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L-idempotent analogues of convexity are introduced (L is a completely distributive lattice). It
is proved that the category of algebras for the monad of L-valued capacities (regular plausibility
measures) in the category of compacta is isomorphic to the category of L-idempotent biconvex
compacta and their biaffine maps. For the functor of L-valued ∪-capacities (L-possibility mea-
sures) a family of monads parameterized by monoidal operations ∗ : L × L → L is introduced
and it is shown that the category of algebras for each of these monads is isomorphic to the
category of (L,⊕, ∗)-convex compacta and their affine maps.
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1. “Conventional” convexity and its closest generalizations

Recall that a set A in a vector space V is called convex if it contains all convex
combinations of its elements, i.e., α1x1 + · · · + αkxk ∈ A whenever k ∈ N, αi ∈
[0, 1] and xi ∈ A for all i = 1, . . . , k, and α1 + · · · + αk = 1. Most important
convex sets belong to the following two classes: convex subsets of Rn and convex
compacta, i.e., compact convex subsets of locally convex topological vector spaces.
There is no need to emphasize again an exclusive role that convex sets play in
optimization, functional analysis, and elsewhere. Therefore it is natural that
efforts have been made to find reasonable generalizations of convexity such that
analogues of classical results of convex analysis for them are valid.

In particular, Briec and Horvath [3] considered “deformations” of the usual con-
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vex structure on R
n
+ via suitable isotonic bijections, which are applied “forth and

back”, both to the coordinates of points and to scalars, and they have shown that
the limit case of such deformations is the so-called B-convexity, which proved to
be useful, e.g., in mathematical economics. Namely, a subset A ⊂ Rn

+ is said to
be B-convex, if for all k ∈ N, x1, . . . , xk ∈ A, and α1, . . . , αk ∈ [0, 1] such that
max{α1, . . . , αk} = 1, the point α1x1 ∨ · · · ∨ αkxk is in A (here ∨ denotes the co-
ordinatewise maximum). They studied the properties of such sets and obtained
analogues of Carathéodory’s and Helly’s Theorems, proved the connectedness and
contractibility, and suggested applications to games and optimization.

On the other hand, Kolokoltsov and Maslov [12] observed that the replacement
of the usual operations + and · on the field of reals with “strange” operations
⊕ and ⊙ leads to valuable and interesting analogues. The main such pair is
⊕ = max, ⊙ = +, hence the max-plus mathematics was obtained. The inven-
tors have shown that it is also a limit case of “distortions” of the conventional
analysis (Maslov’s dequantization). Another popular version is the max-min one:
⊕ = max, ⊙ = min. Observe that such additions are idempotent, i.e., x⊕x ≡ x,
hence the entire theory is called idempotent mathematics. Of course, the ob-
tained “idempotent analysis” is quite reduced. Nevertheless, it often parallels
the usual one. In particular, a subset A ⊂ Rn is max-plus convex if for all k ∈ N,
x1, . . . , xk ∈ A, and α1, . . . , αk ∈ R such that max{α1, . . . , αk} = 0, the point
α1⊙x1⊕ . . .⊕αk ⊙xk is in A (all operations ⊕ = max and ⊙ = + are performed
coordinatewise). Properties are very similar to the ones of convex sets, e.g.,
Zarichnyi [27] proved that for compact max-plus sets an analogue of Michael’s
selection theorem holds. Similarly, max-min convex sets were introduced. Ge-
ometry of such sets, including max-min convex hulls, was described in [21, 22].
Theorem 23 [9] provides separation of the closed convex sets, etc.

It is straightforward to show that B-convex sets and max-plus sets are the same
objects. A correspondence between them is established via the logarithmic func-
tion ln : R+ → R. Such a redundancy, on the one hand, exposes lack of intercon-
nection among researchers in different fields of mathematics; on the other hand,
it proves that the suggested notions are necessary and important.

Let us show how such an idempotent convexity is introduced. The field of re-
als is cut in one place and/or augmented in another, in order to fit “distorted”
operations. E.g., for max-plus convexity, −∞ is added to R, and the space Rn

is replaced with (R ∪ {−∞})n. Coefficients are taken from [−∞, 0], which with
the operations ⊕ = max and ⊙ = + is not a field, but a semiring, with the unit
0. Respectively, the considered space is not a vector space, but an idempo-
tent ([−∞, 0],max,+)-semimodule. A “linear” combination of points is convex
if the sum (i.e., the maximum) of its coefficients is equal to the top element
of the semiring. Such an approach can be used for any idempotent semiring,
e.g., for the semiring ([0, 1],max, ·), which is isomorphic to ([−∞, 0],max,+).
Hence, having the operations properly defined, we can show that ([0, 1],max, ·)-
semimodules and their ([0, 1],max, ·)-convex subsets are essentially the same that
([0, 1],max, ·)-semimodules and ([0, 1],max, ·)-convex (i.e., B-convex) subsets.
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Take the least nontrivial idempotent semimodule 2 = {0, 1}, with ⊕ = max,
⊙ = · = min. Then a set (V, ⊕̄, ⊙̄) is a 2-semimodule if ⊕̄ is commutative and
associative, x ⊕̄x ≡ x, 1 ⊙̄x ≡ x, and 0 ⊙̄x = 0̄ is the unique element such that
0̄ ⊕̄ y = y for all y ∈ V . By putting x 6 y ⇐⇒ x ⊕̄ y = y, we make V an upper
semilattice with the bottom element 0̄. A 2-convex subset of V is then simply
a subsemilattice.

These examples show that the notion of idempotent convexity should not be
reduced only to max-plus, max-min, or B-cases, but investigated in a more general
setting. Moreover, it may not be restricted only to subsets of powers of R or
“almost R”. The goal of the present paper is also to apply more topology and
order theory than in [3], where a more algebraic and analytic approach was used.

2. Idempotent semirings and idempotent semimodules. Linear and

affine mappings

Let us return to B-convexity and to the corresponding space Rn
+. It is a ([0, 1],

max, ·)-semimodule with ⊕̄ and ⊙̄ being respectively the cordinatewise maximum
and the coordinatewise multiplication. Elements a, b ∈ Bn

+ cannot always be
“strictly” compared to see which one is “better”, but the rate of preference of a
to b can be calculated. For a factor λ ∈ [0, 1], we can say that a is preferred to
b to a degree at least λ (written a ≻λ b) if a ⊕̄(λ ⊙̄ b) = a. For example, a ≻ 1

2
b

if each coordinate of a is greater than or equal to the half of the corresponding
coordinate of b. Such “graded” preference relation is transitive in the sense that,
if a ≻λ b, b ≻µ c, then a ≻λ·µ c. The element 1 ⊙̄ a ⊕̄ 1

2
⊙̄ b ⊕̄ 1

5
⊙̄ c is the least one

that is preferred to a, preferred to b to a degree at least 1
2
, and to c to a degree at

least 1
5
. Thus a subset A ⊂ Rn

+ is B-convex if we can “mix” (partially improve)
its elements in the above sense.

Observe that this comparison is sensitive to the “weakest links”, i.e., one small
coordinate of a makes the result of comparison with b small, irrespective of
the other coordinates. Assume that we are interested in different coordinates
to a different extent. It would be more interesting to multiply coordinates
by different factors, i.e., to consider Rn

+ as a semimodule over the semiring
([0, 1]n,⊕,⊙), with ⊕ the supremum (i.e., the cordinatewise maximum), and ⊙
the coordinatewise multiplication. Then ⊕̄ is the same, but the multiplication is
(α1, . . . , αn) ⊙̄(x1, . . . , xn) = (α1x1, . . . , αnxn). If ≻α for α = (α1, . . . , αn) is again
defined as x ≻α y ⇐⇒ x ⊕̄(α ⊙̄ y) = x, then (x1, . . . , xn) ≻(1, 1

2
,0,...,0) (y1, . . . , yn)

if and only if x1 > y1, 2x2 > y2, and other coordinates are ignored. It is easy
to understand what (1, 1

2
, 1, 1, . . . , 1) ⊙̄x ⊕̄(0, 1, 1

3
, 1, . . . , 1) ⊙̄ y is. Thus it makes

sense to consider L-semimodules and L-convex sets not only for L ⊂ R or, more
generally, linearly ordered L, but also when L is a lattice with additionally defined
multiplication, as [0, 1]n above.

Now we give the necessary formal definitions. In the sequel (L,⊕,⊗) will be
a lattice with a bottom and a top element 0 and 1, respectively, and a binary
operation ∗ : L × L → L such that 1 is a two-sided unit and ∗ is distributive
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w.r.t. ⊕ in both variables. Then (L,⊕, ∗) is a semiring.

