ ≡


γi,j =

1
2

(
z(xi)− z(xj )

)2 for i,j ≤ n

γi,n+1 = γn+1,j = 1
γn+1,n+1 = 0

(2)

λ0 ≡

{
λ0,i = λi,0 for i ≤ n

λ0,n+1 = µ
(3)

and

γ 0 ≡

{
γ0,i =

1
2
(z(xi)− z(x0))

2 for i ≤ n

γ0,n+1 = 1
(4)

This system ensures that all the weights sum to one and esti-
mates the LaGrange multiplier,µ, to control for the unknown
mean of z.

The single realization of γ that is produced from the sam-
ple observations of z cannot be considered to represent the
underlying system. The sample may produce a matrix that
is singular or not positive definite, conditions required for
solution of the system. Furthermore, the elements of γ 0, by
nature, are unobservable as the value of the dependent vari-
able at the ungauged location, z(x0), is what is being esti-
mated. However, with additional assumptions of stationarity,
the semivariance can be modeled as a function of separation
distance. Several classical models are available to ensure pos-
itive definiteness. These models are parameterized by cali-
bration to the empirical variogram of observed semivariance
as a function of distance. Once a variogram model is selected,
the system becomes

γ̂ λ0 = γ̂ 0, (5)

which is solvable. The resultant weights can then be used to
estimate the dependent variable at the ungauged site.

Ordinary kriging of streamflow time series builds off of
previous hydrologic applications to predict streamflow statis-
tics to produce a method for handling temporal variation
along with spatial variation. Based on initial exploration by
Farmer (2015), the spherical variogram model was selected
for the application presented here. In formal terms, the semi-
variance is represented as

γ (h)=
1
2
E
[
(z(x+h)− z(x))2

]
, (6)

where x is a geospatial location and h is a separation
distance. The spherical variogram model approximates the
semivariance as

γ̂ (h)=


(
σ 2
− τ 2)( 3h

2φ
−
h3

2φ3

)
+ τ 2 if h≤ φ,

σ 2 if h > φ,

(7)

where σ 2 is the partial sill, φ is the range and τ 2 is the nugget
variance. Alternative models are available, but Farmer (2015)
and initial testing done here found the results to be gen-
erally insensitive to the variogram model type. The spheri-
cal model has been used previously for hydrologic phenom-
ena (Archfield and Vogel, 2010). Here, this model was de-
veloped with a dependent variable as the logarithm of the
measured streamflow per unit drainage area, z= ln Q

A
. Previ-

ous work (Farmer, 2015) found that this dependent variable
was the most stable predictand. Even though this logarithmic
transformation was used, several performance metrics were
assessed by considering exponentiation as the simple back
transformation without an attempt at bias correction. Finally,
in building the empirical variogram, the semivariances were
stratified into ten equal-interval groups based on the inter-site
distances ranging from zero to the maximum inter-site dis-
tance of 920 km, as suggested by Archfield and Vogel (2010).
The solution of this kriging system was implemented using
the geoR package (Ribeiro and Diggle, 2015).

The model of ordinary kriging presented above assumes a
global neighborhood. That is, all observations are assigned a
weight for the prediction of the ungaged site. In other hydro-
logic applications (Pugliese et al., 2014), some advantages
have been gained by restricting the number of sites permitted
to influence predictions. The neighborhood can be restricted
to include only the k nearest neighbors. This approach was
considered, but results were found to be generally insensitive
to the number of neighbors. As a result, the global neighbor-
hood was used, allowing the kriging algorithm to minimize
the weights of far-distant sites if they are unimportant for es-
timation.

While there are many considerations in the development
of a kriging system, this work is mainly focused on kriging
time series and the temporal behavior of kriging parameters.
As such, the temporal evolution and behavior of variogram
parameters was of most interest. As discussed above, there
are many considerations in the development of a kriging sys-
tem. Several were explored, including the binning of empir-
ical variograms, the number of contributing neighbors, and
the maximum range of the variogram, but none were found to
have only a marginal impact on the resulting estimates. Ac-
cordingly, the remainder of this paper considers the unique
problems of temporal calibration and prediction.

