XOR Linked List - Find the middle node Last Updated : 23 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Given an XOR linked list, the task is to find the middle node of the given XOR linked list. Examples: Input: 4 –> 7 –> 5 Output: 7 Explanation: The middle node of the given XOR list is 7. Input: 4 –> 7 –> 5 –> 1 Output: 7 5 Explanation: The two middle nodes of the XOR linked list with even number of nodes are 7 and 5. Approach: Follow the steps below to solve the problem: Traverse to (Length / 2)th node of the Linked List.If the number of nodes is found to be odd, then print (Length + 1) / 2 th node as the only middle node.If the number of nodes is found to be even, then print both Length / 2 th node and (Length / 2) + 1 th node as the middle nodes.Below is the implementation of the above approach: C++ // C++ program to implement the above approach #include <bits/stdc++.h> #include <inttypes.h> using namespace std; // Structure of a node // in XOR linked list struct Node { // Stores data value // of a node int data; // Stores XOR of previous // pointer and next pointer struct Node* nxp; }; // Function to find the XOR of two nodes struct Node* XOR(struct Node* a, struct Node* b) { return (struct Node*)((uintptr_t)(a) ^ (uintptr_t)(b)); } // Function to insert a node with // given value at given position struct Node* insert(struct Node** head, int value) { // If XOR linked list is empty if (*head == NULL) { // Initialize a new Node struct Node* node = new Node; // Stores data value in // the node node->data = value; // Stores XOR of previous // and next pointer node->nxp = XOR(NULL, NULL); // Update pointer of head node *head = node; } // If the XOR linked list // is not empty else { // Stores the address // of current node struct Node* curr = *head; // Stores the address // of previous node struct Node* prev = NULL; // Initialize a new Node struct Node* node = new Node(); // Update curr node address curr->nxp = XOR(node, XOR(NULL, curr->nxp)); // Update new node address node->nxp = XOR(NULL, curr); // Update head *head = node; // Update data value of // current node node->data = value; } return *head; } // Function to print the middle node int printMiddle(struct Node** head, int len) { int count = 0; // Stores XOR pointer // in current node struct Node* curr = *head; // Stores XOR pointer of // in previous Node struct Node* prev = NULL; // Stores XOR pointer of // in next node struct Node* next; int middle = (int)len / 2; // Traverse XOR linked list while (count != middle) { // Forward traversal next = XOR(prev, curr->nxp); // Update prev prev = curr; // Update curr curr = next; count++; } // If the length of the // linked list is odd if (len & 1) { cout << curr->data << " "; } // If the length of the // linked list is even else { cout << prev->data << " " << curr->data << " "; } } // Driver Code int main() { /* Create following XOR Linked List head --> 4 –> 7 –> 5 */ struct Node* head = NULL; insert(&head, 4); insert(&head, 7); insert(&head, 5); printMiddle(&head, 3); return (0); } C // C program to implement // the above approach #include <inttypes.h> #include <stdio.h> #include <stdlib.h> // Structure of a node // in XOR linked list struct Node { // Stores data value // of a node int data; // Stores XOR of previous // pointer and next pointer struct Node* nxp; }; // Function to find the XOR of two nodes struct Node* XOR(struct Node* a, struct Node* b) { return (struct Node*)((uintptr_t)(a) ^ (uintptr_t)(b)); } // Function to insert a node with // given value at given position struct Node* insert(struct Node** head, int value) { // If XOR linked list is empty if (*head == NULL) { // Initialize a new Node struct Node* node = (struct Node*)malloc( sizeof(struct Node)); // Stores data value in // the node node->data = value; // Stores XOR of previous // and next pointer node->nxp = XOR(NULL, NULL); // Update pointer of head node *head = node; } // If the XOR linked list // is not empty else { // Stores the address // of current node struct Node* curr = *head; // Stores the address // of previous node struct Node* prev = NULL; // Initialize a new Node struct Node* node = (struct Node*)malloc( sizeof(struct Node)); // Update curr node address curr->nxp = XOR( node, XOR(NULL, curr->nxp)); // Update new node address node->nxp = XOR(NULL, curr); // Update head *head = node; // Update data value of // current node node->data = value; } return *head; } // Function to print the middle node int printMiddle(struct Node** head, int len) { int count = 0; // Stores XOR pointer // in current node struct Node* curr = *head; // Stores XOR pointer of // in previous Node struct Node* prev = NULL; // Stores XOR pointer of // in next node struct Node* next; int