Recall that a (left idempotent) (L,⊕, ∗)-semimodule [1] is a set X with operations
⊕̄ : X ×X → X and ∗̄ : L×X → X such that for all x, y, z ∈ X , α, β ∈ L:

(1) x ⊕̄ y = y ⊕̄x;

(2) (x ⊕̄ y) ⊕̄ z = x ⊕̄(y ⊕̄ z);

(3) there is an (obviously unique) element 0̄ ∈ X such that x ⊕̄ 0̄ = x for all x;

(4) α ∗̄(x ⊕̄ y) = (α ∗̄ x) ⊕̄(α ∗̄ y), (α⊕ β) ∗̄x = (α ∗̄ x) ⊕̄(β ∗̄ x);

(5) (α ∗ β) ∗̄x = α ∗̄(β ∗̄x);

(6) 1 ∗̄x = x; and

(7) 0 ∗̄x = 0̄.

Observe that these axioms imply that (X, ⊕̄) is an upper semilattice with a
bottom element 0̄, the order is defined by x 6 y ⇐⇒ x ⊕̄ y = y, and α ∗̄ 0̄ = 0̄
for all α ∈ L. The operation ∗̄ is isotone in both variables.

Since an (L,⊕, ∗)-semimodule is an analogue of a vector space, for all x1, . . . , xn ∈
X and α1, . . . , αn ∈ L, it is natural to call the expression α1 ∗̄ x1 ⊕̄ . . . ⊕̄αn ∗̄xn

a linear combination of the elements xi with the coefficients αi. If α1⊕. . .⊕αn = 1,
then the latter combination is called convex.

Obviously, a subset of an L-semimodule that closed under linear combinations is
an L-semimodule itself, i.e. a subsemimodule of the previous one.

Analogues also exist for linear and affine mappings. A mapping f : X → Y
between (L,⊕, ∗)-semimodules is called linear if it preserves the linear combina-
tions, i.e., for all x1, . . . , xn ∈ X and α1, . . . , αn ∈ L, the equality

f(α1 ∗̄x1 ⊕̄ . . . ⊕̄αn ∗̄xn) = α1 ∗̄ f(x1) ⊕̄ . . . ⊕̄αn ∗̄ f(xn)

is valid. If the latter equality is known only to hold for convex combinations, i.e.
whenever α1⊕. . .⊕αn = 1, then f is called affine. Observe that an affine mapping
f preserves joins, i.e. f(x1 ⊕̄x2) = f(x1) ⊕̄ f(x2) for all x1, x2 ∈ X , therefore it is
isotone. An affine mapping is linear if and only if it preserves the least element.

Recall that the most famous idempotent semirings are the max-plus semiring
(R ∪ {−∞},max,+) and the max-min semiring (R ∪ {−∞,+∞},max,min).
They, especially the first one, form a basis of tropical or idempotent mathema-
tics [12]. The max-plus semiring does not fit into our scheme because the neu-
tral element for its “multiplication” + is not a top element. However, there
is a “good” subsemiring ([−∞, 0],max,+), which is isomorphic to the semir-
ing (I,max, ·). The latter semiring has an advantage: in it 0 and 1 have their
usual order-theoretical meaning. Similarly the max-min semiring is isomorphic to
(I,max,min). From now on, for the sake of brevity the (I,max, ·)-semimodules
and the (I,max,min)-semimodules will be referred to respectively as (max, ·)-
semimodules and (max,min)-semimodules, the same applies also to combinations,
affine and linear mappings, etc.
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3. L-convex sets

A subset of an L-semimodule that is closed under convex combinations is, as
usual, called convex, or more precisely, L-convex.

It is very convenient that we can calculate the usual convex combinations and (due
to the linear order on I) the (max, ·)-idempotent or the (max,min)-idempotent
convex combinations of a finite number of points “step by step”, i.e. by using
only pairwise combinations. This is not the case for the convex combinations
with lattice-valued coefficients, thus we should simultaneously define the convex
combinations of arbitrary finite numbers of points. Now we define sets that
contain admissible collections of coefficients.

The n-dimensional1 L-simplex is the set

∆n
⊕
= {(α0, α1, . . . , αn) ∈ Ln+1 | sup{α0, α1, . . . , αn} = 1}.

We say that an L-idempotent convex combination is given on a set X if for all
n ∈ {0, 1, 2, . . .}, (α0, α1, . . . , αn) ∈ ∆n

⊕
, x0, x1, . . . , xn ∈ X an element

ic(x0, x1, . . . , xn, α0, α1, . . . , αn) ∈ X,

which we denote by (α0 ∗̄x0) ⊕̄(α1 ∗̄x1) ⊕̄ . . . ⊕̄(αn ∗̄xn) or simply α0x0 ⊕̄α1x1 ⊕̄
. . . ⊕̄αnxn, is uniquely determined, and the following properties are valid:

(1) ic(x, 1) = x for all x ∈ X ;

(2) for all m,n ∈ {0, 1, 2, . . . }, x0, x1, . . . , xn ∈ X , (α0, α1, . . . , αm) ∈ ∆m
⊕

and a
mapping σ : {0, 1, . . .m} → {0, 1, . . . , n} we have

α0xσ(0) ⊕̄α1xσ(1) ⊕̄ . . . ⊕̄αmxσ(m) = β0x0 ⊕̄ β1x1 ⊕̄ . . . ⊕̄ βnxn,

where βk = sup{αi | 0 6 i 6 m, σ(i) = k} for k = 0, 1, . . . , n. This
equality means that we can exchange summands, drop summands with zero
coefficients and join summands with the same second factor; and

(3) the “big associative law” holds:

α0(β
0
0x

0
0 ⊕̄ . . . ⊕̄ β0

k0
x0
k0
) ⊕̄α1(β

1
0x

1
0 ⊕̄ . . . ⊕̄ β1

k1
x1
k1
) ⊕̄

. . . ⊕̄αn(β
n
0 x

n
0 ⊕̄ . . . ⊕̄ βn

kn
xn
kn
)

= (α0β
0
0)x

0
0 ⊕̄ . . . ⊕̄(α0 ∗ β

0
k0
)x0

k0
⊕̄(α1β

1
0)x

1
0 ⊕̄ . . . ⊕̄(α1 ∗ β

1
k1
)x1

k1
⊕̄

. . . ⊕̄(αn ∗ β
n
0 )x

n
0 ⊕̄ . . . ⊕̄(αn ∗ β

n
kn
)xn

kn
,

where xi
j ∈X , (α0, α1, . . . , αn)∈∆n

⊕
, (βi

0, β
i
0, . . . , β

i
ki
)∈∆ki

⊕
for i = 0, 1, . . . , n.

In fact, an L-convex combination ic inX is a collection of maps icn : Xn+1×∆n
⊕
→

X , n = 0, 1, 2, . . . , but we will use a common notation ic for all of them.

These properties are obviously valid if (α0 ∗̄ x0) ⊕̄(α1 ∗̄x1) ⊕̄ . . . ⊕̄(αn ∗̄xn) on X
is calculated via the operations ∗̄ and ⊕̄ on an L-semimodule N , in which X is
contained as a convex subset. In fact, each L-convex combination can be obtained
in this way. The following statement is true [16, Proposition 2.2]:

1We do not mean any topological dimension here.
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Proposition 3.1. Let an (L,⊕, ∗)-convex combination be defined on a set X.
Then there is an injective mapping e of X into an (L,⊕, ∗)-semimodule (N, ⊕̄, ⊙̄)
which preserves (L,⊕, ∗)-convex combinations.

Thus a set is called L-convex if it is equipped with an L-convex combination,
and we use the term “affine mapping” also for the mappings between L-convex
sets which preserve convex combinations in the above sense. Let ic and ic′ be L-
convex combinations resp. onX andX ′. We say that a map f : (X, ic) → (X ′, ic′)
is affine if it preserves L-convex combination, i.e. f(ic(x0, . . . , xn, α0, . . . , αn)) =
ic′(f(x0), . . . , f(xn), α0, . . . , αn) for all x0, x1, . . . , xn ∈ X , (α0, α1, . . . , αn) ∈ ∆n

⊕
.

This also justifies the use of the usual notation for the L-convex combinations.
Observe that, similarly to L-semimodules, such a set X is an upper semilattice
with the operation x ∨ y = 1x⊕ 1y.

The introduced notion is a natural generalization of B-convexity, which is a special
case of L-convexity for L = [0, 1], ⊕ = ∨, ∗ = ·, and ⊗ = ∧.

In this section we also briefly present a result of [16], which shows that L-convex
combinations and L-semimodules are closely related to “weakened” versions of
L-fuzzy preference relations, an example of which was considered in Section 2.

A family ≻= (≻α)α∈L of binary relations on a set X is called an L-preference if
the following holds for all x, y, z ∈ X , α, β ∈ L:

(1) x ≻α y and x ≻β y if and only if x ≻α⊕β y;

(2) ≻1 is a partial order; and

(3) ≻0= X ×X .

An advantage of such a definition of “graded preference” of x over y is that α
can capture both the aspect in which we compare the options and the rate of
preference, cf. the example with the set X = [0,+∞)n and the lattice L = [0, 1]n.