2.3 Variogram parameters

The variogram can be characterized by three parameters: the
nugget value, partial sill, and the range. The nugget value is
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the semivariance of collocated points or, as it is sometimes
interpreted, the measurement error, the partial sill represents
the regional semivariance, and the range represents the sep-
aration distance beyond which the inter-site semivariance is
best approximated by the regional semivariance. In some pre-
vious hydrologic applications of kriging, the semivariance,
which is modeled by the semivariogram, has been assumed
to be temporally constant, and thus only a single variogram
model need be fit. This is clearly not the case for the recon-
struction of historical time series of streamflow. It is therefore
important to consider the temporal evolution, or lack thereof,
in the spatial semivariance structure, as characterized by var-
iogram parameters, of daily streamflows.

The initial development by Farmer (2015) modeled each
day of the streamflow record independently with unique var-
iogram parameters. While this proved useful, it is not intu-
itive because a basic understanding of hydrology suggests a
strong temporal dependence across daily streamflows. With
the temporal dependence of streamflows, it seems reasonable
to consider some corresponding temporal dependence in var-
iogram parameters. As an end-member along the continuum
of parameter smoothing, Farmer (2015) showed that assum-
ing temporal stationarity in variogram parameters resulted in
barely any degradation of performance: the average of the
daily variogram parameters, which are not identical to the
pooled variogram parameters (described below), performed
nearly as well as the independent daily models.

This work considers the temporal evolution of variogram
parameters more formally. The streamflow models based on
independent daily variogram models are contrasted with a
pooled variogram model. The latter model requires the fitting
of only a single variogram, while the former requires the fit-
ting of as many variograms as there are days to be simulated.
If the parameters of the semivariogram can be reasonably as-
sumed to be constant, then the computational efficiency of
the pooled model is highly advantageous for operational pre-
diction.

For a daily variogram, the semivariances for each site pair
are plotted against distance, binned, and averaged to fit a
variogram model; the process is repeated independently for
each day. The pooled variogram is described by Gräler et al.
(2011). For pooled variograms, the semivariances calculated
on each day are pooled into a single empirical variogram
to which the variogram model is calibrated. The semivari-
ance is calculated spatially, as described above, but semivari-
ances between sites are not computed across time steps. That
is, cov(z(xi,t1),z(xj,t1)) and cov(z(xi,t2),z(xj,t2)) are both
considered and pooled into the empirical variogram cloud,
but cov(z(xi,t1),z(xj,t2)), where the time t1 6= t2, is never
considered. In Sect. 2.4 and elsewhere, Gräler et al. (2011)
describe and contrast the performance of the pooled method
and the averaging method. The average model treats each
empirical variogram equally, while the pooled model weights
each bin by the number of pairs in each bin of the variogram
cloud. The similarities identified by Gräler et al. (2011) sug-

gest that the averaged model considered by Farmer (2015)
can be represented much more efficiently by the pooled
model. However, averaging variogram parameters will not
necessarily lead to the same model as fitting a model to aver-
aged or pooled empirical variograms. If all streamgages are
operational on all days, then the average model is identical to
the pooled model.

2.4 Relative performance

In addition to contrasting temporally independent variograms
and pooled variograms, this paper also contrasts these meth-
ods with two standard, transfer-based statistical tools: the
drainage-area ratio (DAR) (Asquith et al., 2006) method and
nonlinear spatial interpolation using flow duration curves
(QPPQ) (Hughes and Smakhtin, 1996). The former scales
index streamflows by drainage areas, while the latter scales
the entire flow duration curve of an index site. Both of these
methods were implemented following the methodology of
Farmer et al. (2014). The time-series prediction methods
were assessed by computing the Nash–Sutcliffe model ef-
ficiency (Nash and Sutcliffe, 1970) of the streamflow val-
ues and the logarithms of streamflow values. Nash–Sutcliffe
model efficiencies range from one to negative infinity; values
of one indicate a perfect model fit, while lower values indi-
cate an increasingly poor fit; a value of zero indicates that
the estimate is no better than a regional average. Pearson cor-
relations between observed and simulated streamflows, root
mean squared errors and average biases were also consid-
ered.