middle = (int)len / 2; // Traverse XOR linked list while (count != middle) { // Forward traversal next = XOR(prev, curr->nxp); // Update prev prev = curr; // Update curr curr = next; count++; } // If the length of the // linked list is odd if (len & 1) { printf("%d", curr->data); } // If the length of the // linked list is even else { printf("%d %d", prev->data, curr->data); } } // Driver Code int main() { /* Create following XOR Linked List head --> 4 –> 7 –> 5 */ struct Node* head = NULL; insert(&head, 4); insert(&head, 7); insert(&head, 5); printMiddle(&head, 3); return (0); } Java import java.util.ArrayList; // Structure of a node in XOR linked list class Node { int value; int npx; // XOR of next and previous node addresses public Node(int value) { this.value = value; this.npx = 0; } } // XOR Linked List class class XorLinkedList { Node head; // head of the XOR linked list Node tail; // tail of the XOR linked list ArrayList<Node> nodes; // list to keep track of all nodes in the XOR linked list // Constructor public XorLinkedList() { this.head = null; this.tail = null; this.nodes = new ArrayList<>(); } // Function to insert a node with the given value void insert(int value) { // Initialize a new Node Node node = new Node(value); // Check if the XOR linked list is empty if (head == null) { // Update pointer of head node head = node; // Update pointer of tail node tail = node; } else { // Update curr node address head.npx = System.identityHashCode(node) ^ head.npx; // Update new node address node.npx = System.identityHashCode(head); // Update head head = node; } // Add the node to the list nodes.add(node); } // Method to get the length of the linked list int length() { if (!isEmpty()) { int prevId = 0; Node node = head; int nextId = 1; int count = 1; while (nextId != 0) { nextId = prevId ^ node.npx; if (nextId != 0) { prevId = System.identityHashCode(node); node = getTypeCastedNode(nextId); count++; } else { return count; } } } return 0; } // Function to print the middle element(s) of the XOR Linked List void printMiddle(int length) { if (head != null) { int prevId = 0; Node node = head; int nextId = 1; // Traverse XOR linked list int middle = length / 2; int count = 0; Node prev = null; while (count != middle) { count++; // Forward traversal nextId = prevId ^ node.npx; if (nextId != 0) { // Update prev prevId = System.identityHashCode(node); // Update curr prev = node; node = getTypeCastedNode(nextId); } else { return; } } if (length % 2 != 0) { System.out.print(node.value + " "); } else { System.out.print(prev.value + " " + node.value + " "); } } } // Method to check if the linked list is empty boolean isEmpty() { return head == null; } // Method to return a new instance of type Node getTypeCastedNode(int id) { for (Node n : nodes) { if (System.identityHashCode(n) == id) { return n; } } return null; } } public class Main { public static void main(String[] args) { // Create XOR Linked List: head --> 4 <--> 7 <--> 5 XorLinkedList xorLinkedList = new XorLinkedList(); xorLinkedList.insert(4); xorLinkedList.insert(7); xorLinkedList.insert(5); // Reverse the XOR Linked List to give: head --> 5 <--> 7 <--> 4 int length = xorLinkedList.length(); xorLinkedList.printMiddle(length); } } Python3 # C program to implement # the above approach import ctypes # Structure of a node in XOR linked list class Node: def __init__(self, value): self.value = value self.npx = 0 # create linked list class class XorLinkedList: # constructor def __init__(self): self.head = None self.tail = None self.__nodes = [] # Function to insert a node with given value at given position def insert(self, value): # Initialize a new Node node = Node(value) # Check If XOR linked list is empty if self.head is None: # Update pointer of head node self.head = node # Update pointer of tail node self.tail = node else: # Update curr node address self.head.npx = id(node) ^ self.head.npx # Update new node address node.npx = id(self.head) # Update head self.head = node # push node self.__nodes.append(node) # method to get length of linked list def Length(self): if not self.isEmpty(): prev_id = 0 node = self.head next_id = 1 count = 1 while next_id: next_id = prev_id ^ node.npx if next_id: prev_id = id(node) node = self.__type_cast(next_id) count += 1 else: return count else: return 0 # Function to print elements of the XOR Linked List def printMiddle(self, length): if self.head != None: prev_id = 0 node = self.head next_id = 1 # Traverse XOR linked list middle = length // 2 count = 0 prev = None while count != middle: count = count + 1 # Forward traversal next_id = prev_id ^ node.npx if next_id: # Update prev prev_id = id(node) # Update curr prev = node node = self.