The following property of preferences is often considered:

(4’) if x ≻α y, y ≻β z, then x ≻α∗β z (∗-transitivity).

Then Proposition 2.3 [16] implies:

Proposition 3.2. (a) For an injective mapping e from a set X into an (L,⊕, ∗)-
convex set C the family of relations ≻= (≻α)α∈L on X, defined as x ≻α y ⇐⇒
1 ∗̄ e(x) ⊕̄α ∗̄ e(y) = e(x) in C for all x, y ∈ X, α ∈ L, is a ∗-transitive L-
preference on X.

(b) If ≻= (≻α)α∈L is a ∗-transitive L-preference on a set X, then there is
an injective mapping e from X into an (L,⊕, ∗)-semimodule (N, ⊕̄, ∗̄) such that
x ≻α y ⇐⇒ e(x) ⊕̄(α ∗̄ e(y)) = e(x) for all x, y ∈ X, α ∈ L.

See the latter citation for more information on realization of L-preferences via
L-convex combinations.
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4. L-biconvex sets

Consider an L-semimodule (X, ⊕̄, ∗̄) such that:

(a) X is a distributive lattice with a bottom element 0̄, a top element 1̄, and
a meet denoted ⊗̄.

(b) the multiplication ∗̄ on X satisfies the equality (α ∗̄ 1̄) ⊗̄x = α ∗̄x for all
α ∈ L, x ∈ X .

Remark 4.1. The property (b) implies:

(α ∗̄ 1̄) ⊗̄(β ∗̄ 1̄) = α ∗̄(β ∗̄ 1̄) = (α ∗ β) ∗̄ 1̄ 6 (α⊗ β) ∗̄ 1̄.

On the other hand, (α⊗ β) ∗̄ 1̄ 6 α ∗̄ 1̄, (α⊗ β) ∗̄ 1̄ 6 γ ∗̄ 1̄, hence

(α ∗̄ 1̄) ⊗̄(β ∗̄ 1̄) > (α⊗ β) ∗̄ 1̄,

consequently
(α ∗̄ 1̄) ⊗̄(β ∗̄ 1̄) = (α ∗ β) ∗̄ 1̄ = (α⊗ β) ∗̄ 1̄,

therefore the correspondence α 7→ α ∗̄ 1̄ preserves not only the pairwise joins,
which follows from the definition of semimodule, but also pairwise meets. Observe
that such an (L,⊕, ∗)-semimodule is simultaneously an (L,⊕,⊗)-semimodule
with the same operations, and:

(α ∗̄ x) ⊗̄(β ∗̄ y) = (α ∗̄ 1̄) ⊗̄x ⊗̄(β ∗̄ 1̄) ⊗̄ y

= (α ∗̄ 1̄) ⊗̄(β ∗̄ 1̄) ⊗̄(x ⊗̄ y) = (α⊗ β) ∗̄(x ⊗̄ y).

On the other hand, the equality

(α ∗̄x) ⊗̄(β ∗̄ y) = (α⊗ β) ∗̄(x ⊗̄ y)

implies (α ∗̄ 1̄) ⊗̄(β ∗̄ 1̄) = (α ⊗ β) ∗̄ 1̄ and (α ∗̄ 1̄) ⊗̄x = α ∗̄x for all values of
the variables.

Probably the most important example of an idempotent semiring is an arbi-
trary distributive lattice L = (L,⊕,⊗), where 0 and 1 are resp. the bottom and
the top elements, and multiplication coincides with meet. Note that reversing
the order on L results in the distributive lattice L̃ = (L̃,⊗,⊕), with the bottom
and the top elements 0̃ = 1 and 1̃ = 0, respectively, which is an idempotent
semiring as well.

Proposition 4.2. If an (L,⊕,⊗)-semimodule (X, ⊕̄, ∗̄) satisfies conditions (a)
and (b), then, for the operation

¯
∗ : L × X → X defined by the formula α

¯
∗ x =

(α ∗̄ 1̄) ⊕̄x for all α ∈ L and x ∈ X, the triple (X̃, ⊗̄,
¯
∗) is an (L̃,⊗,⊕)-semi-

module which also satisfies (a), (b).

Proof is a simple calculation.

Observe that α ∗̄ 1̄ = α
¯
∗ 0̄, hence the formula (α

¯
∗ 0̄) ⊕̄x = α

¯
∗x is valid, which

is dual in the obvious sense to the formula (α ∗̄ 1̄) ⊗̄x = α ∗̄ x (cf. condition (b)).
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Thus we obtain two dual structures on X , that of an L-semimodule and that of
a L̃-semimodule. In addition to the L-convex combinations, i.e., to the expres-
sions of the form (α1 ∗̄x1) ⊕̄ . . . ⊕̄(αn ∗̄xn), with α1⊕. . .⊕αn = 1, we define the L̃-
convex (or dually L-convex ) combinations of the form (α1¯

∗x1) ⊗̄ . . . ⊗̄(αn¯
∗xn),

with α1 ⊗ . . .⊗ αn = 0.

Therefore we call such (X, ⊕̄, ⊗̄, ∗̄,
¯
∗) an L-biconvex set. It is easy to see that

the mapping p : L → X that takes each α to the product α ∗̄ 1̄ (or, equivalently,
to α

¯
∗ 0̄), is a lattice morphism which preserves the bottom and the top elements.

Conversely, each lattice morphism p : (L,⊕,⊗) → (X, ⊕̄, ⊗̄) that preserves
the bottom and the top elements determines the L-biconvex set (X, ⊕̄, ⊗̄, ∗̄,

¯
∗) by

the formulae α ∗̄ x = p(α) ⊗̄x, α
¯
∗ x = p(α) ⊕̄x for all α ∈ L, x ∈ X . Thus there

is a one-to-one correspondence between the L-biconvex sets and top- and bottom-
preserving lattice morphisms from L. From now on we shall assume that the cor-
responding lattice morphism p is fixed for each L-biconvex set (X, ⊗̄, ⊕̄, ∗̄,

¯
∗).

Proposition 4.3. Let a subset Y of an L-biconvex set (X, ⊗̄, ⊕̄, ∗̄,
¯
∗) be closed

w.r.t. the L-convex and the dual L-convex combinations, contain a bottom element
0̄′ and a top element 1̄′. Then (Y, ⊕̄′, ⊗̄′, ∗̄′,

¯
∗′) is an L-biconvex set as well,

if ⊕̄′ and ⊗̄′ are the restrictions of ⊕̄ and ⊗̄ to Y and α ∗̄′ x = 0̄′ ⊕̄(α ∗̄ x),
α
¯
∗′ x = 1̄′ ⊗̄(α

¯
∗ x) for all α ∈ L, x ∈ L.

In particular, such Y is a sublattice X , and the structure of the L-biconvex set
(Y, ⊕̄′, ⊗̄′, ∗̄′,

¯
∗′) is determined by the lattice morphism p′ : L → Y , p′(α) =

(p(α) ⊕̄ 0̄′) ⊗̄ 1̄′ for all α ∈ L. A simple example of such Y is a closed interval
[a, b] = {x ∈ X | a 6 x 6 y}, for a, b ∈ X , a 6 b.

Although L-biconvex sets seem to be almost trivial, they have a decision making
interpretation and will appear in our exposition in the sequel. We say that a map
f : (X, ⊕̄,⊗, ⊗̄,⊕) → (X ′, ⊕̄,⊗, ⊗̄,⊕) between L-biconvex sets is biaffine if it
satisfies the equality

f((α0 ⊗ x0) ⊕̄(α1 ⊗ x1) ⊕̄ . . . ⊕̄(αn ⊗ xn))

= (α0 ⊗ f(x0)) ⊕̄(α1 ⊗ f(x1)) ⊕̄ . . . ⊕̄(αn ⊗ f(xn))

whenever x0, x1, . . . , xn ∈ X , α0, α1, . . . , αn ∈ L, α0 ⊕ α1 ⊕ . . .⊕ αn = 1, and the
equality

f((β0 ⊕ x0) ⊗̄(β1 ⊕ x1) ⊗̄ . . . ⊗̄(βn ⊕ xn))

= (β0 ⊕ f(x0)) ⊗̄(β1 ⊕ f(x1)) ⊗̄ . . . ⊗̄(βn ⊕ f(xn))

whenever x0, x1, . . . , xn ∈ X , β0, β1, . . . , βn ∈ L, β0 ⊗ β1 ⊗ . . .⊗ βn = 0.

If L-biconvex structures on X and X ′ are determined with bottom- and top-
preserving lattice morphisms p : L → X and p′ : L → X ′, respectively, then
a mapping f : X → X ′ is biaffine if and only if f is a lattice morphism and
f ◦ p = p′.
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5. L-convex compacta and L-biconvex compacta

Having defined idempotent analogues of convex sets in vector spaces, we are going
to topologize them to obtain objects similar to the compact closed sets in locally
convex topological vector spaces. We do not need to invoke additional tools like
local bases or (semi-)norms because the operations on L-semimodules and L-
convex sets naturally determine partial orders. Under certain assumptions, these
orders lead to the required topologies.