Previous work (Pebesma et al., 2005; Gupta et al., 2009;
Gupta and Kling, 2011) has shown the dependencies between
Pearson correlation, root mean squared errors and the Nash–
Sutcliffe model efficiency. Though inter-related, all metrics
are included here to highlight the components of the model
efficiency and to more deeply appreciate the strengths and
weaknesses of each method. Additionally, Gupta et al. (2009)
showed that the skewed distribution of daily streamflow may
substantially alter the interpretation of the Nash–Sutcliffe
model efficiency. For this reason, it is important to under-
stand how the component parts of the Nash–Sutcliffe model
efficiency, namely the Pearson correlations and root mean
squared error, vary independently. Even observing any dis-
agreements across metrics, the Nash–Sutcliffe model effi-
ciency, by removing some of the skewness of daily stream-
flows, may provide a more reliably interpretable metric.

As is described below, the kriging methods were imple-
mented to predict a logarithmic transformation of stream-
flow. With the exception of the Nash–Sutcliffe model effi-
ciency of the logarithms themselves, all other performance
metrics were computed on back-transformed streamflows.
No bias correction factor was developed or applied. The de-
velopment of a bias correction factor that can be applied to
ungauged basins is beyond the scope of this work but is es-
sential to future explorations.
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Figure 2. An example of the observed and simulated streamflows for a site and year selected to represent the median performance. The
results are from site 02401390, with a drainage area of 365 km2. Streamflow values are reported in cubic meters per second (cms).

Using the same metrics, ordinary kriging was contrasted
with an application of top-kriging similar to that defined by
Skøien and Blöschl (2007). Top-kriging was applied using
the rtop package (Skøien, 2015), which uses spatial regu-
larization rather than the spatio-temporal regularization pre-
sented by Skøien and Blöschl (2007). The differences can
be assumed to be negligible for this application. Regardless,
here, top-kriging was applied with a minimum spatial resolu-
tion of 100 points per basin and a maximum of five neighbor-
ing basins per prediction. Furthermore, the daily semivari-
ances were pooled to create a pooled top-kriging model of the
spatial semivariance structure. This comparison of ordinary
kriging and top-kriging serves as only an initial comparison.
It does not address deeper levels of discrepancy between the
two methods, a topic that, given the similarity of results, may
warrant further research. This comparison also does not ex-
plicitly address questions of computational efficiency, a dif-
ference in which may favor one method over another.

The implementation of top-kriging presented here is not
intended to represent the ultimate implementation of top-
kriging for this region. Ordinary kriging is an extreme of
top-kriging in that top-kriging allows for a variable spatial
support for each observation, while ordinary kriging provides
only one regularization point for each observation. With this
in mind, this implementation of top-kriging is meant to re-
flect the improvements achieved by allowing for a further
discretized spatial support. Certainly, the improvements of
either method may be improved by considering a more robust
exploration of the underlying variogram model, the number
of contributing neighbors or the level of spatial discretiza-

tion. However, this was left for future research, allowing this
work to focus only on the effects of additional spatial dis-
cretization.

3 Results and discussion

3.1 Optimal variogram parameters

In a leave-one-out validation procedure, both the daily and
pooled parameter sets reproduce historical daily streamflow
records quite well. Table 1 summarizes several common per-
formance metrics calculated on the complete water years of
observed daily streamflow. (A water year is the 12-month
period 1 October through 30 September designated by the
calendar year in which it ends.) For all metrics, the perfor-
mances are very similar, but the pooled parameter set pro-
duced slightly better results. A two-sided Wilcoxon signed-
rank test for each performance metric showed this differ-
ence to be significant in all cases except median bias. Fig-
ure 2 shows a 1-year example of the predicted and observed
streamflows for a single site; this site and year were se-
lected because the results are representative of median per-
formance. This example highlights the similarity between es-
timates made with the daily and pooled variograms, but also
demonstrates the poor performance during low-flow periods.
This is interesting, as some recessions are reproduced well
(January through March), while others (May through June)
are reproduced poorly. General biases will be discussed be-
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Figure 3. Median cumulative distribution of absolute percent errors in daily estimates for streamflow estimated from both daily and pooled
variogram parameter sets.

low, but further research is needed to more accurately under-
stand bias in particular streamflow regimes.