__type_cast(next_id) else: return if length % 2 != 0: print(node.value, end = ' ') else: print(prev.value, node.value, end = ' ') # method to check if the linked list is empty or not def isEmpty(self): if self.head is None: return True return False # method to return a new instance of type def __type_cast(self, id): return ctypes.cast(id, ctypes.py_object).value # Create following XOR Linked List # head-->40<-->30<-->20<-->10 head = XorLinkedList() head.insert(4) head.insert(7) head.insert(5) # Reverse the XOR Linked List to give # head-->10<-->20<-->30<-->40 length = head.Length() head.printMiddle(length) # This code is contributed by Nidhi goel. C# // C# program for the above approach using System; using System.Collections.Generic; using System.Runtime.CompilerServices; // Structure of a node in XOR linked list public class Node { public int value; public int npx; // XOR of next and previous node addresses public Node(int value) { this.value = value; this.npx = 0; } } // XOR Linked List class public class XorLinkedList { Node head; // head of the XOR linked list List<Node> nodes; // list to keep track of all nodes in // the XOR linked list // Constructor public XorLinkedList() { this.head = null; this.nodes = new List<Node>(); } // Function to insert a node with the given value public void Insert(int value) { // Initialize a new Node Node node = new Node(value); // Check if the XOR linked list is empty if (head == null) { // Update pointer of head node head = node; } else { // Update curr node address head.npx = RuntimeHelpers.GetHashCode(node) ^ head.npx; // Update new node address node.npx = RuntimeHelpers.GetHashCode(head); // Update head head = node; } // Add the node to the list nodes.Add(node); } // Method to get the length of the linked list public int Length() { if (!IsEmpty()) { int prevId = 0; Node node = head; int nextId = 1; int count = 1; while (nextId != 0) { nextId = prevId ^ node.npx; if (nextId != 0) { prevId = RuntimeHelpers.GetHashCode(node); node = GetTypeCastedNode(nextId); count++; } else { return count; } } } return 0; } // Function to print the middle element(s) of the XOR // Linked List public void PrintMiddle(int length) { if (head != null) { int prevId = 0; Node node = head; int nextId = 1; // Traverse XOR linked list int middle = length / 2; int count = 0; Node prev = null; while (count != middle) { count++; // Forward traversal nextId = prevId ^ node.npx; if (nextId != 0) { // Update prev prevId = RuntimeHelpers.GetHashCode(node); // Update curr prev = node; node = GetTypeCastedNode(nextId); } else { return; } } if (length % 2 != 0) { Console.Write(node.value + " "); } else { Console.Write(prev.value + " " + node.value + " "); } } } // Method to check if the linked list is empty public bool IsEmpty() { return head == null; } // Method to return a new instance of type public Node GetTypeCastedNode(int id) { foreach(Node n in nodes) { if (RuntimeHelpers.GetHashCode(n) == id) { return n; } } return null; } } public class GFG { public static void Main(string[] args) { // Create XOR Linked List: head --> 4 <--> 7 <--> 5 XorLinkedList xorLinkedList = new XorLinkedList(); xorLinkedList.Insert(4); xorLinkedList.Insert(7); xorLinkedList.Insert(5); // Reverse the XOR Linked List to give: head --> 5 // <--> 7 <--> 4 int length = xorLinkedList.Length(); xorLinkedList.PrintMiddle(length); } } // This code is contributed by Susobhan Akhuli JavaScript // JavaScript program to implement the above approach class Node { constructor(value) { this.value = value; this.npx = 0; } } // create linked list class class XorLinkedList { // constructor constructor() { this.head = null; this.tail = null; this.__nodes = []; } // Function to insert a node with given value at given position insert(value) { // Initialize a new Node const node = new Node(value); // Check If XOR linked list is empty if (this.head === null) { // Update pointer of head node this.head = node; // Update pointer of tail node this.tail = node; } else { // Update curr node address this.head.npx = this.__getId(node) ^ this.head.npx; // Update new node address node.npx = this.__getId(this.head); // Update head this.head = node; } // push node this.__nodes.push(node); } // method to get length of linked list length() { if (!this.isEmpty()) { let prevId = 0; let node = this.head; let nextId = 1; let count = 1; while (nextId) { nextId = prevId ^ node.npx; if (nextId) { prevId = this.__getId(node); node = this.__typeCast(nextId); count += 1; } else { return count; } } } else { return 0; } } // Function to print elements of the XOR Linked List printMiddle(length) { if (this.head !== null) { let prevId = 0; let node = this.head; let nextId = 1; // Traverse XOR linked list const middle = Math.floor(length / 2); let count = 0; let prev = null; while (count !