Firstly, we recall some definitions and notation from the domain theory. All
“triple-numbered” statements below refer to [7], which is an excellent reference
book. For a partial order 6 on a set X , the relation 6̃, defined as x 6̃ y ⇐⇒
y 6 x, for x, y ∈ X , is a partial order called opposite to 6, and (X,6)op denotes
the poset (X, 6̃). If the original order 6 is obvious, we write simply Xop for the

reversed poset. We also apply (̃ ) to all notation to denote passing to the opposite
order, i.e. write X̃ = Xop, ˜sup = inf, 0̃ = 1 etc. This was already done for
the lattice L in the description of the L-biconvex sets.

For a subset A of a poset (X,6), we denote

A↑ = {x ∈ X | a 6 x for some a ∈ A}, A↓ = {x ∈ X | x 6 a for some a ∈ A}.

If A = A↑ (A = A↓), then a set A is called upper (resp. lower).

A topological meet (or join) semilattice is a semilattice L carrying a topology
such that the mapping ∧ : L × L → L (resp. ∨ : L × L → L) is continuous.
A lattice L with a topology such that both ∧ : L × L → L and ∨ : L × L → L
are continuous is called a topological lattice.

A set A in a poset (X,6) is directed (filtered) if, for all x, y ∈ A, there is z ∈ A
such that x 6 z, y 6 z (resp. z 6 x, z 6 y). A poset is called directed complete
(dcpo for short) if it has lowest upper bounds for all its directed subsets.

Fix a partial order 6 on a set X . The Scott topology σ(X) consists of all those
U ⊆ X that satisfy x ∈ U ⇔ U ∩D 6= ∅ for every 6 −directed D ⊆ X with a
least upper bound x. Note that “⇐” above implies U = U ↑.

A mapping f between dcpos X and Y is Scott continuous, i.e. continuous w.r.t.
σ(X) and σ(Y ), if and only if it preserves suprema of directed sets (cf. Proposition
II.2-1).

The lower topology ω(X) on a poset (X,6) is the least topology such that all sets
of the form {x}↓ are closed. The join of (i.e. the least topology that contains)
σ(X) and ω(X) is called the Lawson topology on X and denoted by λ(X). The
space (X, λ(X)) is denoted by ΛX .

In a dcpo X , a lower set is Lawson closed if and only if it is Scott closed, which
is equivalent to the closedness under suprema of directed subsets.

Let L be a poset. We say that x is way below y and write x ≪ y if and only
if, for all directed subsets D ⊆ L such that supD exists, the relation y ≤ supD
implies the existence of d ∈ D such that x ≤ d. The “way-below” relation is
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transitive and antisymmetric. An element satisfying x ≪ x is said to be compact
or isolated from below and in this case the set {x}↑ is Scott open (hence Lawson
open).

A poset L is called continuous if each element y ∈ L is a least upper bound of
a directed set of all x ∈ L such that x ≪ y. A domain is a continuous dcpo. If
domain is a semilattice (a complete lattice) it is called a continuous semilattice
(resp. a continuous lattice). Obviously a continuous lattice with a bottom element
is a complete lattice.

By Theorem III.1-9 the Lawson topology on a complete semilattice L is a compact
T0-topology. Theorem III.1-10 asserts that for a domain the Lawson topology is
Hausdorff. Hence the Lawson topology on a complete continuous semilattice S is
compact Hausdorff, and by Theorems II.1-14, III-2.28 the mapping ∧ : ΛS×ΛS →
ΛS is continuous, i.e. (S, λ(S)) is a topological semilattice.

Theorem II.1-14 and Proposition III.2-6 imply that, for a dcpo S and a domain
L, the topologies λ(S × L) and λ(S)× λ(L) on S × L are equal.

A topological semilattice is called a Lawson semilattice or said to have small
subsemilattices if, at each point, it possesses a local base consisting of subsemi-
lattices. A topological lattice L is called a Lawson lattice if, in each point, it has
a local base consisting of sublattices, or, equivalently, if L and Lop are Lawson
semilattices.

By the Fundamental Theorem on Compact Semilattices (Theorem VI.3-4), each
complete continuous semilattice with the Lawson topology is a compact Haus-
dorff Lawson semilattice, and each compact Hausdorff Lawson semilattice is a
complete continuous semilattice such that the given topology agrees with the
Lawson topology.

Similarly, by Proposition VII.2-10, a complete lattice L admits a compact Haus-
dorff topology making it a Lawson lattice if and only if both L and Lop are
continuous semilattices and the Lawson topologies on L and Lop agree (and pro-
vide a unique such topology). Such a lattice L is called linked bicontinuous, and
the Lawson topology on L coincides with the lower topology on Lop, and vice
versa, hence the topology in question on L is the interval topology, i.e. the join of
the lower topologies on L and Lop.

A complete lattice X is called completely distributive if, for each collection {Ai |
i ∈ I} of its subsets, either of the equivalent equalities

inf
{
sup
i∈I

ai
∣
∣ (ai)i∈I ∈

∏

i∈I

Ai

}
= sup

i∈I

inf Ai

and
sup

{
inf
i∈I

ai
∣
∣ (ai)i∈I ∈

∏

i∈I

Ai

}
= inf

i∈I
supAi

is valid. This property implies linked bicontinuity and the infinite distributivity
of join w.r.t. infimum and meet w.r.t. supremum in each variable.
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The Scott topology, the lower topology, and the Lawson topology on a poset
Xop are called the dual Scott topology, the upper topology, and the dual Lawson
topology on X , respectively. If the set Xop is a continuous (semi-)lattice, then X
is called a dually continuous (semi-)lattice.

Now we are ready to define an appropriate category for L-convex sets with the in-
finite L-convex combinations (cf. [2, 14] for the definition of category and related
notions).

From now on (L,⊕,⊗) will be a completely distributive lattice, and ∗ : L×L → L
will have 1 as its two-side unit and will be distributive w.r.t. all suprema and
filtered infima. Therefore ∗ is continuous w.r.t. the Scott (= the upper), the dual
Scott (= the lower), and the Lawson topologies on L. We call such (L,⊕, ∗)
a completely distributive quantale. From now on, L will be used as a shorthand
for (L,⊕, ∗) wherever this does not lead to a confusion.

Recall that an (L,⊕, ∗)-semimodule (K, ⊕̄, ∗̄) is called a dually continuous semi-
module [18] if Kop is a continuous lattice, and ∗̄ : L × K → K distributes in
each variable w.r.t. the finite suprema and the filtered infima. If K is complete
and ∗̄ is distributive w.r.t. all suprema, then K with the dual Lawson topology
is a compact Hausdorff Lawson topological semilattice, which means that each
point of K possesses a local basis which consists of subsemilattices. This also
implies that ∗̄ is continuous w.r.t. the Lawson topologies on L and Kop. Hence
such a semimodule is called a compact Hausdorff Lawson (L,⊕, ∗)-semimodule.

Let ∗ : L × L → L be Lawson continuous. We call an L-convex set X an L-
convex compactum ifXop is a complete continuous lower semilattice, which implies
compactness in the Lawson topology onXop, and all finite L-convex combinations
of the form (α0 ∗̄ x0) ⊕̄(α1 ∗̄ x1) ⊕̄ . . . ⊕̄(αn ∗̄ xn) are jointly continuous.

Of course, this is the case if X is a closed under dual Lawson topology L-convex
subset of a dually continuous L-semimodule. This characterization is exhaustive:

Theorem 5.1. Let (L,⊕, ∗) be a completely distributive quantale. A pair of a
compactum X and a collection ic of continuous mappings icn : Xn+1 ×∆n

⊕
→ X,

n = 0, 1, 2, . . . , is an L-convex compactum if and only if X is a closed con-
vex subset of a compact Hausdorff Lawson L-semimodule (N,⊕, ∗̄) such that
icn(x0, . . . , xn, α0, . . . , αn) ≡ α0 ∗̄ x0 ⊕̄ . . . ⊕̄αn ∗̄ xn

︸ ︷︷ ︸

in N

whenever n ∈ {0, 1, 2 . . .},

x0, x1, . . . , xn ∈ X, (α0, α1, . . . , αn) ∈ ∆n
⊕
.

Thus, similarly to the usual convex sets and convex compacta, L-convex sets
and L-convex compacta have equivalent external (via embeddings into vector or
“vector-like” spaces) and intrinsic (via operations of convex combination) charac-
terization, and we can use whatever is more convenient for a particular purpose.