In addition to having similar point performance metrics,
the daily and pooled variograms produced nearly identical
distributions of absolute percent errors (Fig. 3). This sum-
mary plot shows the cross-site median cumulative distribu-
tion of absolute percent errors. Both daily and pooled vari-
ograms perform well, with more than half of the estimates
within 30 % of the observed streamflows. Though the dif-
ferences between the curves from the pooled and daily var-
iograms are not significant, the pooled variogram produces
estimates with slightly fewer large percent errors.

Figure 4, binning with a width of one percentage point,
plots the cross-site median percent error against observed
non-exceedance probability. The result shows a concerning
limitation of the kriging approach. From Table 1, both sets
of estimates produced only a slight upward bias overall –
4.5 % for the daily variograms and 2.5 % for the pooled vari-
ogram – but the overall statistics do not capture the poor per-
formance in the tails of the streamflow distribution (Fig. 4).
Estimates appear to be nearly unbiased, plus or minus 5 %,
for streamflows that are not exceeded between 5 and 76 %
of the time. For low streamflows, those not exceeded less
than 5 % of the time, both variogram methods consistently
overestimate streamflows with percent errors between 5 and
15 %. For high streamflows, those not exceeded more than
76 % of the time, streamflows are actually underestimated;
the underestimate approaches −40 % for some of the great-
est streamflows. These substantial biases in the extremes are
a symptom of modeling smoothing that results from attempt-

ing to approach unbiased central tendencies when compared
with observations.

Finally, with the use of time-varying and time-invariant
variograms, it is useful to consider how well the temporal
structure of the daily streamflows is reproduced. Figure 5
summarizes the median observed autocorrelation of stream-
flows and how well it is reproduced. Again, both variogram
methods produce similar results, both slightly overestimating
the magnitude of autocorrelation. The differences, however,
are small. Because of the dependent structure of daily time
series, it is not surprising that simulated results would pro-
duce some aberrant residual correlation at long time lags. In
general, the reproduction of the autocorrelation structure sug-
gests that the temporal structure of the streamflow time series
is reproduced tolerably well. Not surprisingly, the daily pa-
rameter set, which varies in time, more accurately reproduces
the temporal structure. Interestingly, the difference is not as
large as might be expected.

3.2 Temporal evolution of variogram parameters

Because the pooled variogram parameters produce results
fairly similar to the daily parameter sets, it is important
to understand how the pooled parameters relate to their
daily counterparts and how the daily counterparts evolved
over time. Figure 6, described below, illustrates the tem-
poral structure and seasonal nature of the daily parameters
and contextualizes the pooled parameter sets. For each pa-
rameter, its 31-day moving median is presented in lieu of
the widely variable daily values. The moving-median val-
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ues are presented because the daily values exhibit dramatic
extremes and fluctuations, making graphical display unintel-
ligible. The temporal variability in variogram parameters is a
reflection of the temporal and regional variability in stream-
flow and the factors producing streamflow.

As mentioned previously, the nugget value can be thought
of as the semivariance of nearly co-located points. In the
context of basins and daily parameters, the nugget on each
day, because the semivariance of co-located points is akin
to a variance, is an approximation of the average of all at-
site variances for that day. The 31-day moving median of the
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Figure 6. The 31-day moving median of daily variogram parameters and the ratio of nugget to sill. (NOTE: the vertical axis of the range is
scaled by a factor of 106.)

nugget time series suggests that there is a substantial seasonal
trend. The nugget, or regional variability, and the variabil-
ity thereof, are fairly constant from the beginning of January
through May and rise to a peak in September and October.
The pooled parameter, which can be thought of as a time-
averaged variability of an average site, is closer to the peak of
the moving-median nugget than to the lower stable January–
May values. The pooled parameter is greater than the median
of the daily values. This suggests that, for much of the year,
the pooled nugget, being greater than the daily values, in-
troduces more daily variability than would be expected. As
measurement uncertainty may fluctuate, the fluctuations in
the nugget may be tied to fluctuations in the magnitude of
streamflow.