== middle) { count = count + 1; // Forward traversal nextId = prevId ^ node.npx; if (nextId) { // Update prev prevId = this.__getId(node); // Update curr prev = node; node = this.__typeCast(nextId); } else { return; } } if (length % 2 !== 0) { console.log(node.value); } else { console.log(prev.value, node.value); } } } // method to check if the linked list is empty or not isEmpty() { if (this.head === null) { return true; } return false; } // method to return a new instance of type __typeCast(id) { return ctypes.cast(id, ctypes.py_object).value; } // method to get the unique ID of an object __getId(obj) { return obj && obj.__unique_id__; } } // Create following XOR Linked List // head-->40<-->30<-->20<-->10 const head = new XorLinkedList(); head.insert(4); head.insert(5); head.insert(7); // Reverse the XOR Linked List to give // head-->10<-->20<-->30<-->40 const length = head.length(); head.printMiddle(length); //this is generated by chetanbargal Output7Time Complexity: O(N) Auxiliary Space: O(1) Comment More infoAdvertise with us Next Article Analysis of Algorithms D debarpan_bose_chowdhury Follow Improve Article Tags : DSA Bitwise-XOR Similar Reads Basics & PrerequisitesLogic Building ProblemsLogic building is about creating clear, step-by-step methods to solve problems using simple rules and principles. Itâs the heart of coding, enabling programmers to think, reason, and arrive at smart solutions just like we do.Here are some tips for improving your programming logic: Understand the pro 2 min read Analysis of AlgorithmsAnalysis of Algorithms is a fundamental aspect of computer science that involves evaluating performance of algorithms and programs. Efficiency is measured in terms of time and space.BasicsWhy is Analysis Important?Order of GrowthAsymptotic Analysis Worst, Average and Best Cases Asymptotic NotationsB 1 min read Data StructuresArray Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous 3 min read String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut 2 min read Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The 2 min read Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List: 2 min read Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first 2 min read Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems 2 min read Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most 4 min read Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of 3 min read Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this 15+ min read AlgorithmsSearching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input 2 min read Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ 3 min read Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution 14 min read Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get 3 min read Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net 3 min read Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of 3 min read Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit 4 min read AdvancedSegment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree 3 min read Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i 2 min read GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br 2 min read Interview PreparationInterview Corner: All Resources To Crack Any Tech InterviewThis article serves as your one-stop guide to interview preparation, designed to help you succeed across different experience levels and company expectations. Here is what you should expect in a Tech Interview, please remember the following points:Tech Interview Preparation does not have any fixed s 3 min read GfG160 - 160 Days of Problem SolvingAre you preparing for technical interviews and would like to be well-structured to improve your problem-solving skills? Well, we have good news for you! GeeksforGeeks proudly presents GfG160, a 160-day coding challenge starting on 15th November 2024. In this event, we will provide daily coding probl 3 min read Practice ProblemGeeksforGeeks Practice - Leading Online Coding PlatformGeeksforGeeks Practice is an online coding platform designed to help developers and students practice coding online and sharpen their programming skills with the following features. GfG 160: This consists of most popular interview problems organized topic wise and difficulty with with well written e 6 min read Problem of The Day - Develop the Habit of CodingDo you find it difficult to develop a habit of Coding? If yes, then we have a most effective solution for you - all you geeks need to do is solve one programming problem each day without any break, and BOOM, the results will surprise you! Let us tell you how:Suppose you commit to improve yourself an 5 min read Like