Therefore we can correctly define an L-convex combination of an infinite number
of points using only finite L-convex combinations. If {(xi, αi) | i ∈ I} ⊂ X × L
for an (L,⊕, ∗)-convex compactum X that is embedded into a compact Hausdorff
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Lawson (L,⊕, ∗)-semimodule (N, ⊕̄, ∗̄), and sup
i∈I

αi = 1, then

sup{αi ∗̄ xi | i ∈ I}
︸ ︷︷ ︸

in N

= inf
{
sup
i∈I1

αi ∗̄ sup
i∈I1

xi ⊕̄ . . . ⊕̄ sup
i∈Ik

αi ∗̄ sup
i∈Ik

xi

︸ ︷︷ ︸

in X

∣
∣ k ∈ N, I = I1 ∪ · · · ∪ Ik

}
.

The right side is the infimum of a filtered set, therefore it is preserved by a dually
Lawson continuous embedding of X into a compact Hausdorff Lawson (L,⊕, ∗)-
semimodule N . This implies that the left side does not depend on the embedding
of X into N . We call this expression the L-convex combination of the points xi

with the coefficients αi and denote it ¯⊕
i∈Iαi ∗̄xi.

We denote by (L,⊕, ∗)-Conv the category that consists of all L-convex compacta
and of all dually Lawson continuous affine mappings. We call it the category of L-
convex compacta. Clearly, both the finite and the infinite L-convex combinations
are preserved by the arrows in (L,⊕, ∗)-Conv.

To get some feeling what the L-convex compacta are, let us consider the simplest
case L = 2 = {0, 1}, with the unique appropriate multiplication ∗̄ : 2×X → X ,
namely 1 ∗̄x ≡ x, 0 ∗̄x ≡ 0̄. Hence each linear combination is either trivial
(with only zero coefficients) or affine, which in turn is a finite supremum. Thus,
the 2-convex compacta are precisely the complete dually continuous semilattices,
i.e., the compact Hausdorff Lawson upper semilattices (with or without bottom
elements), and the affine mappings are simply the join-preserving ones.

Note that even (max, ·)-convex or (max,min)-convex sets, which are the closest
to the usual notion of convexity, may visually appear strange (see [21, 22]). Nev-
ertheless, as it was mentioned earlier, the compact max-plus convex sets in Rn,
which are equivalent to the (max, ·)-convex compacta, have nice topological and
geometric properties, similar to the properties of convex compacta.

An (L,⊕,⊗)-semimodule (X, ⊕̄, ∗̄) is called an L-biconvex compactum if it is
an L-biconvex set and a completely distributive lattice such that ∗̄ is Lawson
continuous. It is obviously also an (L,⊗,⊕)-biconvex compactum with the op-
erations “⊗̄” (lattice meet) and “

¯
∗”, with α

¯
∗x = x ⊕̄(α ∗̄ 1̄) for α ∈ L, x ∈ X .

Equivalently, the multiplication “∗̄” is determined by a complete top- and bottom-
preserving lattice morphism p : L → X as follows: α ∗̄ x = p(α) ⊗̄x. The category
L-BiConv of L-biconvex compacta consists of all L-biconvex compacta and their
Lawson continuous biaffine mappings.

6. Semimodules and convex sets of L-valued capacities

Following [10], for a domain D we call the elements of the set [D → Lop]op L-
fuzzy monotonic predicates on D. The elements of D are considered as pieces
of information about the state of a certain system or process, and a 6 b in D
means that b contains more information than a (is more specific/restrictive). For
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m ∈ [D → Lop]op and a ∈ D, we regard m(a) as the truth value of a, hence it
is required that m(b) 6 m(a) for all a 6 b. The second op means that we order
fuzzy predicates pointwisely, i.e. m1 6 m2 iff m1(a) 6 m2(a) in L (not in Lop !)
for all a ∈ D. We denote M [L]D = [D → Lop]op, and, for D with a least element
0, consider also the subset M[L]D ⊂ M [L]D of all normalized predicates that take
0 ∈ D (no information) to 1 ∈ L (complete truth). See [10] also for applications
of monotonic predicates to denotational semantics of programming languages.
We mention them because they provide nontrivial and important examples of
complete dually continuous L-semimodules and L-convex compacta, which, as
will be shown below, are also free in categorical sense.

Both M [L]D and M[L]D are completely distributive lattices, hence they are con-
tinuous and dually continuous lattices. It is also clear that all infima and finite
suprema of functions in M [L]D and M[L]D, including the pairwise joins m1 ⊕̄m2,
are calculated argumentwise, whereas the supremum of a collection {mi | i ∈ I}
of elements of these lattices is equal to

(sup
i∈I

mi)(d) = inf{sup
i∈I

mi(d
′) | d′ ∈ D, d′ ≪ d}, d ∈ D.

If the multiplication ∗ : L×L → L is Lawson continuous, then by [18, Corollaries
5.8, 5.9] (M [L], ⊕̄, ⊙̄) with the operations

(m1 ⊕̄m1)(d) = m1(d)⊕m2(op), m1, m2 ∈ M [L]D, d ∈ D,

(α ⊛̄m)(d) = α ∗m(d), m ∈ M [L]D, d ∈ D,

is a compact Hausdorff Lawson (L,⊕, ∗)-semimodule. The same applies to
(M[L], ⊕̄, ⊛̄), where ⊕̄ is identical, but

(α ⊙̄m)(d) =

{

α ∗m(d), d 6= 0,

1, d = 0,
m ∈ M[L]D, d ∈ D.

For a special, but important, case ∗ = ⊗, the semimodules (M [L]D, ⊕̄, ⊙̄) and
(M[L]D, ⊕̄, ⊛̄) are even L-biconvex compacta [18, Proposition 8.4].

Let X be a compactum, ExpX the set of all closed subsets of X , and expX =
ExpX \ {∅}. If ExpX and expX are ordered by the reverse inclusion, i.e.,
A 6 B ⇐⇒ B ⊂ A, we obtain the poset Exp

⊃
X , which is a continuous lattice,

hence a domain with a bottom element, and a complete continuous semilattice
exp

⊃
X . The Lawson topologies on ExpX and expX are the famous Vietoris

topologies [24]. Now we substitute exp
⊃
X for D in M [L]D and Exp

⊃
X for D in

M[L]D. What follows is a description of the obtained posets.

Let X be a set, F be an algebra of subsets of X , L be a partially ordered set with
a bottom element 0 and a top element 1. A function c : F → L is a plausibility
measure [8] if:

(1) c(∅) = 0, c(X) = 1; and
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(2) A ⊂ B, A,B ∈ F imply c(A) 6 c(B) in L.

We impose additional restriction on X , L and c, and we obtain the definition of
a lattice-valued capacity. In the sequel let L be a compact Lawson lattice [13]
with α ⊕ β and α ⊗ β being the pairwise supremum and infimum of α, β ∈ L, a
bottom element 0 and a top element 1 (although some of the following definitions
and statements are valid under weaker restrictions). If f, g are L-valued function
with the same domain M and α ∈ L, then functions f ⊕ g, f ⊗ g, α ⊕ f and
α⊗ f with the domain M are defined by the formulae (f ⊕ g)(x) = f(x)⊕ g(x),
(f ⊗ g)(x) = f(x)⊗ g(x), (α ⊕ f)(x) = α ⊕ f(x), (α ⊗ f)(x) = α ⊗ f(x) for all
x ∈ M .

Let X be a compact Hausdorff space. A function c : ExpX → L is called
an L-valued capacity [17] (or an L-capacity for short) on a compactum X if the
following hold:

1. c(∅) = 0; and

2. for each closed subsets F , G in X , the inclusion F ⊂ G implies c(F ) 6 c(G)
(monotonicity);

3. if the value c(F ) for a closed set F ⊂ X belongs to an open set V ⊂ L, then
there is an open set W ⊃ F such that c(G) ∈ V ↓ for all closed sets G ⊂ X ,
G ⊂ W (upper semicontinuity).

A capacity c on X is called normalized if c(X) = 1.

Denote the set of all L-valued capacities on a compactum X by MLX , and
let MLX be the subset of all normalized L-capacities. Observe that MLX =
M [L](exp⊃

X), MLX = M[L](Exp⊃
X), i.e., a (normalized) L-valued capacity is

the same as a (normalized) L-fuzzy monotonic predicate on respectively exp
⊃
X

and Exp
⊃
X . This immediately implies that MLX and MLX are compact Haus-

dorff Lawson semimodules with ⊕̄ being the argumentwise supremum and the
multiplications

(α ⊛̄ c)(F ) = α ∗ c(F ), c ∈ MLX,F ∈ ExpX,

and

(α ⊙̄ c)(F ) =

{

α ∗ c(F ), F 6= X,

1, F = X,
c ∈ MLX,F ∈ ExpX,

respectively, and, for ∗ = ⊕, they are L-biconvex compacta.