The partial sill, a limit on the regional semivariance, shows
a much weaker seasonal signal. The 31-day moving me-
dian shows a nearly binary structure of two values. The par-
tial sill is small from January through March, transitions
quickly in April, remains high through October and then re-
turns towards January values. Again, the pooled parameter
plots closer to the higher plateau of the moving median. This
means that for parts of the year, the pooled parameter as-
sumes the more distant neighbors hold appreciably less infor-
mation than they really contain. For a smaller portion of the

year, the pooled parameter, being greater than the daily val-
ues, assumes the more-distant neighbors hold slightly more
information than they really do. However, the pooled partial
sill remains within the inter-decile range of the daily param-
eter values for the majority of the year. As with the nugget,
fluctuations in the sill may be tied to fluctuations in the mag-
nitude of streamflow.

The range parameter shows the least complex temporal
structure. The 31-day moving median shows that the range
varies over an order of magnitude, and year-to-year variabil-
ity, as shown by the inter-decile range, is consistently large.
The year-to-year variability is more pronounced than the sea-
son trends. Overall, there is a slight depression in the sum-
mer months, which indicates decreased regional homogene-
ity and more heterogeneity in that the regional semivariance
(partial sill) is reached at shorter distances. The pooled pa-
rameter is quite similar in magnitude to the median daily
value and is almost completely contained by the daily inter-
decile ranges.

It is difficult to consider the effects on any one parameter
in isolation. The final row of Fig. 6 shows the temporal vari-
ability in the ratio of nugget to sill. January through April, the
nugget accounts for 20–30 % of the sill, dipping to only 5 %
in mid-May and plateauing at about 15 % of the sill through
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the rest of the year. The averaged parameters place the nugget
at only 10 % of the sill, while the pooled parameter more
faithfully represents the 15 % value seen for the latter half of
the year. This ratio may be closely tied to measurement un-
certainty. Low streamflows, which often occur in the winter
months, are generally more difficult to measure and may re-
sult in the nugget value accounting for more of the regional
semivariance. The dip in the proportion of the sill accounted
for by the nugget in May may result from higher streamflows.
Similarly the proportion of 15 % may be emblematic of aver-
age measurement uncertainty. Further research is needed to
explore this conjecture.

It is clear that there is substantial temporal structure and
seasonal variation in the spatial semivariance structure of
daily streamflows. Given the strong temporal dependence
and seasonality of daily streamflows, this is not surprising.
As with streamflow, it is extremely difficult to identify causal
factors resulting in these patterns. Though not explicitly ex-
plored here, it is probable that the temporal structure is driven
by climatic processes. The greater nugget value in the lat-
ter half of the year indicates increased streamflow variability,
year to year, during the late fall and early winter. The partial
sill and range interact strongly with each other, one being the
threshold and the other being a sort of “time to threshold”.
The decreased summer range suggests that climatic response
is more homogeneous in summer months, while the winter
and spring rises are emblematic of increased regional hetero-
geneity (i.e., more localized climatic drivers of streamflow).
The partial sill demonstrates an increased regional variabil-
ity, beyond the range, from late spring through fall; otherwise
the sill is smaller, suggesting that, even beyond the range,
variability is lower across the region in winter months.

3.3 Relative performance

In presenting a new model for daily streamflow reconstruc-
tions, it is useful to contextualize performance by comparing
against previous methods. To this end, two common statisti-
cal, transfer-based tools for the prediction of daily time se-
ries are considered: the drainage-area ratio (DAR) (Asquith
et al., 2006) method and nonlinear spatial interpolation us-
ing flow duration curves (QPPQ) (Hughes and Smakhtin,
1996). Both are applied in a leave-one-out cross-validation
with index sites defined by spatial proximity. The methods
and regional regressions used here are identical to those re-
ported by Farmer et al. (2014), though a leave-one-out val-
idation scheme is used here. DAR is a single-index analog
to the kriging approach, while QPPQ represents the optimal
method for this region (Farmer et al., 2014).