It was also proved in [17] that a subbase that consists of all sets of the form

O+(U, V ) = {c ∈ MLX | there is F ⊂
cl
U such that c(F ) > α for some α ∈ V }

= {c ∈ MLX | there is F ⊂
cl
U, c(F ) ∈ V ↑},

where U ⊂
op

X , V ⊂
op

L, and

O−(F, V ) = {c ∈ MLX | c(F ) 6 α for some α ∈ V }

= {c ∈ MLX | c(F ) ∈ V ↓},
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where F ⊂
cl
X , V ⊂

op
L, determines a compact Hausdorff topology on MLX such

that the latter set is a completely distributive lattice. This implies that this
topology coincides with the Lawson topology and the dual Lawson topology on
MLX .

We call an L-valued capacity c on X a ∪-capacity (a ∩-capacity) if c(A ∪ B) =
c(A)⊕ c(B) (resp. c(A ∩ B) = c(A)⊗ c(B)) for all A,B ⊂

cl
X . For an L-valued

∪-capacity c and F ⊂
cl

X we have c(F ) = sup{c({x}) | x ∈ F}. In the sequel

we shall simplify the notation by writing c(x) for c({x}), if c is a ∪-capacity.
The obtained function c : X → L is upper semicontinuous, and sup c = 1 if and
only if c is normalized. Conversely, given an upper normalized semicontinuous
function c : X → L with sup c = 1, we determine a normalized ∪-capacity by
the formula c(F ) = sup{c(x) | x ∈ F}. Therefore we will identify normalized
L-valued ∪-capacities with u.s.c. functions c : X → L such that sup c = 1.

We denote byM∪LX andM∩LX the spaces of all normalized L-valued ∪-capacities
and all normalized L-valued ∩-capacities. It is straightforward to prove that
M∪LX andM∩LX are closed inMLX . The set M∪LX in the (L,⊕, ∗)-semimodule
(MLX, ⊕̄, ⊙̄) is not a subsemimodule but an (L,⊕, ∗)-convex subset, therefore is
an (L,⊕, ∗)-convex compactum.

For a compactum X , there is an embedding ηLX : X →֒ MLX :

ηLX(x) = δx, δx(F ) =

{

1, if x ∈ F

0, if x /∈ F
, x ∈ X,F ⊂

cl
X,

here δx is the Dirac measure concentrated at x. Since ηLX(X) ⊂ M∪LX , we
restrict ηLX to the embedding η∪LX : X →֒ M∪LX . Hence we consider X as
a subspace of an L-biconvex compactum (MLX, ⊕̄, ⊙̄) and of an (L,⊕, ∗)-convex
compactum M∪LX .

Propositions 8.1 and 9.4 [18] imply (if we substitute exp
⊃
X for D) respectively:

Proposition 6.1. Let (L,⊕,⊗) be a completely distributive lattice. For a com-
pactum X the L-biconvex compactum (MLX, ⊕̄, ⊙̄) is free over X, i.e., for a con-
tinuous mapping ϕ : X → K into an L-biconvex compactum its unique continuous
biaffine extension Φ : MLX → K is determined by the formula

Φ(c) = sup
F∈expX

c(F ) ∗̄ inf ϕ(F )

for all c ∈ MLX.

Proposition 6.2. Let (L,⊕, ∗) be a completely distributive quantale with the
Lawson continuous multiplication. For a compactum X the (L,⊕, ∗)-convex com-
pactum M∪LX is free over X, i.e., for a continuous mapping ϕ : X → K
into an (L,⊕, ∗)-convex compactum its unique continuous affine extension Φ :
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M∪LX → K is determined by the formula

Φ(c) =
⊕̄

x∈X
c({x}) ∗̄ϕ(x)

for all c ∈ M∪LX.

The two latter statements are analogues of the well known fact that the space
PX of all probability measures on a compactum X is a free convex compactum
over X . Recall that

PX = {m ∈ M[0,1]X | m(A ∪B) +m(A ∩B) = m(A) +m(B) for all A,B ⊂
cl
X}

consists of all normalized σ-additive regular measures on X and is a closed subset
of M[0,1]X . The subspace PX becomes a convex compactum in the obvious way:
the probability measure λ1m1+ . . . λnmn, for λ1, . . . , λn ∈ [0, 1], λ1+ · · ·+λn = 1,
and m1, . . . , mn ∈ PX , is the set function that sends each F ⊂

cl
X to λ1m1(F ) +

. . . λnmn(F ). Given a continuous mapping ϕ from X to a convex compact set K
in a locally convex vector topological space N , we can calculate its unique affine
continuous extension Φ : PX → K as Φ(m) =

∫

X
ϕ(x) dm(x) for all m ∈ PX ,

where the latter expression is the integral in N of the vector function ϕ.

7. Monad of lattice-valued capacities, monads of lattice-valued ∪-
capacities, and their algebras

The above mentioned constructions of function spaces are functorial, cf. [2, 14]
for the definitions of functor and natural transformation. We extend ML to
a functor of (normalized) L-valued capacities in the category Comp of com-
pact Hausdorff spaces and their continuous mappings in an obvious way: if
f : X → Y is a continuous map of compacta, c ∈ MLX and F ⊂

cl
Y , then

the mapping MLf : MLX → MLY is defined as MLf(c)(F ) = c(f−1(F )). Since
MLf(M∪LX) ⊂ M∪LY , MLf(M∩LX) ⊂ M∩LY , we denote by M∪Lf : M∪LX →
M∪LY and M∩Lf : M∩LX → M∩LY the restrictions of MLf for each f : X → Y
in Comp and obtain also subfunctors M∪L,M∩L of the functor ML. If L = [0, 1],
then similarly the subfunctor P of M[0,1] appears, which is the famous probability
measure functor [24].

As we know from the category theory, each construction of free objects leads to
a monad [2, 14]. A monad T in a category C consists of a functor T : C → C
(the functorial part of the monad) and natural transformations η : 1C → T
(the unit), µ : T 2 → T (the multiplication) such that the equalities µX ◦ ηTX =
µX ◦ TηX = 1TX , µX ◦ µTX = µX ◦ TµX are valid for all objects X in the
category C. It is often convenient to visualize these equalities as commutative
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diagrams:

TX
ηTX

//

1TX ##H
H

H

H

H

H

H

H

H

TηX
��

T 2X

µX

��

T 2X
µX

// TX

T 3X
TµX

//

µTX
��

T 2X

µX

��

T 2X
µX

// TX

Now we briefly describe monads for ML, M∪L and P . The units ηL : 1Comp → ML

and η∪L : 1Comp → M∪L are respectively the collections of embeddings ηLX : X →
MLX and η∪LX : X → M∪LX for all compacta X . Since η[0,1]X(X) ⊂ PX ,
the restriction ηPX : X → PX of η[0,1]X exists for each compactum X , thus
the required unit ηP : 1Comp → P is obtained.

To construct a mapping ML
2X → MLX , observe that 1MLX : MLX → MLX is

a continuous mapping from the compactumMLX into the L-biconvex compactum
MLX , hence by Proposition 6.1 there is its unique continuous L-biaffine extension
µLX : ML

2X → MLX . Similarly µ∗
∪LX : M∪L

2X → M∪LX and µPX : P 2X →
PX are respectively the unique continuous (L,⊕, ∗)-affine extension of 1M∪LX :
M∪LX → M∪LX and the unique continuous affine (in the usual sense) extension
of 1PX : PX → PX .

It is routine to verify that

µLX(C)(F )

= sup{α ∈ L | C({c ∈ MLX | c(F ) > α}) > α}, C ∈ ML
2X,F ⊂

cl
X.

Sometimes it is more convenient to use an equivalent formula:

µLX(C)(F )

= sup{C(F)⊗ inf{c(F ) | c ∈ F} | F ⊂
cl
MLX}, C ∈ ML

2X,F ⊂
cl
X.

The component of the natural transformation µ∗
∪L : M2

∪L → M∪L is equal to

µ∗
∪LX(C)(F )

= sup{C(F) ∗ inf{c(F ) | c ∈ F} | F ⊂
cl
M∪LX}, C ∈ M∪L

2X,F ⊂
cl
X.

The components of µP were described and studied in detail in [24].

Thus the monad of L-valued capacities ML, the monad M∗
∪L (which depends on

the multiplication ∗), and the probability measure monad P are constructed.

Observe that for C ∈ M∪L(M∪LX) and F ⊂
cl
X we have

µLX(C)(F ) = sup{C(c)⊗ sup
F

c | c ∈ M∪LX}.

This implies
µLX(C)(F ∪G) = µLX(C)(F )⊕ µLX(C)(G)
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for closed F,G ⊂ X . Thus µLX(M∪L(M∪LX)) ⊂ M∪LX . We define the mapping
µ∪LX : X → M∪LX for each compactum X as the restriction of M∪LX and
obtain the submonad M∪L = (M∪L, η∪L, µ∪L) M [11]. It is straightforward to
verify that the monad M∪L is a special case of M∗

∪L = (M∪L, η∪L, µ
∗
∪L) for ∗ = ⊗.