The performance metrics of both DAR and QPPQ are out-
lined in Table 1. As concluded by Farmer et al. (2014), the
QPPQ methodology performed better than the DAR tech-
nique. In this analysis, both DAR and QPPQ were infe-
rior to the kriging approaches. As determined by individ-
ual Wilcoxon signed-rank tests of each performance metric

for estimates from each method against the estimates from
pooled variograms, the pooled variograms produce results
with significantly better predictive power than both DAR and
QPPQ individually for all performance metrics except me-
dian bias. The estimates from QPPQ were not shown to be
significantly more biased than the estimates from the pooled
variograms, on average. Note that the Wilcoxon test on biases
was conducted on absolute values, indicating the significance
of either method being closer to the optimal level of zero bias
regardless of the sign of the bias.

The comparison of the pooled ordinary kriging approach
and the pooled top-kriging approach does not provide as
definitive a conclusion. The top-kriging approach provides
a significantly greater Nash–Sutcliffe efficiency at the 5 %
significance level. However, the ordinary kriging approach
yielded significantly smaller root mean squared errors. In
terms of bias, top-kriging provides a significantly smaller
absolute bias, but the median signed bias is slightly larger;
the average bias is greater, but the average deviation from
unbiasedness is smaller. There is no significant difference
between ordinary kriging and top-kriging with respect to
the correlations between observed and simulated stream-
flows and the Nash–Sutcliffe efficiencies of the logarithms
of streamflow. The disagreement on the significance of the
difference in correlations between observed and simulated
streamflows and the difference between Nash–Sutcliffe effi-
ciencies is the result of the interplay of the components of the
Nash–Sutcliffe model efficiency, as discussed by Gupta et al.
(2009).

Based on the varied performance metrics, there is no sig-
nificant difference between the ordinary kriging and top-
kriging approaches. Aside from average performance, the
quantiles of the distributions of performance appear im-
proved for top-kriging. For example, 90 % of the ordinary
kriging results show a Nash–Sutcliffe model efficiency of
the logarithms below 0.91, while 90 % of top-kriging re-
sults are below 0.93. It is not immediately apparent why the
top-kriging approach might disproportionately accept the ex-
tremes of the distribution of performance. However, the pair-
wise comparison of the Wilcoxon signed-rank test indicates
that there is no significant evidence to reject the hypothesis
that pooled ordinary kriging and pooled top-kriging produce
different performances. If they are not significantly different,
the additional discretization of top-kriging does not appear to
produce significantly improved performance to warrant the
increased complexity. Future research might also consider
whether the prediction variances from either method are su-
perior; though not explored here, a more accurate prediction
uncertainty may improve the usefulness of simulated stream-
flows.

Top-kriging was explicitly developed to address both the
hierarchical nature of streamflow and streamflows’ aggre-
gate dependency on contributing drainage areas (Skøien
et al., 2006). Ordinary kriging ignores this structure and ap-
proaches the question of prediction as if confronted with a
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uniformly dependent spatial field. As mentioned earlier, this
implementation of top-kriging differs from the implementa-
tion of ordinary kriging only in that top-kriging allows for
the varying support of contributing drainage areas. Given the
results presented here, this improvement produces nearly in-
distinguishable results. This is likely because the ordinary
kriging approach standardized streamflows by drainage area
and then computed the logarithms thereof. As evidenced by
a Pearson correlation of only 0.05 between the logarithms
of unit runoff and the logarithms of drainage area, standard-
ization removed much of the dependency of streamflow on
drainage areas. Removing this dependency may have damp-
ened the improvements in performance that might have been
expected from top-kriging. In a region that exhibits stronger
residual dependence or a higher frequency of nested basins,
the advantages of top-kriging might be more marked.

3.4 General discussion

The results of this analysis demonstrate that the computation-
ally efficient routine of pooled variogram estimation can be
used to fit an ordinary kriging system that produces plau-
sible estimates of daily time series at ungaged sites. The
pooled parameter estimation, which ignores temporal vari-
ation of the spatial semivariance structure, was able to repro-
duce observed hydrographs more accurately than other non-
kriging methods considered. Both daily and pooled kriging
approaches outperformed single-index transfers. It is intrigu-
ing that accounting for temporal variation in the variograms
resulted in relatively minor changes in the kriging estimates
and the performance thereof. Additionally, it is somewhat
concerning that the kriging techniques show a general inac-
curacy in the tails of the distribution of streamflow. The com-
parison of ordinary kriging and top-kriging was inconclusive,
with some metrics favoring top-kriging, while others favored
ordinary kriging, and still others were not significantly dif-
ferent.

It was clearly shown that the variogram parameters, char-
acteristic of the spatial semivariance structure, exhibit sea-
sonal and other temporal patterns. However, the averaging
that occurs when pooling daily semivariance information ac-
tually resulted in a marginal improvement in the accuracy (as
measured by several metrics) of resultant streamflow time se-
ries. In initial work (Farmer, 2015), it was shown that pure
averaging of variogram parameters, rather than pooling, pro-
duced estimates similarly competitive with estimates from
daily variograms. It is counterintuitive that ignoring temporal
variation in spatial semivariance structure would not appre-
ciably degrade performance. Still, ignoring the temporal vari-
ation of variogram parameters produced some small degrada-
tion in the autocorrelation structure of estimated streamflows
at long time lags.

Although ignoring the temporal variation in the variogram
parameters did not appreciably degrade performance, it may
be possible to gain some improvements while retaining com-

putational efficiency by preserving some remnants of the ob-
served temporal variability in variogram parameters. One op-
tion might be to consider a moving-window average of daily
parameters, optimizing the advantages of temporally vari-
able parameters while seeking to smooth out chaotic daily
behavior. Another clear avenue for future research is to eval-
uate the possibility of constructing a temporal model of var-
iogram parameters. One could easily imagine monthly pa-
rameter sets or parameter sets reproduced by an autoregres-
sive integrated moving average (ARIMA) (Box and Jenkins,
1970) model. Previous work has found only marginal ad-
vantages to incorporating complex temporal structures like
streamflow travel times into hydrologic geostatistics (Skøien
and Blöschl, 2007), but the temporal evolution of spatial
semivariance structure was not explicitly considered. As this
paper serves as a general introduction of ordinary kriging
to time-series prediction, this work was not explored further
here. In particular, temporal modeling might become increas-
ingly advantageous when considering the problem of fill-
ing in temporally sparse records rather than simulating com-
pletely ungauged streamflows. In such a case, it may be that
the temporal observations along-stream contain more infor-
mation than neighboring contemporary measurements.

However, contextualizing ordinary kriging in the context
of other hydrologic applications of geostatistics, a brief com-
parison of ordinary kriging and top-kriging was presented
here. Skøien et al. (2006) introduced topological kriging to
the hydrologic sciences and Skøien and Blöschl (2007) ap-
plied it to streamflow time series. Following the methods of
Skøien and Blöschl (2007), a pooled top-kriging model of
daily streamflows was developed and compared with the or-
dinary kriging approach. The comparison of ordinary krig-
ing and top-kriging does not provide strong evidence to fa-
vor one approach over the other. Subsequent analyses may
elucidate further strengths and weaknesses, but it is not pos-
sible to dismiss either method based on the evidence pre-
sented here. The pooled top-kriging model was developed us-
ing the package provided by Skøien (2015). The need to spa-
tially discretize the network at each time step substantially
increased the computation time compared with ordinary krig-
ing (depending on processor speeds, top-kriging required just
less than 3 days of computation time for each site predicted,
while ordinary kriging required only hours of computation
time per site predicted). At the time of application, the pack-
age by Skøien (2015) did not contain a method to estimate
pooled variograms directly. More recent versions do contain
this functionality. Once the computation time is brought into
parity with ordinary kriging, the marginal improvements of
top-kriging may be more worthwhile. However, it may be
that the relatively simpler formulation of ordinary kriging
provides the majority of the added value of hydrologic geo-
statistics.

The pooling of semivariance to produce a single set of var-
iogram parameters implicitly assumes that the spatial semi-
variance structure is constant in time. While a seasonal fluc-
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tuation may be present, that same fluctuation may occur ev-
ery year with no systematic change. For the study period,
water years 1981 through 2010, the time series of daily vari-
ogram parameters were indeed stationary. Following the pro-
cedures of Hirsch et al. (1982), a block bootstrapping pro-
cedure with a fixed block width of 1 year (365 days) and
1000 replicates of 30-year time series was applied to approxi-
mate the probability distribution of a seasonal Mann–Kendall
trend test. For all three parameters, the null hypothesis of sta-
tionarity could not be rejected. The nugget had an approxi-
mate two-side-alternative p value of 0.286; the partial sill,
0.184; the range, 0.178. While stationarity appears valid in
this instance, it does raise an interesting question in the face
of changing hydrology. Will changes in human populations,
land uses, and climate significantly affect the spatial semi-
variance structure of daily streamflows? The daily parameter
sets may be an appropriate means of testing for changing hy-
drology and identifying dominant processes in a region.