We also need the notion of algebra for a monad T = (T, η, µ) in a category C. It
is a pair of an object X of C and a mapping b : TX → X such that b ◦ ηX = 1X ,
b ◦ Tb = b ◦ µX . A morphism from T-algebra (X, b) to a T-algebra (X ′, b′) is
a morphism f : X → X ′ in C such that b′ ◦Tf = f ◦ b. Thus T-algebras and their
morphisms form a category, which is called the Eilenberg-Moore category [6] and
denoted CT.

Consider the monad P. If K is a convex compactum, then the identity mapping
from a compactum K to a convex compactum K has a unique continuous affine
extension b : PK → K, which is called barycenter mapping. Then (K, b) is a P-
algebra, and a theorem by Świrszcz [23] asserts that all P-algebras are obtained
in this way. Hence the category of convex compacta Conv is “the same” as
the category of P-algebras, or, categorically speaking, Conv ismonadic over Comp.

The categories of algebras for the monad of real-valued (i.e., for L = [0, 1]) regular
normed capacities [28] and two its submonads were analogously described in [19]
in terms of (max,min)-idempotent versions of convexity. Our work also follows
the line of similar results of Day [5], Radul [20], Wyler [25], Zarichyi [26], and
others.

This paper presents generalizations of results of [19] to capacities with values in
compact Hausdorff Lawson lattices. We are going to show that the Eilenberg-
Moore categories of algebras for the monadsM∗

∪L andML are respectively the cat-
egories of (L,⊕, ∗)-convex compacta and L-biconvex compacta.

Theorem 7.1. Let X be a compactum and L a compact Lawson lattice. Then
there exists a one-to-one correspondence between continuous maps ξ : M∪LX → X
such that the pair (X, ξ) is an M∗

∪L-algebra, and continuous L-convex combina-
tions ic that make X an L-convex compactum.

If (X, ic) is an L-convex compactum, then the property of local convexity holds:
for a neighborhood U of any element x ∈ X there is a neighborhood V of x,
V ⊂ U , such that α0y0 ⊕ . . . αnαn ∈ V for all y0, . . . , yn ∈ V , (α0, . . . , αn) ∈ ∆n

⊕
.

Theorem 7.2. Let (X, ξ), (X ′, ξ′) be M∪L∗-algebras, and ic and ic′ the respec-
tive idempotent convex combinations. Then a continuous map f : X → Y is a
morphism of M∪-algebras (X, ξ) → (X ′, ξ′) if and only if f : (X, ic) → (X ′, ic′)
is (L,⊕, ∗)-affine.

In particular, such results are valid for M∪L-algebras.

Theorem 7.3. Let X be a compactum. Then there is a one-to-one correspon-
dence between:

(1) continuous maps ξ : MLX → X such that the pair (X, ξ) is an ML-algebra;
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(2) quadruples (⊕̄,⊗, ⊗̄,⊕) of continuous operations ⊕̄ : X × X → X, ⊗ :
L×X → X, ⊗̄ : X ×X → X, ⊕ : L ×X → X such that (X, ⊕̄,⊗, ⊗̄,⊕)
is an L-idempotent biconvex compactum; and

(3) triples (⊕̄,⊗, p) of continuous maps ⊕̄ : X × X → X, ⊗̄ : X × X → X,
p : L → X such that
(a) (X, ⊕̄, ⊗̄) is a Lawson lattice; and
(b) p : (L,⊕) → (X, ⊕̄) is a complete bottom- and top-preserving lattice

morphism.

In the case (2 ) the following property of local biconvexity holds: for a neighbor-
hood U of any element x ∈ X there is a neighborhood V of x, V ⊂ U , such that
(α0⊗y0) ⊕̄(α1⊗y1) ⊕̄ . . . ⊕̄(αn⊗yn) ∈ V , (β0⊕y0) ⊗̄(β1⊕y1) ⊗̄ . . . ⊗̄(βn⊕yn) ∈ V
whenever y0, y1, . . . , yn ∈ V , α0, α1, . . . , αn, β0, β1, . . . , βn ∈ L, α0⊕α1⊕. . .⊕αn =
1, β0 ⊗ β1 ⊗ . . .⊗ βn = 0.

Theorem 7.4. Let (X, ξ), (X ′, ξ′) be ML-algebras and quadruples (⊕̄,⊗, ⊗̄,⊕)
of continuous operations be determined on X and X ′ by ξ and ξ′ resp. (in the
sense of Theorem 7.3). Then a continuous map f : X → Y is a morphism of ML-
algebras (X, ξ) → (X ′, ξ′) if and only if f : (X, ⊕̄,⊗, ⊗̄,⊕) → (X ′, ⊕̄,⊗, ⊗̄,⊕) is
biaffine.

We conclude that the category (L,⊕, ∗)-Conv of L-convex compacta and the
category L-BiConv of L-idempotent biconvex compacta are monadic over the
category Comp of compacta. Thus L-idempotent versions of convexity are proper
analogues of the usual convexity in algebraic, topological and categorical aspects.

8. Proofs of theorems

Proof of Theorem 5.1. Sufficiency is obvious. We briefly outline a construc-
tion of N for a given (X, ic) which is required to show necessity. Let for K ∈
exp(X × L) a mapping grK : X → X be defined by the formula

grK(y) = sup{1y ⊕̄αx | (x, α) ∈ K}, y ∈ X.

We write K ∼ K ′ for K,K ′ ∈ exp(X × L) if grK = grK ′. The equivalence
relation “∼” is closed in exp(X × L) × exp(X × L), therefore the quotient set
N = exp(X × L)/∼ is a compactum. We define operations ⊕̄ : N ×N → N and
∗̄ : L×N → N by the formulae (by [K] the equivalence class of K ∈ exp(X ×L)
is denoted): [K] ⊕̄[K ′] = [K ∪ K ′], α ∗̄[K] = [{(x, α ∗ β) | (x, β) ∈ K}] for
K,K ′ ∈ exp(X × L), α ∈ L. The embedding e : X →֒ N is defined by the
formula e(x) = [{(x, 1)}], x ∈ X . It is straightforward to show that N satisfies
the requirements.

Proof of Theorem 7.1. Let ξ : M∪LX → X be such that the pair (X, ξ) is
an M∗

∪L-algebra. For x0, . . . , xn ∈ X , (α0, . . . , αn) ∈ ∆n
⊕
we put

ic(x0, . . . , xn, α0, . . . , αn) = α0x0 ⊕ α1x1 ⊕ . . .⊕ αnxn

= ξ((α0 ∗ δx0)⊕ (α1 ∗ δx1)⊕ . . .⊕ (α0 ∗ δxn
)).
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Then ic is continuous for all n ∈ {0, 1, 2, . . . }, and ic(x, 1) = ξ(δx) = ξ◦ηLX(x) =
x. Let m,n ∈ {0, 1, 2, . . .}, x0, x1, . . . , xn ∈ X , (α0, α1, . . . , αm) ∈ ∆m

⊕
and σ be a

mapping {0, 1, . . .m} → {0, 1, . . . , n}. If βk = sup{αi | 0 6 i 6 m, σ(i) = k} for
k = 0, 1, . . . , n, then

(α0 ∗ δxσ(0)
)⊕ (α0 ∗ δxσ(0)

)⊕ . . .⊕ (α0 ∗ δxσ(0)
)

= (β0 ∗ δx0)⊕ (β0 ∗ δx0)⊕ . . .⊕ (β0 ∗ δx0),

therefore

α0xσ(0) ⊕ α1xσ(1) ⊕ . . .⊕ αmxσ(m) = β0x0 ⊕ β1x1 ⊕ . . .⊕ βnxn.

Now let xi
j ∈ X , (α0, α1, . . . , αn) ∈ ∆n

⊕
, (βi

0, β
i
1, . . . , β

i
ki
) ∈ ∆ki

⊕
for i = 0, 1, . . . , n.

We define a capacity C ∈ M∪L(M∪LX) to be equal to

(α0 ∗ δ(β0
0∗δx0

0
)⊕...⊕(β0

k0
∗δ

x0
k0

))⊕ (α1 ∗ δ(β1
0∗δx1

0
)⊕...⊕(β1

k1
∗δ

x1
k1

))⊕ . . .

⊕ (αn ∗ δ(βn

0 ∗δxn0
)⊕...⊕(βn

kn
∗δxn

kn

)).

By the definition of M∗
∪L-algebra we have ξ◦M∪Lξ(C) = ξ◦µ∪L(C), which implies

the required “big associative law”. We have proved that ic is a continuous L-
idempotent convex combination. For any A ⊂

cl
X we have supA = ξ(δA), where

δA(F ) =

{

1, if F ∩A 6= ∅,

0, if F ∩A = ∅,
F ⊂

cl
X,

and δA depends on A continuously w.r.t. the Vietoris topology. Therefore supA
continuously depends on A, which implies that X is an upper Lawson semilattice
and thus is an (L,⊕, ∗)-convex compactum.