Pooled variogram estimation and ordinary kriging allow
for the efficient and, according to broad metrics, accurate
prediction of daily streamflow at ungaged sites. Being able
to regionally characterize networks of streamflow may pro-
vide additional advantages. Though not explored here, krig-
ing algorithms also allow for the quantification of variances
around estimates. This can serve two purposes: (1) it shows
where in the network uncertainties are likely to be great-
est, which might be a means to identify optimal locations
for additional monitoring. (2) It may be able to explicitly
provide confidence intervals for estimated daily streamflows.
Future studies will explore the accuracy of so-derived inter-
vals. In any case, the theoretically derived structure of the
kriging system promises a more “closed-form” interpreta-
tion of predictive uncertainty than more traditional single-
index hydrologic transfers, which require an ad hoc proce-
dure for uncertainty quantification. While predictive perfor-
mance was indistinguishable here, more advanced methods
like top-kriging may provide significant advantages in their
quantification of predictive uncertainty.

One limitation of the kriging approach, as documented
here, is the overestimation of the lower tail of the streamflow
distribution and the underestimation of the upper tail. Similar
results were documented by Skøien and Blöschl (2007). This
is effectively a compression of the distribution of stream-
flows, resulting in estimated streamflows that are less vari-
able than the observed streamflows. Less variability means
that the estimated time series will not be able to faithfully
reproduce the frequency and magnitude of the most extreme
events. As the most extreme events tend to have the great-
est impact on human populations, the failure to accurately
reproduce them may prove problematic for operational hy-
drology. Interestingly, this result may not be a product of the
kriging system. It may be a symptom of randomness associ-
ated with a leave-one-out validation or transformation bias,
but the dramatic median suggests a more systemic problem.
Instead, bias in the extremes is an expected result of deter-

ministic modeling, whereby a single realization of simulated
output is produced. If sources of error or uncertainty are ne-
glected in order to produce such a deterministic estimate, the
expectation of the conditional mean is less variable than the
observed quantity. Stochastic simulation, which is possible
using the predictive uncertainty of a kriging method, may be
the only solution if the estimated time series are to be made
useful in the context of operational hydrology.

4 Summary and conclusions

The estimation of daily streamflow records at ungaged sites is
a fundamental problem of water resources management and
assessment. Many tools exist to aid in quantifying resources,
but this paper discusses a statistical tool that is capable of
combining time series at multiple sites for regional predic-
tion. Building on the work of hand-drawn discharge maps,
ordinary kriging is proposed as an efficient technique for re-
production of historical streamflow time series at ungaged
sites. Using a leave-one-out validation and daily streamflow
data from 182 minimally impacted and minimally regulated
watersheds, geostatistical techniques are shown to have ad-
vantages over other, common statistical approaches.

Ordinary kriging is demonstrated to produce more accu-
rate streamflow time-series estimates than the drainage-area
ratio method and nonlinear spatial interpolations using flow
duration curves. In addition, using pooled variogram parame-
ters with ordinary kriging produced marginally better perfor-
mance than using parameters determined at a daily time step.
This is surprising, as pooling effectively averages out tempo-
ral variation. Though significant improvements are unlikely,
it is observed that the variogram parameters, characterizing
the spatial semivariance structure, show clear seasonal pat-
terns that may be reproducible in part without requiring the
computation of daily variograms. However, in an initial ex-
ploration, the advantages of moving towards a more com-
plex kriging system such as that provided by top-kriging are,
at best, minimal. Further research may improve the compu-
tational parity of top-kriging and continue to elucidate the
advantages and disadvantages of ordinary kriging and top-
kriging for spatio-temporal hydrologic geostatistics.
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