If a continuous mapping ξ′ : M∪LX → X determines the same L-convex combi-
nation by the formula

ic(x0, . . . , xn, α0, . . . , αn) = α0x0 ⊕̄α1x1 ⊕̄ . . . ⊕̄αnxn

= ξ′((α0 ∗ δx0)⊕ (α1 ∗ δx1)⊕ . . .⊕ (α0 ∗ δxn
)),

then it coincides with ξ at the set of all L-capacities of the form (α0 ∗ δx0)⊕ (α1 ∗
δx1)⊕ . . .⊕ (α0 ∗ δxn

), which are dense in M∪LX , hence ξ′ = ξ.

Now let X be an (L,⊕, ∗)-convex compactum with the continuous L-convex com-
bination ic. Since M∪LX is a free (L,⊕, ∗)-convex compactum over X , there is
a unique continuous affine extension ξ : M∪LX → X of the identity mapping
on X . Because of the way the monad M∗

∪L is constructed, the pair (X, ξ) is
a M∗

∪L-algebra.

Let U be a neighborhood of x in X . The continuity of ξ and the equality
ξ(δx) = x imply the existence of a neighborhood Ũ ⊂ M∪LX , of the capacity
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δx, such that for all c ∈ Ũ we have ξ(c) ∈ U . There is also a neighborhood
Ṽ ∋ x such that for all y0, y1, . . . , yn ∈ Ṽ , (α0, α1, . . . , αn) ∈ ∆n

L
the inclusion

α0δy0 ⊕̄α1δy1 ⊕̄ . . . ⊕̄αnδyn ∈ Ũ is valid. It is easy to verify that the set

V = {α0y0 ⊕̄α1y1 ⊕̄ . . . ⊕̄αnyn | n ∈ {0, 1, . . .},

(α0, α1, . . . , αn) ∈ ∆n
L
, y0, y1, . . . , yn ∈ Ṽ }

is a neighborhood of x that is required for the local convexity of X .

Proof of Theorem 7.2. Recall that a mapping f : (X, ic) → (X ′, ic′) is affine
if and only if

f(ic(x0, . . . , xn, α0, . . . , αn)) = ic′(f(x0), . . . , f(xn), α0, . . . , αn)

for all x0, x1, . . . , xn ∈ X , (α0, α1, . . . , αn) ∈ ∆n
L
. Taking into account the formulae

for ic, ic′ via ξ, ξ′, we obtain an equivalent equality

f ◦ ξ
(
(α0 ∗ δx0)⊕ (α1 ∗ δx1)⊕ . . .⊕ (α0 ∗ δxn

)
)

= ξ′
(
(α0 ∗ δf(x0))⊕ (α1 ∗ δf(x1))⊕ . . .⊕ (α0 ∗ δf(xn))

)
,

i.e., f ◦ ξ(c) = ξ′ ◦ M∪Lf(c) for all capacities of the form c = (α0 ∗ δx0) ⊕ (α1 ∗
δx1) ⊕ . . . ⊕ (α0 ∗ δxn

). Since such capacities are dense in M∪LX , f being affine
is equivalent to the equality f ◦ ξ(c) = ξ′ ◦ M∪Lf(c) for all c ∈ M∪LX , i.e., to
the statement that f is a morphism of M∗

∪L-algebras.

Proof of Theorem 7.3. The equivalence between (2) and (3) has already been
explained at the end of Section 5.

Assume (2), then X is an L-biconvex compactum, and MLX is a free L-biconvex
compactum over X . Hence there is a unique continuous biaffine extension ξ :
MLX → X of the identity mapping on X . Recall how the monad ML was
constructed and conclude that the pair (X, ξ) is a ML-algebra, i.e., (1) holds.

Now let (X, ξ) be a ML-algebra. We use the fact that the inclusion hyperspace
monad G [20] is a submonad of the monadML. The components of the embedding
iL : G →֒ ML are of the form

iLX(A)(F ) =

{

1, if F ∈ A,

0 otherwise,
F ⊂

cl
X.

Hence (X, ξ ◦ iLX) is a G-algebra. By Theorem 2 of [20] the operations ⊕̄ :
X×X → X , ⊗̄ : I×X → X that are defined by the formulae x ⊕̄ y = ξ(δx∨δy) =
iLX(ηGX(x)∩ηGX(y)) and x ⊗̄ y = ξ(δx∧δy) = iLX(ηGX(x)∪ηGX(y)) are such
that (X, ⊕̄, ⊗̄) is a completely distributive lattice. Its bottom and top elements
are equal respectively to 0̄ = ξ(c0) and 1̄ = ξ(c1), where c0 = iL({X}) and
c1 = iL(expX) are respectively the least and the greatest of the normalized L-
capacities.
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The monad M∪L is also a submonad of ML, therefore X is a M∪L-algebra, i.e., is
an (L,⊕,⊗)-convex compactum with the following (L,⊕,⊗)-convex combination:

ic(x0, . . . , xn, α0, . . . , αn) = α0x0 ⊕̄α1x1 ⊕̄ . . . ⊕̄αnxn

= ξ((α0 ⊗ δx0)⊕ (α1 ⊗ δx1)⊕ . . .⊕ (α0 ⊗ δxn
))

for all x0, . . . , xn ∈ X , (α0, . . . , αn) ∈ ∆n
L
. Note that 1x ⊕̄ 1y coincides with

the expression x ⊕̄ y defined above, and X contains the bottom element 0̄, hence
X is complete dually continuous (L,⊕,⊗)-semimodule with the multiplication
⊙̄ : L×X → X defined as follows:

α ⊙̄x = 10̄ ⊕̄αx = ξ(c0 ⊕ αδx) = ξ(α ⊙̄ δx), α ∈ L, x ∈ X,

the latter product is in MLX .

Observe that
c0 ⊕ αδx = µLX(δc0 ⊕ δαc1⊗δx),

hence

α ⊙̄x = ξ(c0 ⊕̄αδx) = ξ ◦ µLX(δc0 ⊕ δαc1⊗δx)

= ξ ◦MLξ(δc0 ⊕ δαc1⊗δx) = ξ(δ0̄ ⊕ δα1̄ ⊗̄ x) = 0̄ ⊕̄(α1̄ ⊗̄x) = α1̄ ⊗̄x,

therefore (X, ⊕̄, ⊙̄) is an L-biconvex compactum. It is straightforward to verify
that the obtained operations ⊕̄, ⊙̄ are the unique ones that determine a structure
of an L-biconvex compactum on X such that ξ is a continuous biaffine extension
of the identity mapping X → X . Thus (1) implies (2).

To show the local biconvexity for operations ⊕̄, ⊙̄, ⊗̄,
¯
⊙ that satisfy (2), observe

that for each neighborhood U of a point x the local convexity of (X, ⊕̄, ⊙̄)
implies the existence of a neighborhood U ′ of this point such that U ′ ⊂ U
and (α0 ⊙̄x0) ⊕̄ . . . ⊕̄(αn ⊙̄xn) ∈ U ′ for all n ∈ {0, 1, . . . }, x0, . . . , xn ∈ U ′,
α0, . . . , αn ∈ L, α0 ⊕ . . . ⊕ αn = 1. Next, this neighborhood by the local
convexity of (X, ⊗̄,

¯
⊙) contains a neighborhood U ′′ of the point x such that

(β0 ¯
⊙x0) ⊗̄ . . . ⊗̄(βn ¯

⊙ xn) ∈ U ′ for all n ∈ {0, 1, . . . }, x0, . . . , xn ∈ U ′, β0, . . . , βn ∈
L, β0 ⊗ . . .⊗ βn = 0. Then the set

V = {(α0 ⊙̄x0) ⊕̄ . . . ⊕̄(αn ⊙̄xn) |

n ∈ {0, 1, . . . }, α0, . . . , αn ∈ L, α0 ⊕ . . .⊕ αn = 1, x0, x1, . . . , xn ∈ Ũ ′′}

is a required neighborhood of the point x.

It is also straightforward to modify the proof of Theorem 7.2 to obtain Theo-
rem 7.4.
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O. Nykyforchyn, D. Repovš / L-Convexity and Lattice-Valued Capacities 51

[2] M. Barr, C. Wells: Toposes, Triples and Theories, Springer, New York (1988).

[3] W. Briec, C. Horvath: B-convexity, Optimization 53(2) (2004) 103–127.

[4] G. Cohen, S. Gaubert, J.-P. Quadrat: Duality and separation theorems in idem-
potent semimodules, Linear Algebra Appl. 379 (2004) 395–422.

[5] A. Day: Filter monads, continuous lattices and closure systems, Can. J. Math.
27(1) (1975) 50–59.

[6] S. Eilenberg, I. C. Moore: Adjoint functors and triples, Ill. J. Math. 9(3) (1965)
381–398.

[7] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott: Con-
tinuous Lattices and Domains, Encyclopedia of Mathematics and its Applications
93, Cambridge University Press, Cambridge (2003).

[8] N. Friedman, J. Halpern: Plausibility Measures: A User’s Guide, in: Uncertainty in
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